Sub-nanometer Scale Atomic Bonding Characterization via HAADF STEM

10
SUB-NANOMETER SCALE ATOMIC BONDING CHARACTERIZATION VIA HAADF STEM Yu Shi Materials Science and Engineering

description

Sub-nanometer Scale Atomic Bonding Characterization via HAADF STEM. Yu Shi Materials Science and Engineering. Old Question about Structural Ceramics. Intrinsic brittleness of β-Si 3 N 4 R are earth oxides  elongated grains  reinforced toughness. - PowerPoint PPT Presentation

Transcript of Sub-nanometer Scale Atomic Bonding Characterization via HAADF STEM

Page 1: Sub-nanometer Scale Atomic Bonding Characterization  via HAADF STEM

SUB-NANOMETER SCALE ATOMIC BONDING CHARACTERIZATION VIA HAADF STEM Yu Shi

Materials Science and Engineering

Page 2: Sub-nanometer Scale Atomic Bonding Characterization  via HAADF STEM

OLD QUESTION ABOUT STRUCTURAL CERAMICS

Intrinsic brittleness of β-Si3N4

Rare earth oxides elongated grains reinforced toughness

Substance Material Product Application

Zhu et al. Sci. Technol. Adv. Mater. 9, 033001 (2008)

Why?

Page 3: Sub-nanometer Scale Atomic Bonding Characterization  via HAADF STEM

ELECTRON MICROSCOPY

Source: Wikipedia.org, FEI.com, nobelprize.org

Ernest Ruska Nobel Prize in Physics 1986

"for his fundamental work in electron optics, and for the design of the first electron microscope"

Page 4: Sub-nanometer Scale Atomic Bonding Characterization  via HAADF STEM

NEW-GENERATION TEM

STEMScanning transmission electron microscopy

HAADFHigh-angle annular dark field

EELSElectron-energy-loss Spectroscopy

Z-contrast imagingChemical Analysis

Cs-correctedAtomic resolving power ~1Å

Simultaneous EELSElectronic structure and bonding

Scan coil

Electron beam

Specimen

Z-contrast STEM

EELS

Browning et al. Nature 366, 143 (1993)

Page 5: Sub-nanometer Scale Atomic Bonding Characterization  via HAADF STEM

PREFERENTIAL SEGREGATION IN SILICON NITRIDE

Amorphous intergranular film (IGF) La (Z = 57) segregates in IGF

Shibata et al. Nature 428, 730 (2004)

Maximum intensity at IGF/grain interface Partially occupied of Si terminating positions

Page 6: Sub-nanometer Scale Atomic Bonding Characterization  via HAADF STEM

PREFERENTIAL SEGREGATION IN SILICON NITRIDE

Position of La identified (vaguely…) Longer La-N bonding length than Si-N

Shibata et al. Nature 428, 730 (2004)

Theoretical calculation shows 0.5-5.3 eV higher bonding energy of La-N

Page 7: Sub-nanometer Scale Atomic Bonding Characterization  via HAADF STEM

FURTHER STUDY: RANGE OF RARE EARTH ATOMS

La: no periodic atomic sites associated

Sm:A and B sites occupied

Er:atom pairs (1.48 ± 0.04 Å)

Yb:atom pairs (1.46 ± 0.05 Å)

Lu:atom pairs (1.43 ± 0.07 Å)

Ziegler et al. Science 306, 1768 (2004)

Page 8: Sub-nanometer Scale Atomic Bonding Characterization  via HAADF STEM

FURTHER STUDY: BONDING CHARACTERISTICS

Sm N45: A = B same bonding

Si L23: A ≠ B A: O-Si-N B: Si-N

Ziegler et al. Science 306, 1768 (2004)

Page 9: Sub-nanometer Scale Atomic Bonding Characterization  via HAADF STEM

CONCLUSION

Preferential segregation of rare earth atoms results in the suppression of grain growth in diametrical direction and the enhancement of growth in c-axis.

Depending on the atom size, electronic configuration, and the presence of oxygen at the interface, rare-earth atom bonds to different locations.

Reference:Shibata et al. Nature 428, 730 (2004)Ziegler et al. Science 306, 1768 (2004)

Page 10: Sub-nanometer Scale Atomic Bonding Characterization  via HAADF STEM

THANK YOU!

Q & A

Yu Shi