Ley de Gauss2

30
LEY DE GAUSS La ley de Gauss es una herramienta poderosa para determinar campos eléctricos en situaciones de simetría, y relaciona el flujo eléctrico total, E Φ , a través de una superficie cerrada, con la carga neta encerrada por la superficie. Esta ley establece: q s d E o = ε , donde, : representa la integral sobre una superficie cerrada, en cuyo interior hay una carga neta q, y s d : es un elemento diferencial de superficie; en cada punto s d r es un vector, y, por convención, siempre apunta hacia fuera de la superficie ( Fig. 8). Fig. 8 Si deseamos hallar el campo eléctrico E r en una cierta región del espacio, construimos en ese espacio, una superficie cerrada, llamada superficie gaussiana . La elección de la forma y el tamaño de la superficie gaussiana es arbitraria. Suele escogerse de tal forma que sobre ella el valor del campo eléctrico sea constante, y pueda entonces factorizarse fuera de la integral. Como ya sabemos, s d E E = Φ , es el flujo a través de una superficie cerrada y q es la carga neta contenida dentro de la superficie, es decir, que si se tienen muchas cargas puntuales i q dentro de la superficie, la ley de gauss puede escribirse : neta i i o q q s d E = = ε

Transcript of Ley de Gauss2

Page 1: Ley de Gauss2

LEY DE GAUSS

La ley de Gauss es una herramienta poderosa para determinar campos eléctricos en situaciones de simetría, y relaciona el flujo eléctrico total, EΦ , a través de una superficie cerrada, con la carga neta encerrada por la superficie. Esta ley establece:

qsdEo =⋅∫ε ,

donde,

∫ : representa la integral sobre una superficie cerrada, en cuyo interior hay una carga neta q, y

sd : es un elemento diferencial de superficie; en cada punto sdr es un vector, y, por convención, siempre apunta hacia fuera de la superficie ( Fig. 8).

Fig. 8

Si deseamos hallar el campo eléctrico E

ren una cierta región del espacio, construimos

en ese espacio, una superficie cerrada, llamada superficie gaussiana. La elección de la forma y el tamaño de la superficie gaussiana es arbitraria. Suele escogerse de tal forma que sobre ella el valor del campo eléctrico sea constante, y pueda entonces factorizarse fuera de la integral. Como ya sabemos, sdEE ⋅=Φ ∫ , es el flujo a través de una superficie cerrada y q es la carga neta contenida dentro de la superficie, es decir, que si se tienen muchas cargas puntuales iq dentro de la superficie, la ley de gauss puede escribirse :

netaii

o qqsdE ==⋅ ∑∫ε

Page 2: Ley de Gauss2

LA LEY DE GAUSS Y LA LEY DE COULOMB. (Campo Eléctrico debido a una carga punto) La ley de Coulomb puede deducirse de la Ley de Gauss. Para ello aplicamos la ley de Gauss a una carga puntual positiva q , y elegimos una superficie esférica como

superficie gaussiana. Se supone que el campo eléctrico E de la carga es desconocido, pero debido a la simetría, tendrá la misma magnitud en cualquier punto de una superficie gaussiana esférica (Fig. 9).

Fig. 9

Como E es constante en todas partes de la superficie, y hace un ángulo de cero grados

con sd , podemos extraer E de la integral que expresa el flujo y escribir de acuerdo con la ley de Gauss:

qsdE =⋅∫rr

Si una carga de prueba oq+ se sitúa en este campo, la fuerza eléctrica sobre esta carga será,

241

roqq

oEoqF

πε==

Y obtenemos de esta manera, la ley de Coulomb a partir de la ley de Gauss.

Page 3: Ley de Gauss2

CORTEZA ESFÉRICA

Una corteza esférica delgada de radio R tiene una carga total Q distribuida uniformemente sobre su superficie. Determine el campo eléctrico para puntos

1. Rr ≥ , es decir, fuera del cascarón 2. Rr < , es decir, dentro del cascarón

Fig. 10

SOLUCION

1. En la figura 10 se muestran las líneas de campo y los elementos de superficie supuesta la corteza cargada positivamente. Si construimos una superficie gaussiana esférica de radio Rr ≥ , como se muestra en la figura, la ley de Gauss

QsdEo =⋅∫ε permite escribir

QrEo =)4( 2πε Y despejando E tenemos

Rrr

QEo

>= ,4 2πε

Page 4: Ley de Gauss2

Que es igual al campo debido a una carga puntual de magnitud Q colocada en el centro de la corteza. 2. Rr < En este caso, la carga encerrada por la superficie gaussiana es cero, y la ley de Gauss dice que

0=⋅∫ sdEoε ,

0)4( 2 =rEo πε , de donde 0=E

Es decir que el campo E es cero en todos los puntos interiores. En la figura (11) se muestra una gráfica de E versus r

Fig.(11)

Page 5: Ley de Gauss2

DISTRIBUCIÓN ESFÉRICA (Esfera maciza) Una carga Q se encuentra uniformemente distribuida en todo el volumen de una esfera no conductora de radio R . Determinar el campo eléctrico en puntos: 1. fuera de la esfera, Rr > 2. dentro de la esfera, Rr ≤

Fig. 12

SOLUCIÓN

1. En la figura 12 se muestran las líneas de campo eléctrico Ev

, suponiendo la esfera cargada positivamente, y se muestran también las superficies gaussianas para Rr > y Rr < , las cuales consisten de esferas centradas en la esfera cargada. De la ley de Gauss,

QsdEo =⋅∫ε

cuando Rr > la carga que encierra la superficie gaussiana es exactamente Q . Debido a la simetría esférica,

QrE

QdsE

o

o

=

=∫)4( 2πε

ε

Y despejando E tenemos

204 r

QEπε

=

>r R

Page 6: Ley de Gauss2

Lo mismo que obtendríamos si la carga Q fuese una carga punto colocada en el centro de la esfera. 2. Rr < Para esta situación, la carga 'Q encerrada por la superficie gaussiana es menor que Q , y será

)34('' 3rVQ πρρ ==

Donde ρ es la densidad de carga y 'V es el volumen encerrado por la carga 'Q Como

3 34

R

Qesferavolumentotalrgaac

VQ

πρ ===

resulta

343

RQ

πρ = , y,

3

33

3

3 ) 34(

34

) 34('

RrQr

R

QrQ === ππ

πρ

De la ley de Gauss

'QsdEo =⋅∫ε

Observe que el campo es cero para 0=r , y aumenta linealmente con r hasta

Rr = , y después decrece inversamente a 2r , es decir,

34 R

r

o

QEπε

= , E α r , para Rr < , y,

241

r

Qo

Eπε

= , E α21

r, para Rr >

Los campos coinciden en Rr = y tienen el valor 241

RQE

oπε= ; y sus curvas se

muestran en la figura 13.

3

3

32

4

)4(

RrQE

RrQrE

o

o

πε

πε

=

=, r < R

Page 7: Ley de Gauss2

Fig. 13

Page 8: Ley de Gauss2

LÍNEA INFINITA DE CARGA

Fig. 14

La figura 14 muestra una sección de una línea infinita de carga de densidad constante. Deseamos calcular el campo eléctrico a una distancia R de la línea. Solución: Si suponemos la carga del alambre positiva, el sentido del campo será radialmente hacia fuera, y su magnitud dependerá de la distancia radial R . Como superficie gaussiana elegimos un cilindro circular de radio R y longitud h. Al utilizar la Ley de Gauss,

qsdEo =⋅∫ε

se descompone la integral en tres integrales, dos con respecto a las bases del cilindro y una con respecto a la superficie lateral. Como no hay flujo a través de las bases sino solamente a través del área lateral, y como por simetría E tiene el mismo valor en todos los puntos de esta última, se tendrá que

∫ ⋅= sdEq o

rrε

hRhEEs

dsE

Eds

o

o

o

o

λπεε

ε

ε

===

=

°=

∫∫

)2(

0cos

Pues el área lateral del cilindro es Rhπ2 y la carga total encerrada es la densidad lineal de carga multiplicada por la longitud, y resulta

RE

o

λπε21

=

En la unidad sobre Interacción Eléctrica (Problema resuelto #8, alambre infinito) se obtuvo este mismo resultado utilizando una técnica de integración a partir de la expresión

∫= rûrdqKE 2

Page 9: Ley de Gauss2

la cual utilizaba un método más laborioso. El resultado obtenido también es válido para alambres cargados con longitud finita, siempre que la distancia radial, R , sea mucho menor que la distancia L a un extremo del mismo, es decir

LR <<

Fig. 15

Page 10: Ley de Gauss2

LÁMINA INFINITA CARGADA

Calculemos el campo debido a una lámina infinita, delgada cargada, de una densidad superficial de carga σ Fig. 16. (Ver problema resuelto #10 de la Unidad Interacción Eléctrica)

Fig. 16

Solución: Una superficie gaussiana conveniente es un cilindro pequeño, cuyo eje sea perpendicular al plano con extremo equidistante del plano, y áreas de las bases A. Como el campo es perpendicular, no existe flujo a través del área lateral del cilindro. Empleando la ley de Gauss,

qsdEo =⋅∫ε

podemos escribir para las tres superficies del cilindro (dos de las bases y una lateral),

qsdEsdEsdEsdEc

ob

oa

oo =⋅⋅+⋅=⋅ ∫∫∫∫ εεεε

y como el flujo a través de la superficie lateral (superficie b) es cero, pues E es perpendicular a sd , y el flujo a través de cada una de las bases es EA (áreas a y c), resulta que,

qEAo

qEAoEAo=

=++ε

εε2

0

Como la carga encerrada por la superficie gaussiana es Aq σ= , la ecuación anterior se transforma en

oE

AEAo

εσ

σε

2

,2

=

=

Page 11: Ley de Gauss2

Al mismo resultado, aunque con mayor dificultad puede llegarse por integración a partir de la expresión (ver problema resuelto #10 de la unidad Interacción Eléctrica)

∫= rûrdqKE 2

En este ejercicio hemos supuesto una lámina infinita lo que es una idealización. Pero el resultado es una buena aproximación en el caso de un plano finito, siempre y cuando la distancia de la lámina al punto donde se evalúa el campo sea pequeña, en comparación con las dimensiones del plano. Si la carga de la hoja infinita es positiva, el campo está dirigido perpendicularmente desde la hoja (como se ilustró), pero si tiene una carga negativa, la dirección del campo es hacia la hoja, como se indica en la figura 17.

Fig. 17

Page 12: Ley de Gauss2

DOS LÁMINAS PARALELAS INFINITAS UNIFORMEMENTE CARGADAS, CON CARGAS OPUESTAS

Hallar el campo eléctrico debido a dos planos infinitos, tanto en la región entre placas como en las regiones en cualquier lado de las placas (Fig. 18).

Fig. 18

SOLUCIÓN: El campo eléctrico resultante se determina mediante el principio de superposición, teniendo en cuenta el campo debido a una lámina infinita de carga (problema resuelto anterior). Los campos de las láminas 1 y 2 son 1E y 2E respectivamente, y tienen la misma magnitud,

o

EEεσ

221 ==

En los puntos entre las láminas, 1E y 2E se refuerzan, y en los puntos a la izquierda de la lámina 1 ó a la derecha de la lámina 2, se cancelan. Entonces la magnitud del campo resultante entre las hojas es

oooE

εσ

εσ

εσ

=+=22

Por tanto,

21 EEErrr

+= =

2,0

1,0

nalámiladederechalaa

inaslámlasentrej

inalámladeizquierdaa

oεσ

Page 13: Ley de Gauss2

CONDUCTOR EN EQULIBRIO ELECTROSTÁTICO

Un conductor en equilibrio electrostático tiene las siguientes propiedades:

• El campo eléctrico es cero en puntos situados dentro del conductor. • Cualquier carga en exceso que se coloque en un conductor aislado se distribuye

totalmente en su superficie exterior. • El campo eléctrico justo afuera de un conductor cargado, tiene una magnitud

oεσ / , donde σ es la carga por unidad de área en ese punto, y es perpendicular a la superficie del conductor.

• La superficie de un conductor cargado en equilibrio es una superficie equipotencial, y como el campo eléctrico es cero dentro del conductor, concluimos que el potencial es constante en todos los puntos situados en el interior del conductor e igual al valor en la superficie.

• En un conductor, la carga tiende a acumularse en puntos donde el radio de curvatura de la superficie es más pequeño, es decir, en las puntas.

Fig. 19

En la figura 19 se ilustra un conductor aislado al cual se le ha colocado un exceso de carga q. Cuando esto ocurre esta carga se redistribuye de tal manera que los campos en el interior del conductor se anulan )0( =E y se establecen condiciones de equilibrio electrostático. Al trazar una superficie gaussiana, (ver figura 19), y aplicar la ley de Gauss con 0=E , se obtiene

qsdEo =⋅∫ε ,

y

La carga neta dentro de la superficie es cero. Como se ha colocado un exceso de carga y la superficie gaussiana se puede trazar próxima a la del conductor resulta que este exceso de carga solo se debe encontrar en la superficie. Calculemos ahora el campo justo afuera de la superficie de un conductor cargado en equilibrio, usando una superficie gaussiana muy pequeña en forma de cilindro, con una base dentro del conductor, y la otra justo afuera (Fig. 20)

Page 14: Ley de Gauss2

Fig.20

De la ley de Gauss,

qsdEo =⋅∫ε Al considerar las tapas a y b del cilindro y el área lateral, c, el flujo total puede entonces calcularse así:

qsdEsdEsdEsdEc

ob

oa

oo =⋅+⋅+⋅=⋅ ∫∫∫∫ εεεε

qEAo =++= ε00 , ya que para la tapa de adentro 0=E y el flujo a través del área lateral del cilindro también es cero porque las líneas de E o son cero (dentro del conductor) o son perpendiculares (fuera del conductor) a sdr . Como la carga q encerrada por la superficie gaussiana es Aσ , al sustituirse, obtenemos,

AEAo σε = ,

o sea,

oE

εσ

=

El campo justo afuera de la superficie es perpendicular a la superficie, , pues si el campo tuviera una componente paralela, , a la superficie, esto ocasionaría un movimiento de las cargas superficiales, creando una corriente y una situación de No equilibrio (Ver figura 21).

Page 15: Ley de Gauss2

Fig. 21

Mostremos que cada punto sobre la superficie de un conductor cargado en equilibrio está al mismo potencial

Fig. 22

Considere dos puntos 21 PyP sobre la superficie de la figura 22 (recuerde que E es perpendicular a la superficie). La diferencia de potencial entre 21 PyP será,

∫∫ =−=⋅−=−2

1

2

1

120)2/cos(

P

P

P

PPP dlEldEVV π

rr

Por tanto,

12 PP VV = , resultado que se aplica a dos puntos cualquiera de la superficie, y por lo tanto, la superficie de cualquier conductor cargado en equilibrio es una superficie equipotencial. Si los dos puntos 21 PyP , son interiores, y dado que 0=E en el interior de un conductor, aplicando de nuevo la ecuación se sigue:

Page 16: Ley de Gauss2

∫ ⋅−=−2

1

12

P

PPP ldEVV ,

la integral es cero, con lo que

12 PP VV = , es decir, que todos los puntos del interior de un conductor tienen el mismo potencial. Como todos los puntos de un conductor están al mismo potencial, se asigna un único valor de potencial al conductor. Para un dieléctrico no se puede asignar un único valor de potencial, ya que este puede ser distinto en puntos diferentes de su interior y de su superficie. Cuando una carga neta se coloca en la superficie de un conductor esférico, la densidad de carga que se establece es uniforme. Sin embargo, si el conductor no es esférico, la densidad de carga superficial es más alta donde el radio de curvatura es más pequeño.

Como o

Eεσ

= , el campo E es más grande cerca de puntos que tienen pequeños radios,

y puede alcanzar valores muy elevados. Para ilustrar esto, consideremos dos conductores esféricos (figura 23) unidos mediante un alambre conductor para que se equilibren sus potenciales. Supóngase que todo el conjunto se eleva a un potencial V y que las esferas están separadas una gran distancia, de tal manera que las cargas no se afectan entre sí. El potencial, V , será igual al potencial de las dos esferas,

Fig. 23

2

2

1

1

21

41

41

Rq

RqV

VVV

oo πεπε==

==

De donde

,)4(,)4(

22

11

VRqVRq

o

o

πεπε

==

Page 17: Ley de Gauss2

Y como 12 RR > , la esfera más grande tiene la carga más grande, y

,2

1

2

1

RR

qq

= (1)

Como, 21

11 4 R

σ = , y, 22

22 4 R

σ = ,

se sigue,

212

221

2

1

RqRq

=σσ , (2)

y utilizando la ecuación (1),

1

2

2

1

RR

=σσ

Como, 21 RR < , resulta que para que se cumpla la ecuación anterior, debe ocurrir que

1σ > 2σ . Se puede notar así, que el campo eléctrico cerca de la esfera más pequeña es mayor que cerca de la esfera más grande, y que la esfera más grande tiene la carga total más grande, pero la densidad de carga más pequeña. Es decir, la densidad de carga tiende a ser mayor en superficies conductoras aisladas, cuyos radios de curvatura son pequeños.

Page 18: Ley de Gauss2

CONDUCTOR HUECO

Consideremos ahora el caso en el cual hay una cavidad dentro del conductor, y no hay objetos cargados dentro de esta

Fig. 24

Sabemos que el campo es 0=E en todas las partes del interior de un conductor, y que el potencial es uniforme. Lo anterior también es cierto, si el conductor es hueco y no hay cargas en la cavidad. Para comprender esto considere una superficie gaussiana dentro del conductor como se indica en la figura. Puesto que el campo 0=E dentro del conductor, entonces de acuerdo con la ley de Gauss,

0==⋅∫ netao qsdEε ,

y la carga netaq encerrada por la superficie es netaq =0. Tenemos así que todo exceso de carga en un conductor que contenga espacio hueco no conductor, se mueve hacia la superficie exterior del conductor. Además, como todos los puntos se encuentran al mismo potencial, tenemos para dos puntos 1P y 2P sobre la superficie de la cavidad que

∫ =−=−2

1

2101

P

PPP ldEVV

r

Si escogemos un camino de integración que conduzca desde 1P a 2P a través de la

cavidad (ver figura), E será cero, y por consiguiente, el campo eléctrico dentro de la cavidad es cero.

Page 19: Ley de Gauss2

PROBLEMA RESUELTO 1

Un conductor con una carga neta de 12 Cµ presenta una cavidad como se ilustra en la

figura. Dentro de la cavidad se encuentra una caja puesto .3 Cq µ−= Calcular la carga

1q en la superficie interior del conductor, y la

carga 2q en la superficie exterior.

SOLUCIÓN:

En la figura se ha dibujado una superficie

gaussiana dentro del conductor, la cual encierra

las cargas 1q y q− . Como dentro del conductor

el campo eléctrico es cero, al aplicar la ley de

Gauss con esta superficie resulta que,

Cqqy

qqsdE

µ

ε

3

,0

)(

1

10

==

=

−+=⋅∫ vv

Como, por hipótesis,

CCCq

quetieneSeCqq

µµµ

µ

9312

,12

2

21

=−=

=+

Page 20: Ley de Gauss2

PROBLEMA RESUELTO 2

Una esfera de radio R tiene una densidad de carga rαρ = donde α es una constante

y r es la distancia al centro de la esfera. Calcule el campo eléctrico como función de r

para:

a) Puntos interiores a la esfera

b) Puntos exteriores a la esfera

Solución

La densidad volumétrica de carga se define como dVdq

=ρ , donde q significa carga

eléctrica y V es volumen. A partir de tal definición puede escribirse:

[ ] ( )

drrdq

entoncesr

pero

drrdqdVdq

πα

αρ

πρ

ρ

4=

=

=

=

;

1,4 2

a) r < R

En este caso (figura 26), como la superficie gaussiana está dentro de la esfera, la carga

está dada por

( )22

24

4

4

20

2

0

0

0

rq

r

drr

drr

dqq

r

r

r

r

πα

πα

πα

πα

=

=

=

=

=

Por la ley de Gauss, se tiene Fig.26

∫ = qsdE vv·0ε

Page 21: Ley de Gauss2

Fig. 27

Con q igual a la carga encerrada por la superficie gaussiana. Como el campo E es

constante en todos los puntos de la superficie gaussiana, por la simetría, entonces,

( )

0

2

20

2

,2

4

εα

πα

πε

=

=

=

E

despejandoyr

qrE

b) r > R

Para todos los puntos fuera de la esfera r > R (Fig. 27), y la

carga total de la esfera se obtiene integrando (1)

( )

=

=

=

qsdE

GaussdeleylaAplicandoRq

luego

drrqR

vv·

:3,2

,

,4

0

2

0

ε

πα

πα

Puesto que el campo eléctrico fuera de la esfera solo depende de r, es radial (y en

consecuencia es perpendicular a cualquier superficie esférica centrada en el centro de la

esfera) y para un valor determinado de r la magnitud de Ev

permanece constante,

∫ = qsdE vv·0ε ,

luego

( )44 20 qrE =πε

Reemplazando en (4) la expresión de q dada por (3), y resolviendo para E:

20

2

2 rREεα

=

Page 22: Ley de Gauss2

PROBLEMA RESUELTO 3

Un cilindro hueco largo tiene radio interior a y radio exterior b, como muestra la figura

28. Este cilindro tiene una densidad de carga por unidad de volumen dada por rk=ρ ,

donde k es una constante y r es la distancia al eje. Hallar el campo eléctrico y el

potencial en las tres regiones: a) r < a; b) a < r < b; c) r > b

Fig. 28

Solución

Tomamos como superficie gaussiana un cilindro concéntrico de radio r y longitud L.

como el Ev

es radial, entonces el flujo de Ev

a través de la superficie gaussiana es

LrE π2 y la ley de Gauss dice:

0

π dentrolibrergacaLrE = , de donde

rLdentrolibrergacaE

02 επ= , (1)

De otro lado rdEdV vv·−= , es decir:

∫ ∫−= drEdV , (2)

a) Para r < a la carga encerrada por la superficie gaussiana es cero y (1) da 0=E .

Este resultado se introduce en (2) y obtenemos V= constante

b) Para a < r < b la carga encerrada por la superficie gaussiana es ∫r

adrrL

rk π2 y

la ecuación (1) da: ( )rarkE

0ε−

= . Este resultado se introduce en (2) así:

Page 23: Ley de Gauss2

( )∫∫

−−= dr

rarKdV

rv

av0

)(

)( ε, de donde:

arKaarKaVrV ln)()()(

00 εε+−−=−

c) Para r > b la carga encerrada es )(22 abKLdrrLrKb

a−=∫ ππ y la ecuación (1)

da: r

abKE0

)(ε−

= . Este resultado se introduce en (2) así:

∫∫−

−=r

b

rv

bvdr

rabKdV

0

)(

)(

)(ε

, de donde:

brabKbVrV ln)()()(

0ε−

−=−

Page 24: Ley de Gauss2

Fig. 29

PROBLEMA RESUELTO 4

Una concha metálica hueca tiene radio interior a y radio

exterior b, como muestra la figura 29. Hallar el campo

eléctrico y el potencial en las regiones I, II y III sabiendo que

hay una carga q en el centro.

En la región II, por ser metálica, el campo electrostático es

cero, y en consecuencia el potencial es constante:

teconsVE

II

II

tan)1(,0

==

Para hallar IΕ tomamos como superficie gaussiana una esfera concéntrica de radio r<a.

Como IEv

se espera que tenga dirección radial, entonces el flujo de IEv

a través de la

superficie gaussiana es 24 rEI π , y la ley de Gauss dice que 0

24ε

π qrEI = , de donde:

( )

( )3,44

)()(

,

2,ˆ4

00

)(

)(

02

aq

rqaVrV

dondededrEdV

deciresrdEdVqueSabemos

urqE

II

r

a I

rV

aV I

rI

I

I

πεπε

επ

−=−

−=

−=

=

∫∫

vv

v

Podemos fácilmente hallar la carga eléctrica que se acumula en

la superficie interior del metal, la que tiene radio a (Fig. 30).

Imaginamos el volumen comprendido entre dos esferas, una de

radio r < a y otra de radio K tal que a < K < b, como muestran

los trazos punteados en el dibujo. Calcularemos el flujo del

campo eléctrico a través de la superficie de este volumen

mencionado; utilizando (1) y (2) vemos que el flujo es 24 rEI π− y la ley de Gauss dice que

0

24ε

π metaldelnterioriparedlaenacumuladagacarrEI =−

Fig. 30

Page 25: Ley de Gauss2

y utilizando (2) vemos que la carga acumulada es qrEI −=− 024 επ . Una carga igual y

de signo contrario se acumula en la otra pared:

En la pared exterior del metal (la que tiene radio b) se acumula una carga

q, (4)

Finalmente utilizaremos la ley de Gauss para hallar IIIE .

Imaginamos el volumen comprendido entre dos esferas, una de

radio r > b y otra de radio K tal que a < K < b, como muestran

los trazos punteados en la figura 31. Calcularemos el flujo del

campo eléctrico a través de la superficie de este volumen

mencionado, utilizando (1) vemos que el flujo es 24 rEIII π y

la ley de Gauss dice:

Fig.31

0

24ε

π metaldelexteriorparedlaenacumuladagacarrEIII =

Y (4) permite entonces concluir que

,4 2

0rqEIII πε

= (5);

e integrando como en (3):

rqVrV IIIIII

04)()(

πε=∞− , (6)

Las ecuaciones (2), (3), (4), (5), (6) serían lo que se obtendría si no hubiera metal.

Page 26: Ley de Gauss2

PROBLEMAS PROPUESTO 1

Calcule el flujo eléctrico a través de c/u de las superficies ilustradas en las figuras.

a) Superficie esférica

Fig. 32

situada en la región de un campo eléctrico E uniforme (Fig. 32). R/ фE = 0 b) Cubo de lado l situado en la región de un campo eléctrico E uniforme,

orientado en la dirección X (Fig. 33).

Fig. 33

R/ фE = 0

Page 27: Ley de Gauss2

c) Cilindro de radio R colocado en un campo eléctrico E uniforme, como se ilustra en la figura 34.

Fig. 34 d) Superficie plana, sr∆ , con un campo E uniforme paralelo a sr∆ (Fig. 35).

Fig. 35

R/ фE = )( sE ∆

Page 28: Ley de Gauss2

e) Superficie plana sr∆ , con un campo E uniforme perpendicular a sr∆ (Fig. 36).

Fig.36

R/ фE = 0 f) Superficie plana , sr∆ , donde E y sr∆ forman un ángulo θ (Fig. 37).

Fig. 37 R/ фE = E ( sr∆ )cosθ .

Page 29: Ley de Gauss2

PROBLEMA PROPUESTO 2

Dibujar las superficies Gaussianas necesarias para calcular el campo eléctrico E en el punto P , para cada una de las configuraciones siguientes.

Hacer dos gráficas: Una con la parte de la tinta, y otra igual pero que incluya las figuras a lápiz (esta sería la respuesta)

Page 30: Ley de Gauss2

PROBLEMA PROPUESTO 3

Un cascarón esférico de radio R tiene una carga por unidad de área 24 R

Q

πσ = .

Encuentra el campo eléctrico para puntos: a) Rr < b) Rr > R/: a) 0=E

b) o

Eεσ

=