dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2...

19
1 dewetting initial state: continuous film of partially wetting liquid final equilibrium state: drops with q = q Y driving forces • dewetting mechanism? • dewetting dynamics?

Transcript of dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2...

Page 1: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

1

dewetting

initial state: continuous film of partially wetting liquid

final equilibrium state: drops with θ = θY

• driving forces• dewetting mechanism?• dewetting dynamics?

Page 2: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

2

water drop on teflon: θY=120°

free energy vs. film thickness

h water film with thickness h

• small volume:

equilibrium configuration = drop with c.a. θY if h is not too large

• large volume: equilibrium configuration = thick film

• stability analysis: film is always stable against perturbations

à what is the critical volume (thickness) below which the film is unstable?

à how do unstable films break up?

Page 3: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

3

global stability

F

h

filmlvslfilm AhghF

++= 2

2

1)( ρσσflat film:

dry surface:

drysvdry AF σ=

energy of film + dry patch: min!

)( 2

2

1=+

++= drysvfilmlvsldry AAhgAF σρσσ

.. 0 consthAAhVconstAAA filmdryfilm =====+

2/sin2)cos1(2 2. YcYceqh θλθλ =−=

height of a liquid pancake

partial wetting:

0)( <+−= lvslsvS σσσ

)1(cos −= Ylv θσ

heq

Page 4: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

4

global stability (II)

F

hheq

tangent construction!

metastable films globally stable films

h0> heq : film is globally stable

h0< heq : film is globally unstable against breakup … but locally stable against small perturbationsà metastable

Page 5: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

5

a practical experiment …

nucleation barrier >> kBT : create defect to initiate dewetting

Page 6: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

6

nucleated dewetting

hole nucleation at defect sites (e.g. due to surface roughness, chem. heterogeneity, …)

à random distribution of hole locations and time of appearance

Page 7: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

7

a second dewetting scenario

Seemann et al. Phys. Rev. Lett. 2001

heterogeneousnucleation

holes appear at random locations and at random times

spinodaldewetting

holes appear at regular distances and at the same time

polystyrene films on Si

à hallmarks of a linear instability

Page 8: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

8

wetting and long-range forces

ri

h

h >> ri : lvslF σσ +=

h = O(ri) : )()( hhFF lvsl Φ++== σσ

)(hΦ : effective interface potential

disjoining pressure and effective interface potential (II)

Page 9: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

9

properties of Φ(h)

Shh

sllvsv =+−=Φ=→Φ∞→

)(:00:

σσσ

O(Φ) = O(σ) [10 … 100 mJ/m2 (typical organic liquids)]

)(hdhd

Π=Φ

:)(hΦ interaction energy / unit area of adjacent interfaces

force / unit area between interfaces: „disjoining pressure“

example: van der Waals interaction

212)(

hAh

π=Φ

A: Hamaker constantA=f(nv,nl,ns,εv,εl,εs)

O(A)=10-20 J (≈2.4kBT @ RT)

h

)()()( lvslhFh σσ +−=Φ

Page 10: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

10

contributions to disjoining pressure

n van der Waals interactionn electrostatic interaction (“double layer forces”)n structural solvation forcesn hydrogen bonding forcesn short-range chemical forces

212/)( hAh π=Φ

Page 11: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

11

Φ and macroscopic wetting

long range wetting

partial wetting

pseudo-partial wetting

Φ

h)cos1( YlvS θσ −=

h0

homogeneous film

drop + dry substrate

drop + thin film

comment on stability: unstable vs stable

θthin film

Page 12: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

12

stability of thin wetting films

( )Phdxdh xt ∂=∂ 3

31µ

00 cos)(),( hhqxthhtxh <<⋅+= δδ

thin film equation:

small perturbation:

Phxx∂=

µ3

30

)(

),(xh

xx dhdhtxP Φ

+∂−= σlocal pressure: hhhdhd

xh

δ⋅Φ+Φ≈Φ )('')(' 00

)(

( ) )()(''3

)( 022

30 thhqqhth δσµ

δ Φ+−=&

Φ’’ > 0: film locally stable for all qΦ’’ < 0: film locally stable for large q but unstable for small q

Page 13: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

13

stability of thin wetting films (II)

σ/)('' 0hqc Φ=

fastest growing mode: maximum of prefactor

critical wavevector:

2/* cqq =

characteristic growth time: σ

µτ 43

0

12*cqh

=50* h∝τvan der Waals:

à thin films with an initial thickness, for which Φ’’<0 are linearly unstable

Page 14: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

14

interface potential & stability

Φ

h)cos1( YlvS θσ −=

h0

always stable

unstable

Page 15: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

15

2222

88

)(12)(11

12)(

dhA

dhhA

hch SiPSairSiOPSair

+−

+−−=Φ −−−−

ππ

example of a complex interfacial potential

Seemann et al. J. Phys. Cond. Matt. 13, 4925 (2001)

air

polystyreneSiOSi

layered substrates: SiO:Si

short range chemical force

vdW: air-liq.-SiO

vdW: air-liq.-Si

Page 16: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

16

various dewetting scenarios

Seemann,Jacobs, Herminghaus

Page 17: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

17

dewetting dynamics

PDMS (30 µm) on fluorinated SiRedon et al. Phys. Rev. Lett. 1991

Page 18: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

18

dewetting dynamics

Redon et al. Phys. Rev. Lett. 1991

observations:- excess material collects in rim- constant dewetting velocity v

- dewetting velocity v ~ θY3

Page 19: dewetting - Universiteit Twente · Afilm + Adry = A = const. V = Ah0 = Afilmh = const. 2(1 cos ) 2 sin2 /2 heq. = lc − qY = lc qY height of a liquid pancake partial wetting: S =ssv

19

model

θD < θYassumptions:- h0<<w<<R; θ <<1- rim profile is circular and symmetric- rim volume: 0

2 hRV rim π=

h0

R(t)

w(t)

A

B

dynamics: balance of viscous dissipation & imbalanced Young force

( ) VdzdxvD DYz ⋅−=∂= ∫ ∫ )cos(cos2 θθσµ=awV

D

ln3 2

θµ

)(2

22DYV θθ

σ−=

point A & B: )(6

22DYD

AA l

V θθθµσ

−= 32

6)0(

6 DDB

DB

B llV θ

µσ

θθµσ

=−−=

:BA VV = ./1

constll BA

YD =

+=

θθ à V=const. ~θY

3