Analog and RF circuit techniques in nanometer CMOS · 2016. 2. 17. · b.nauta@utwente .nl...

58
Analog and RF circuit techniques in nanometer CMOS Bram Nauta University of Twente The Netherlands http://icd.ewi.utwente.nl b.nauta@utwente .nl UNIVERSITY OF TWENTE.

Transcript of Analog and RF circuit techniques in nanometer CMOS · 2016. 2. 17. · b.nauta@utwente .nl...

  • Analog and RF circuit techniques in nanometer CMOS

    Bram Nauta University of Twente

    The Netherlands http://icd.ewi.utwente.nl

    b.nauta@utwente .nl

    UNIVERSITY OF TWENTE.

  • Outline

    •  Introduction •  Balun-LNA-Mixer (BLIXER) •  Interferer robust SDR RX – analog part •  Interferer robust SDR RX – digital part •  Summary

  • 3

    ωLO

    ωLO

    Preferred: one wide band frontend IC: Software Defined

    Keep minimal

  • 4

    RF system trend (I)

    •  Challenges wide band circuits:

    Minimal pre-filtering: high linearity No high Q tanks: low noise •  Bandwidth will be ok for low GHz

    •  Towards Software Defined Radio

  • Outline

    •  Introduction •  Balun-LNA-Mixer (BLIXER) •  Interferer robust SDR RX – analog part •  Interferer robust SDR RX – digital part •  Summary

  • 6

    BLIXER

    Balun + LNA + Mixer

    [Blaakmeer, ISSCC2008]

  • 7

    ωLO

    ωLO

    BLIXER=Wide band receiver

  • 8 8

    Balun-LNA Simultaneous: •  Single-to-Differential •  Balanced Gain •  Broadband input

    match ( ~1/gmCG ) •  Noise Canceling •  Distortion Canceling

    [Blaakmeer et al. ESSCIRC `07]

    RS vs

    vin +

    -

    vout + -

    CG CS

    IBias

  • 9 9

    Noise Canceling

    vin +

    - Ibias

    in

    50Ω

    20mS

    80mS

    200Ω 50Ω

    vs

  • 10 10

    Bandwidth problem:

    vin +

    - Ibias

    50Ω

    20mS

    80mS

    200Ω 50Ω

    vs

    C < 80fF for BW=10GHz

  • 11 11

    So, Don’t make voltage gain @ RF

    vin +

    - Ibias

    50Ω

    20mS

    80mS

    200Ω 50Ω

    vs

  • 12 12

    Use a MIXER

    vin +

    - Ibias

    50Ω

    20mS

    80mS

    200Ω 50Ω

    vs

  • 13 13

    RS vs

    RF: no high-Z nodes

    Now Low frequency

    Low-Z

    LO

    gm

    4·gm

    Z 4·Z

    IBias

  • 14 14

    Mixer stacked on CG-CS stage

    gm·vrf 4·gm·vrf

    vs

    RS

    W 4·W

    IF+ IF-

    LO+ LO-

    Z 4·Z

    R

    3·R

    3·C

    C

    vrf + -

    ‘CG’ ‘CS

    [Blaakmeer, ISSCC’08]

  • 15 15

    Chip Micrograph and PCB detail

    Baseline 65nm CMOS 1.2V supply Active area < 0.02 mm2

    OSC

    IN IF Out Lbias

    OSC

    IN

    IF I+ IF I-

    IF Q+ IF Q-

    Supply & Biasing

    LO gen + buf Core + IF-buf Biasing

    1.4 mm

  • 16

    Conversion Gain, NF and S11

    16 RX-frequency [GHz]1 10

    [dB]

    -30

    -20

    -10

    0

    10

    20GC

    NF

    S11 fIF = 50 MHz

    7GHZ

  • 17 17

    Other BLIXER Performance

    •  Linearity: –  IIP3 @ RF: -3 dBm –  IIP2 @ RF: +20 dBm

    •  Quadrature accuracy: –  Phase error < 3° –  Gain error < 1dB

    •  LO leakage < -50 dBm •  Dissipation

    –  33mW (LO=500MHz) –  57mW (LO=7GHz)

  • Outline

    •  Introduction •  Balun-LNA-Mixer (BLIXER) •  Interferer robust SDR RX – analog part •  Interferer robust SDR RX – digital part •  Summary

  • A Software-Defined Radio Receiver Architecture

    Robust to Out-of-Band Interference

    [Ru, ISSCC 2009]

  • 20

    ωLO

    ωLO

  • 21

    Conventional Multi-Band Receiver

    •  RF filters for out-of-band interference, but bulky, costly, lossy, inflexible… •  Our goal: Software Defined Radio with relaxed RF filtering

    Chip

    850M

    900MLNA

    LNA

    LNA

    LNA

    Ante

    nna

    Switc

    hes

    IFA

    LPF

    IFA

    LPF1800M

    1900M

    0/90° LO

    !

  • 22

    Wideband Interfering: Nonlinearity

    •  Wideband LNA: also amplifies interference à nonlinearity

    -50dBm

    +10dBm

    0.8G 1.6G 2.4G

    -20dBm

    3.2G

    -70dBm-10dBm

    0.8G 1.6G

    Wanted Interference

    2.4G

    -40dBm

    LNAA B C 0.8G 2.4G

    ...WidebandGain=20dB

    Intermodulation & blocking

  • 23

    Wideband Interfering: Harmonic Mixing

    •  Switching mixer: square-wave LO à harmonic mixing

    LNAA B C 0.8G 2.4G

    ...WidebandGain=20dB

    -70dBm -40dBm

    0.8G 2.4G

    -50dBm

    DC

    -30dBm-50dBm-20dBm

    0.8G 2.4G

    Wanted 3rd harmonic

  • 24

    Concept: Use LP Filtering for Selectivity

    •  Voltage gain only at BB after low-pass filter (LPF) to filter blockers à Keep low impedance over a wide band at node B

    V-IA B C

    I-V

    LO

    LNA1st node with voltage gain

    Baseband (BB)

    RFLPF

    50Ω

    Low Gain,Low Pain.

  • 25

    Realization: Wideband LNTA + Mixer + TIA

    •  LNTA: high Gm & high Rout à low noise small voltage swing at node B à good linearity •  Similar to [1], but now wideband and with blocker filtering

    [1] Redman-White & Leenaerts, ESSCIRC07

    LNTAA B C

    OTAD

    LO

    RF BB50Ω

    Impe

    danc

    e

    f

    ≈+Rmixer

    DCLO f

    V-I LPF & I-V

  • 26

    Harmonic Rejection (HR) Mixer: Remove 3LO and 5LO

    [2] Weldon et. al., ISSCC01

    45°

    1

    1√2

    3rd or 5th harmonic

    : cancel!

    √245°

    1

    1

    1st or 7th harmonic

    : add up!

    •  Amplitude weighting + phase shifting à emulate sine-LO

    ÞLO3

    LO2

    LO1

    x1

    x√2

    x1

    Effective LO

    1RF BB

    Û

    LO1

    1

    1

    LO2

    LO3

    √2RF BB

    -45°

    45°

    1

    1√2

    Þ

  • 27

    Problem: Amplitude and Phase Errors

    •  Amplitude and phase errors à unwanted harmonic residue à degrade HR ratio •  How to make irrational ratio, e.g. √2, on chip?

    3rd or 5th harmonic vector diagram

    Phase Error45°

    1

    1 √2

    Δφ

    residue

    Amplitude Error45°

    1

    1 √2(1+α)residue

  • 28

    2-Stage Polyphase HR: Concept

    •  41/29=1.4138, √2=1.4142 à ε=0.03%

    1st Stage 2nd Stage

    2

    23

    2

    23

    x2x3x2

    x2x3x2

    x2x3x2

    45°

    -45°

    0°45°90°

    135°

    45°90°

    2

    23

    x7

    x5

    x5

    29

    2941

  • 29

    2-Stage Polyphase HR: Realization

    •  RF LNTA for 1st-stage weighting (2:3:2) •  BB resistor for 2nd-stage weighting (5:7:5) •  Nominally √2, what about influence of mismatch?

    -+-+

    -+-+

    -+-+

    -+-+

    45°

    90°

    135°

    180°

    225°

    270°

    315°

    2Gm

    2Gm

    3GmRF+-

    50Ω

    50Ω Q+

    -

    -+-+

    -+-+

    I+

    -

    75

    7

    75

    7

    75

    7

    75

    7LNTA

  • 30

    Reduced Effect of Amplitude Mismatch

    •  2-stage polyphase à product of relative errors •  E.g. 2:3:2 à α=6% à 1st-stage only: HR3=40dB 5:7:5 à β=1% à 2-stage total: HR3=86dB

    3rd or 5th harmonic

    1st

    harmonic(desired signal)

    45°

    √2α·1

    √2α·√2(1+β)

    2αβ

    √2α·1

    √2(2+α)·√2(1+β)

    2(2+α)(2+β)45°

    √2(2+α)·1

    √2(2+α)·1

    2nd stage (error β in √2)

    ≈ratio α2 ·β2≈ratio

    α2

    45°

    1

    1√2(1+α)

    √2α

    √2(1+α)

    √2(2+α)45°

    1

    1

    1st stage (error α in √2)

  • 31

    •  LP blocker filtering: attenuates interference around LO •  2-stage polyphase HR: robustly attenuates 3LO and 5LO

    RF Filtering is Relaxed!

    50ΩLNTARF BB

    2:3:2 HR Mixer 757

    OTA OTA

    RF to BB Periodic Transfer Funciton (PXF)

    LO 3LO 5LO 7LO fDC

    17dBPXF (dB)

  • 32

    Zero-IF Receiver Prototype

    2Gm

    2Gm

    3Gm

    -+-+

    -+-+

    -+-+

    -+-+

    RF+-

    Chip

    Q+

    -

    8

    -+-+

    -+-+

    I+

    -

    8CLK+-

    50Ω

    50Ω

    100Ω

    757

    Clock

    LNTA Mixer

    TIA1

    757

    757

    757

    R-net

    TIA2

  • 33

    Chip Photo

    •  1mm2 in 65nm CMOS

    •  VDD: 1.2V •  Current

    consumption: –  Analog 33mA –  Digital 17mA

  • 34

    Measured HR: 40 Chips

    •  No trimming & calibration, no RF filtering

    Min. HR3=60dBMin. HR5=64dB

    10 20 30 401

    60

    70

    80

    90

    Sample #

    HR

    Rat

    io (d

    B)HR Ratio @ 0.8G LO

    5th3rd

  • 35

    Measured Performance Summary

    VDD 1.2V Current

    Consumption Analog: 33mA Digital (clock):

    8mA @ 0.4GHz 17mA @ 0.9GHz

    1 Out-of-band IIP3: two tones = 1.61G & 2.40GHz, LO = 819MHz 2 Out-of-band IIP2: two tones = 1.80G & 2.40GHz, LO = 601MHz

    LO Frequency 0.4~0.9GHz Gain 34.4±0.2dB

    DSB NF 4dB±0.5dB S11 < -10dB 80M~5.5GHz

    In/Out-of-band IIP31

    +3dBm / +18dBm

    In/Out-of-band IIP22

    +46dBm / +51dBm

    IF Bandwidth 12MHz 1/f noise 30kHz corner

    Harmonic Rejection Ratio @ 0.8GHz LO

    3rd-order > 60dB (40 chips) 5th-order > 64dB (40 chips)

    2nd, 4th, 6th > 62dB (20 chips)

  • 36

    Conclusion: A SDR Receiver Architecture

    Robust to Out-of-Band Interference

    •  Only voltage gain @ BB after low-pass filtering –  In-band IIP3 +3dBm & out-of-band IIP3 +18dBm

    •  2-stage polyphase harmonic rejection technique – Robust: error = product of errors – Accurate multiphase clock – Minimum HR 60dB over 40 chips without

    calibration / trimming / RF filters

  • Outline

    •  Introduction •  Balun-LNA-Mixer (BLIXER) •  Interferer robust SDR RX – analog part •  Interferer robust SDR RX – digital part •  Summary

  • The Digital approach:

    Harmonic Rejection Exploiting Adaptive

    Interference Cancellation

    [Moseley, ISSCC 2009]

    38

  • 39

    Harmonic Rejection RX: This work

    ADC

    ADC

    ADC

    ADC

    x0

    x45

    x90

    x135

    2Gm

    2Gm

    3Gm

    -+-+

    -+-+

    -+-+

    -+-+

    RF+-

    Chip

    8

    8CLK+-

    50Ω

    50Ω

    100Ω

    To Digital Harmonic Rejection Algorithm

    (Baseband processor)

  • 40

    The Basic Idea

    Subtract interference (residual harmonic image responses)

    from received signal.

    •  Need interference estimate signal.

    -Interference

    Estimate

    Desired Signal+ Interference Desired Signal

    d(n)

    v(n)

    e(n)

  • 41

    Adaptive Interference Cancelling (AIC)

    •  Adaptive “filter” aligns phase & amplitude. •  Minimizes cross-correlation v(n) and e(n).

    Digital“Filter”

    -Interference

    Estimate

    Desired Signal+ Interference Desired Signal

    LearningAlgorithmFilter Coefficients

    w(n)

    r(n)

    v(n)

    e(n)

    y(n)

  • 42

    Two I/Q signals

    ADC

    ADC

    ADC

    ADC

    x0

    x45

    x90

    x135

    2Gm

    2Gm

    3Gm

    -+-

    +

    -+-

    +

    -+-

    +

    -+-

    +

    RF+-

    Chip

    8

    8CLK+-

    50Ω

    50Ω

    100Ω

    r(n) = x0 + j·x90

    IQ2(n) = x45 + j·x135

  • 43

    Interference estimate

    r(n) IQ2 IQ’2 v(n)=r(n)-IQ’2Desired signal

    3rd harmonicresponse

    r(n) IQ2 IQ’2 v(n)=r(n)-IQ’2

    5th harmonicresponse

    r(n) IQ2 IQ’2 v(n)=r(n)-IQ’2

  • 44

    AIC Algorithm 1/5

    RF Input

    ADC

    ADC

    ADC

    ADC

    j

    j

    -45°

    (.)*

    w1* w2*

    - -r(n)

    v(n)

    e(n)

    LMSupdate

    x0

    x45

    x90

    x135

    IQ1

    IQ2

    Adaptive Interference Canceller

    To Rest ofBaseband Processing

    Master Clock

    ANALOG

    FRONT

    END

  • 45

    AIC Algorithm 2/5

    RF Input

    ADC

    ADC

    ADC

    ADC

    j

    j

    -45°

    (.)*

    w1* w2*

    - -r(n)

    v(n)

    e(n)

    LMSupdate

    x0

    x45

    x90

    x135

    IQ1

    IQ2

    Adaptive Interference Canceller

    To Rest ofBaseband Processing

    Master Clock

    ANALOG

    FRONT

    END

  • 46

    AIC Algorithm 3/5

    RF Input

    ADC

    ADC

    ADC

    ADC

    j

    j

    -45°

    (.)*

    w1* w2*

    - -r(n)

    v(n)

    e(n)

    LMSupdate

    x0

    x45

    x90

    x135

    IQ1

    IQ2

    Adaptive Interference Canceller

    To Rest ofBaseband Processing

    Master Clock

    ANALOG

    FRONT

    END

  • 47

    AIC Algorithm 4/5

    RF Input

    ADC

    ADC

    ADC

    ADC

    j

    j

    -45°

    (.)*

    w1* w2*

    - -r(n)

    v(n)

    e(n)

    LMSupdate

    x0

    x45

    x90

    x135

    IQ1

    IQ2

    Adaptive Interference Canceller

    To Rest ofBaseband Processing

    Master Clock

    ANALOG

    FRONT

    END

  • 48

    AIC Algorithm 5/5

    RF Input

    ADC

    ADC

    ADC

    ADC

    j

    j

    -45°

    (.)*

    w1* w2*

    - -r(n)

    v(n)

    e(n)

    LMSupdate

    x0

    x45

    x90

    x135

    IQ1

    IQ2

    Adaptive Interference Canceller

    To Rest ofBaseband Processing

    Master Clock

    ANALOG

    FRONT

    END

  • 49

    Demonstration

  • 50

    Demonstration

  • 51

    Demonstration

  • 52

    Demonstration

  • 53

    Demonstration

  • 54

    Comparison

    This work Z. Ru ISSCC 2009 12.8

    Rej. strongest >80 dB (1) >60 dB

    Rej. other odd >36 dB >60 dB

    Rej. even >64 dB >62 dB

    Power frontend 45 mA @ 1.2 V (excl. ADCs)

    50 mA @ 1.2 V (excl. ADCs)

    Power DSP (100 Msps)

  • 55

    Adaptive Interference Cancellation: Conclusions

    Dual-domain Harmonic Rejection Mixer (HRM) proposed: –  Analog HRM + 4 ADCs + Digital AIC. –  Strongest correlating harmonic image is removed –  X-correlation -> independent of signal shape. –  Stronger interferer -> more rejection

    •  Measurements: –  First stage (analog) HR > 36 dB. –  Dual domain HR3 or HR5 > 80 dB. –  Limitation: even-order HR > 64 dB.

  • Outline

    •  Introduction •  Balun-LNA-Mixer (BLIXER) •  Interferer robust SDR RX – analog part •  Interferer robust SDR RX – digital part •  Summary

  • 57

    Summary

    •  BLIXER – Noise cancelling – no voltage gain @ RF

    •  Interferer robust RX – No voltage gain @ RF – Filter before voltage gain – HR: error of errors

  • 58

    Summary

    •  Digital Harmonic Rejection RX – Adaptively kills the biggest harmonic interferer