Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′...

27
1 drops in motion Frieder Mugele Physics of Complex Fluids University of Twente the physics of electrowetting and its applications

Transcript of Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′...

Page 1: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

1

drops in motion

Frieder MugelePhysics of Complex Fluids

University of Twente

the physics of electrowettingand its applications

Page 2: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

2

wetting & liquid microdroplets

50 µm

H. Gau et al. Science 1999lvLpp κσ2==∆lv

slsvY σ

σσθ

−=cos

capillary equation Young equation

Page 3: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

3

electrowetting: the switch on the wettability

voltage

Page 4: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

4

some applications of EW

Kuiper and Hendriks, APL 2004

tunable lenses(varioptic, Philips)

250 µm

EW displays(Philips à liquavista)

micromechanical actuation lab-on-a-chip

courtesy of R. Hayes

Page 5: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

5

outline

q introductionq electrowetting basics

q historic noteq origin of the EW effectq electromechanical modelq contact angle saturation

q physical principles and challenges of EW devicesq FUNdamental fluid dynamics with EW

q contact angle hysteresis in EWq contact line motion in ambient oilq electrowetting driven drop oscillations and mixing

flowsq channel-based microfluidic systems with EW

functionality

q conclusion

Page 6: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

6

the origin

Gabriel Lippmann(1845-1921)

Nobel prize 1908

1875: Annales de Chimie et de Physique

1891: interferometric color photography

english translation: in Mugele&BaretJ. Phys. Cond. Matt. 17, R705-R774 (2005)

Page 7: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

7

Lippmann‘s experiment on electrocapillarity

First law—the capillary constant at the mercury/diluted sulfuric acid interface is a functionof the electrical difference at the surface.

voltage [Daniell]∆

σ Hg/

H2S

O4

)(Uf=σ

Page 8: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

8

effective surface tension

capillary depression (Jurin):

no dielectric!

Hg

H2SO4 Rp Y

Lθσ cos2

=∆ hphg =∆= ρ

∆h 20)()( UUUhh ασσσ −==→∆=∆

+ + + + + + - - - - - -

build-up of a Debye layer à electrostatic energy/area double layer capacitance:

D

εε 0=2

21 cUEel =

U

total free energy (per unit area): 20 2

)()( UcUUF −== σσ

Lippmann eq.: U∂∂

−=σ

ρ

Page 9: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

9

modern electrowetting equation „on dielectric“

conductive liquidinsulatorcounter electrode

UU - - - - - -+ + + + + +σsl

σsv

σlvbasic setup:

“Electrowetting on dielectric (EWOD)”

Berge 1993

electrowettingnumber

advancingreceding

high voltage:contact angle saturation

low voltage: parabolic behavior

20

21cos

))(cos(

Ud

U

lvY σ

εεθ

θ

+

=

electrowetting equation:

η

water in silicone oil

Page 10: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

10

examples of EW-curves20

21cos))(cos( U

dU

lvY σ

εεθθ +=electrowetting equation:

0 8000 16000 24000

-0,8

-0,4

0,0

0,4

0,8 water gelatin (2%; 40°C) milk SDS (0.7%) Triton-x 100 (0.1%)

cos

θ (U

)

U2 (V2)

α

σmacro [mJ/m2]]3820187

4.4

0 5 10 150.0

0.5

1.0

1.5

2.0

Triton SDS milk gelatin water

cos

θ(U

)

U2/γwo(105 V

2m/N)

Teflon AF-coated ITO glass in silicone oil; AC voltageBanpurkar et al., Langmuir 2008

Page 11: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

11

EW as microdrop tensiometer

18.7± 1.015.7±0.720.0±0.5yeast protein (1% )/ silicone oil (167O)

17.9± 0.1 18.6±0.919.4±0.7Milk / silicone oil (167 O)

33.0 ± 0.5 35.0±0.732.8±0.8Aqu. Glycerin (50% )/ silicone oil (169O)

4.4 ± 0.45.6±0.54.7±0.3Aqu. Triton X-100 (0.1%)/ silicone oil (163O)

7.1 ± 0.47.5± 0.86.5± 0.5Aqu. CTAB (0.1 %)/mineral oil (164O)

7.0± 0.47.5± 0.87.5± 0.3Aqu. SDS (0.7 %)/ silicone oil (165O)

20.2 ± 0.520.4±0.820.1±0.8Aqu. Gelatin (2 %)/silicone oil (167O)

23.3 ± 0.424.8±0.724.1±0.6Aqu. Gelatin (2 % )/ mineral oil (160O)

53.3±0.548.5±0.652.9±0.7H2O/ n-hexadecane (169O)

72.6± 0.572.0±0.272.4 ±0.6H2O/ air (62 O)

48.0± 0.2 47.3± 0.748.8± 0.5H2O/ mineral oil (168O)

38± 0.2calibrationcalibrationH2O/silicone oil (θY=169O)

InterdigitatedElectrode

PlanarElectrode

γwo(Du Noüy ring) (mN/m)

γwo (EW drop tensiometer(mN/m)

Liquid Interface (Temperature = 23oC)

à interfacial tension measurements for nL drops consistent with bulk values

Banpurkar et al., Langmuir 2008

Page 12: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

12

origin of EW

dVEDAGi

ii ∫∑ ⋅−=rr

21

σ

U

Er

20

2UA

dA sl

r

iii

εεσ −≈ ∑

slsvsllvlv AUd

A

−−+= σ

εεσσ 20

2

σsleff

+++

+ +++ + +

2)(20 rEp lv

rεκσ −⋅=∆

Maxwell stress: 2)(2

0 rEpelrε

−=

modified capillary equationmodified Young equation

?

Page 13: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

13

local equilibrium surface profiles

1. local force balance )()(1

)()(2

)(2

0 2 rprh

rhrExp caplvelr

r

rr

=′+

′′⋅== γ

ε !

2. free energy minimization min!

)()(

cos~ 2 =∇−+= ∫∫ φε

ηθ dV

rdsLF

A

BslY r

2D geometryiterative calculation:• initial profile (fixed θA)• field distribution (FEM)• force balance → refined profile

Page 14: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

14

numerical results

0 1 2 30

1

2

h/dins

x

η

liquid

air

q local contact angle = Young‘s angle

q divergent curvature near contact line: κ ~ pel ~ hν ; -1 < ν < 0

q range of surface distortions: ≈dins no contact angle saturation

(in 2-dim model)

10-4 10-2 100

100

102

log

P ellog h/d

ins

η

surface profiles curvature / Maxwell stress

0,4 0,5 0,6 0,7

-0,8

-0,6

-0,4ε = 1: ε = 2:

ν

α / πθ Y/ π

(0, .2, .4, …, 1.2)

Bueh

rle e

t al.

PRL

2003

Bien

ia e

t al.

Euro

Phys

Lett

2006

Page 15: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

15

experimental verification

η = 0 η ≈ 0.5 η ≈ 1

d = 10µm

d = 50µm

d = 150µm

Mugele, Buehrle, J.Phys.Cond.Matt 2007

Page 16: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

16

relation between local and apparent c.a.

2D geometry

YB θθ =ηθθ += YU cos))(cos(

apparent c.a.

local c.a.

à apparent c.a. follows EW equation

Page 17: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

17

equivalence of force balance & energy minimization

+

++

++++ + +

Σ

total force:(per unit length)

Maxwell stress tensor:

ησεε

lvd

U

dAnTf kxkx

==

= ∫Σ

2

2

0

independent of drop shape !

σlv

σsv

σslfel

à T.B. Jones

x

2

0,

2

0 UdzEfd

xelxεε

ρ =⋅=∫∞

force / unit length

Page 18: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

18

reconciliation

dVEDAFi

ii ∫∑ ⋅−=rr

21

σ

U

Er

+++

+ +++ + +

electrical force / unit length ∫

>>

=dh

elel dzzpf0

)(

20

2UA

dA sl

r

iii

εεσ −≈ ∑

slsvsllvlv AUd

A

−−+= σ

εεσσ 20

2

σsleff

modified Young equation

macroscopic picture

2)(20 rEp lv

rεκσ −⋅=∆

Maxwell stress: 2)(2

0 rEpelrε

−=

modified capillary equation

microscopic picture

à both pictures are equivalent on a scale >> dins

Page 19: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

19

contact angle saturation: the mystery of EW

advancingreceding

what causes deviations from EW equation at high voltage?

safe operationbreakdown

(Sey

rat,

Hey

es, J

. App

l. Ph

ys. 2

001)

diverging electric fields can cause dielectric breakdown of coating!

20

21cos))(cos( U

dU

lvY σ

εεθθ +=

Page 20: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

20

refined version: local breakdown at contact line

(Papathanasiou et al. Appl. Phys. Lett. 2005, J. Appl. Phys. 2008, Langmuir 2009)

self-consistent calculation of field and surface configuration

+local breakdown upon exceeding VT

potential

magnitude of field

calculated EW curve including saturation

Page 21: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

21

charge trapping

(Verheijen, Prins, Langmuir 1999)

permanent injection (or adsorption) of charges produces irreversibility and screens charges from surface beyond threshold voltage VT:

à AC voltage suppresses ion adsorption

Page 22: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

22

water-silanized glass ; f= 200 Hz 100 µm

2d Coulomb explosion:balance of capillary energy and electrostatic energy

++ ++

++++

+++ +++

top view:

contact line instability

Berge et al. Eur. Phys. J. B 1999;Mugele, Herminghaus Appl. Phys. Lett. 2002

Page 23: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

23

summary – electrowetting basics

n contact angle reduction arises from minimization of interfacial and electrostatic energy (maximum of capacitance)

n equilibrium shape is determined by local balance of Maxwell stress and Laplace pressureq local contact angle = Young‘s angle

q diverging curvature near contact line

q equivalence of force balance and effective surface tension approach on scales >> d

n contact angle saturation arises from non-linearities in diverging electric fields at contact lineq c.a. saturation can be minimized by use of high quality substrates, AC

voltage, ambient oil.

Page 24: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

24

outline

q introductionq electrowetting basics

q origin of the EW effectq electromechanical modelq contact angle saturation

q challenges and physical principles of EW devices

q FUNdamental fluid dynamics with EWq contact angle hysteresis in EWq contact line motion in ambient oilq electrowetting driven drop oscillations and mixing

flowsq channel-based microfluidic systems with EW

functionality

q conclusion

Page 25: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

25

some applications of EW

Kuiper and Hendriks, APL 2004

tunable lenses(varioptic, Philips)

250 µm

EW displays(Philips à liquavista)

micromechanical actuation lab-on-a-chip

courtesy of R. Hayes

Page 26: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

26

challenges for EW-based microfluidic systemsdetachment / drop generation:

droplet motion:

drop merging & splitting:

mixing:

contamination

• reproducible drop size• high throughput

• high speed• low voltage

• high mixing speed

• reproducibility• drop size control

• preventing evaporation• controlling adsorption (e.g. proteins)

Page 27: Physicsof ComplexFluids University of Twente · 0 2 p r h r h r pel x E r lv cap r r r r = + ′ ′′ = = g ⋅ e! 2. freeenergyminimization min! ( ) ( ) cos ~ = + ∫ − ∫ ∇f

27

drop actuation

F

U1 << U2

patterned electrodes( ) )(xAU

dAAW eldropslsvsllvlv −−−+= 20

2εε

σσσ

( )∫∂

+−=−∇=⇒slA

elslsv dsnrfWF rrr)()( σσ

typical design: sandwich geometryà no wires required

pioneering work: R. Fair (Duke Univ.): Pollack et al. Appl. Phys. Lett. 2000CJ Kim (UCLA): Cho et al. JMEMS 2003

counter-acting forces: - bulk viscous dissipation- contact line friction

fel

Wheeler et al.