Signals and Systems - Imperial College London

Post on 10-Apr-2022

8 views 0 download

Transcript of Signals and Systems - Imperial College London

Signals and Systems

Lecture 8

DR TANIA STATHAKIREADER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSINGIMPERIAL COLLEGE LONDON

โ€ข The forward and inverse Fourier transform are defined for aperiodic

signals as:

๐‘‹ ๐œ” = โ„ฑ ๐‘ฅ ๐‘ก = เถฑโˆ’โˆž

โˆž

๐‘ฅ ๐‘ก ๐‘’โˆ’๐‘—๐œ”๐‘ก๐‘‘๐‘ก

๐‘ฅ ๐‘ก = โ„ฑโˆ’1 ๐‘‹ ๐œ” =1

2๐œ‹เถฑโˆ’โˆž

โˆž

๐‘‹ ๐œ” ๐‘’๐‘—๐œ”๐‘ก๐‘‘๐œ”

โ€ข You can immediately observe the functional similarity with Laplace

transform.

โ€ข For periodic signals we use Fourier Series.

๐‘ฅ๐‘‡0 ๐‘ก =

๐‘›=โˆ’โˆž

โˆž

๐ท๐‘›๐‘’๐‘—๐‘›๐œ”0๐‘ก

๐ท๐‘› =1

๐‘‡0๐‘‡0/2โˆ’๐‘‡0/2 ๐‘ฅ๐‘‡0 ๐‘ก ๐‘’โˆ’๐‘—๐‘›๐œ”0๐‘ก๐‘‘๐‘ก or

๐ท๐‘› =1

๐‘‡0one full period๐‘ฅ๐‘‡0 ๐‘ก ๐‘’โˆ’๐‘—๐‘›๐œ”0๐‘ก๐‘‘๐‘ก , ๐œ”0 =

2๐œ‹

๐‘‡0

Definition of Fourier transform

โ€ข A unit rectangular window (also called a unit gate) function rect ๐‘ฅ :

rect ๐‘ฅ =

0 ๐‘ฅ >1

21

2๐‘ฅ =

1

2

1 ๐‘ฅ <1

2

โ€ข A unit triangle function ฮ” ๐‘ฅ :

ฮ” ๐‘ฅ =0 ๐‘ฅ โ‰ฅ

1

2

1 โˆ’ 2 ๐‘ฅ ๐‘ฅ <1

2

โ€ข Interpolation function sinc(๐‘ฅ):

sinc(๐‘ฅ) =sin(๐‘ฅ)

๐‘ฅor sinc(๐‘ฅ) =

sin(๐œ‹๐‘ฅ)

๐œ‹๐‘ฅ

Define three useful functions

โ€ข The sinc(๐‘ฅ) function is an even function of ๐‘ฅ.

โ€ข sinc ๐‘ฅ = 0 when sin ๐‘ฅ = 0, i.e.,

๐‘ฅ = ยฑ๐œ‹,ยฑ2๐œ‹,ยฑ3๐œ‹,โ€ฆ except when ๐‘ฅ = 0

where sinc 0 = 1. This can be proven by the

Lโ€™Hospitalโ€™s rule.

โ€ข sinc(๐‘ฅ) is the product of an

oscillating signal sin(๐‘ฅ) and a

monotonically decreasing function 1/๐‘ฅ.

Therefore, it is a damping oscillation with period

2๐œ‹ with amplitude decreasing as 1/๐‘ฅ.

More about the ๐ฌ๐ข๐ง๐œ(x) function

โ€ข Evaluation:

๐‘‹ ๐œ” = โ„ฑ ๐‘ฅ ๐‘ก = เถฑโˆ’โˆž

โˆž

rect๐‘ก

๐œ๐‘’โˆ’๐‘—๐œ”๐‘ก๐‘‘๐‘ก

โ€ข Since rect๐‘ก

๐œ= 1 for

โˆ’๐œ

2< ๐‘ก <

๐œ

2and 0 otherwise we have:

๐‘‹ ๐œ” = โ„ฑ ๐‘ฅ ๐‘ก = เถฑโˆ’๐œ2

๐œ2๐‘’โˆ’๐‘—๐œ”๐‘ก๐‘‘๐‘ก = โˆ’

1

๐‘—๐œ”๐‘’โˆ’๐‘—๐œ”

๐œ2 โˆ’ ๐‘’๐‘—๐œ”

๐œ2 =

2sin(๐œ”๐œ2)

๐œ”

= ๐œsin(

๐œ”๐œ

2)

(๐œ”๐œ

2)= ๐œsinc(

๐œ”๐œ

2) โ‡’ โ„ฑ rect

๐‘ก

๐œ= ๐œsinc(

๐œ”๐œ

2) or rect

๐‘ก

๐œโ‡” ๐œsinc(

๐œ”๐œ

2)

โ€ข The bandwidth of the function rect๐‘ก

๐œis approximately

2๐œ‹

๐œ.

โ€ข Observe that the wider(narrower) the pulse in time the narrower(wider)

the lobes of the sinc function in frequency.

Fourier transform of ๐’™ ๐’• = ๐ซ๐ž๐œ๐ญ(๐’•/๐‰)

โ€ข Using the sampling property of the impulse we get:

๐‘‹ ๐œ” = โ„ฑ ๐›ฟ(๐‘ก) = เถฑโˆ’โˆž

โˆž

๐›ฟ ๐‘ก ๐‘’โˆ’๐‘—๐œ”๐‘ก๐‘‘๐‘ก = 1

โ€ข As we see the unit impulse contains all frequencies (or, alternatively, we

can say that the unit impulse contains a component at every frequency.)

๐›ฟ ๐‘ก โ‡” 1

Fourier transform of the unit impulse ๐’™ ๐’• = ๐œน(๐’•)

โ€ข Using the sampling property of the impulse we get:

โ„ฑโˆ’1 ๐›ฟ ๐œ” =1

2๐œ‹โˆžโˆ’โˆž

๐›ฟ ๐œ” ๐‘’๐‘—๐œ”๐‘ก๐‘‘๐œ” =1

2๐œ‹

โ€ข Therefore, the spectrum of a constant signal ๐‘ฅ ๐‘ก = 1 is an impulse 2๐œ‹๐›ฟ ๐œ” .1

2๐œ‹โ‡” ๐›ฟ ๐œ” or 1 โ‡” 2๐œ‹๐›ฟ ๐œ”

โ€ข By looking at current and previous slide, observe the relationship: wide

(narrow) in time, narrow (wide) in frequency.

o Extreme case is a constant everlasting function in one domain and a

Dirac in the other domain.

Inverse Fourier transform of ๐œน(๐Ž)

โ€ข Using the sampling property of the impulse we get:

โ„ฑโˆ’1 ๐›ฟ ๐œ” โˆ’ ๐œ”0 =1

2๐œ‹โˆžโˆ’โˆž

๐›ฟ ๐œ” โˆ’ ๐œ”0 ๐‘’๐‘—๐œ”๐‘ก๐‘‘๐œ” =1

2๐œ‹๐‘’๐‘—๐œ”0๐‘ก

โ€ข The spectrum of an everlasting exponential ๐‘’๐‘—๐œ”0๐‘ก is a single impulse

located at ๐œ” = ๐œ”0 .1

2๐œ‹๐‘’๐‘—๐œ”0๐‘ก โ‡” ๐›ฟ ๐œ” โˆ’ ๐œ”0

๐‘’๐‘—๐œ”0๐‘ก โ‡” 2๐œ‹๐›ฟ ๐œ” โˆ’ ๐œ”0

๐‘’โˆ’๐‘—๐œ”0๐‘ก โ‡” 2๐œ‹๐›ฟ ๐œ” + ๐œ”0

Inverse Fourier transform of ๐œน(๐Ž โˆ’๐Ž๐ŸŽ)

โ€ข Remember the Eulerโ€™s formula:

cos๐œ”0๐‘ก =1

2(๐‘’๐‘—๐œ”0๐‘ก + ๐‘’โˆ’๐‘—๐œ”0๐‘ก)

โ„ฑ cos๐œ”0๐‘ก = โ„ฑ1

2(๐‘’๐‘—๐œ”0๐‘ก + ๐‘’โˆ’๐‘—๐œ”0๐‘ก) =

1

2โ„ฑ ๐‘’๐‘—๐œ”0๐‘ก +

1

2โ„ฑ ๐‘’โˆ’๐‘—๐œ”0๐‘ก

โ€ข Using the results from previous slides we get:

cos๐œ”0๐‘ก โ‡” ๐œ‹[๐›ฟ ๐œ” + ๐œ”0 + ๐›ฟ ๐œ” โˆ’ ๐œ”0 ]

โ€ข The spectrum of a cosine signal has two impulses placed symmetrically

at the frequency of the cosine and its negative.

Fourier transform of an everlasting sinusoid ๐œ๐จ๐ฌ๐Ž๐ŸŽ๐’•

โ€ข The Fourier series of a periodic signal ๐‘ฅ(๐‘ก) with period ๐‘‡0 is given by:

๐‘ฅ ๐‘ก = ฯƒโˆ’โˆžโˆž ๐ท๐‘› ๐‘’

๐‘—๐‘›๐œ”0๐‘ก, ๐œ”0 =2๐œ‹

๐‘‡0

โ€ข By taking the Fourier transform on both sides we get:

๐‘‹(๐œ”) = 2๐œ‹

๐‘›=โˆ’โˆž

โˆž

๐ท๐‘› ๐›ฟ ๐œ” โˆ’ ๐‘›๐œ”0

Fourier transform of any periodic signal

โ€ข Consider an impulse train

๐›ฟ๐‘‡0 ๐‘ก = ฯƒโˆ’โˆžโˆž ๐›ฟ ๐‘ก โˆ’ ๐‘›๐‘‡0

โ€ข The Fourier series of this impulse train can be shown to be:

๐›ฟ๐‘‡0 ๐‘ก = ฯƒโˆ’โˆžโˆž ๐ท๐‘› ๐‘’

๐‘—๐‘›๐œ”0๐‘ก where ๐œ”0 =2๐œ‹

๐‘‡0and ๐ท๐‘› =

1

๐‘‡0

โ€ข Therefore, using results from slide 8 we get:

๐‘‹ ๐œ” = โ„ฑ ๐›ฟ๐‘‡0 ๐‘ก =1

๐‘‡0ฯƒโˆ’โˆžโˆž โ„ฑ{๐‘’๐‘—๐‘›๐œ”0๐‘ก} =

1

๐‘‡0ฯƒ๐‘›=โˆ’โˆžโˆž 2๐œ‹๐›ฟ ๐œ” โˆ’ ๐‘›๐œ”0 , ๐œ”0 =

2๐œ‹

๐‘‡0

๐‘‹ ๐œ” = ๐œ”0ฯƒ๐‘›=โˆ’โˆžโˆž ๐›ฟ ๐œ” โˆ’ ๐‘›๐œ”0 = ๐œ”0 ๐›ฟ๐œ”0

๐œ”

โ€ข The Fourier transform of an impulse train in time (denoted by ๐›ฟ๐‘‡0 ๐‘ก ) is an

impulse train in frequency (denoted by ๐›ฟ๐œ”0๐œ” ) .

โ€ข The closer (further) the pulses in time the further (closer) in frequency.

Fourier transform of a unit impulse train

Linearity and conjugate properties

โ€ข Linearity

If ๐‘ฅ1(๐‘ก) โ‡” ๐‘‹1 ๐œ” and ๐‘ฅ2(๐‘ก) โ‡” ๐‘‹2 ๐œ” , then

๐‘Ž1๐‘ฅ1 ๐‘ก +๐‘Ž2๐‘ฅ2 ๐‘ก โ‡” ๐‘Ž1๐‘‹1 ๐œ” + ๐‘Ž2๐‘‹2 ๐œ”

โ€ข Property of conjugate of a signal

If ๐‘ฅ(๐‘ก) โ‡” ๐‘‹ ๐œ” then ๐‘ฅโˆ—(๐‘ก) โ‡” ๐‘‹โˆ— โˆ’๐œ” .

โ€ข Property of conjugate symmetry

If ๐‘ฅ ๐‘ก is real then ๐‘ฅโˆ— ๐‘ก = ๐‘ฅ(๐‘ก) and therefore, from the property above we

see that ๐‘‹ ๐œ” = ๐‘‹โˆ— โˆ’๐œ” or ๐‘‹(โˆ’๐œ”) = ๐‘‹โˆ— ๐œ” .We can write ๐‘‹ ๐œ” = ๐ด ๐œ” ๐‘’๐‘—๐œ™(๐œ”).o ๐ด ๐œ” , ๐œ™(๐œ”) are the amplitude and phase spectrum respectively.

They are real functions.

o ๐‘‹โˆ— ๐œ” = ๐ด ๐œ” ๐‘’โˆ’๐‘—๐œ™(๐œ”) and ๐‘‹โˆ— โˆ’๐œ” = ๐ด โˆ’๐œ” ๐‘’โˆ’๐‘—๐œ™(โˆ’๐œ”)

o Based on the last bullet point, for a real function we have:

๐‘‹ ๐œ” = ๐‘‹โˆ— โˆ’๐œ” โ‡’ ๐ด ๐œ” ๐‘’๐‘—๐œ™(๐œ”) = ๐ด โˆ’๐œ” ๐‘’โˆ’๐‘—๐œ™(โˆ’๐œ”) โ‡’โ–ช ๐ด ๐œ” = ๐ด โˆ’๐œ” โ‡’ for a real signal, the amplitude spectrum is even.โ–ช ๐œ™ ๐œ” = โˆ’๐œ™(โˆ’๐œ”) โ‡’ for a real signal, the phase spectrum is odd.

Time-frequency duality of Fourier transform

โ€ข There is a near symmetry between the forward and inverse Fourier

transforms.

โ€ข The same observation was valid for Laplace transform.

Forward FT

Inverse FT

Duality property

โ€ข If ๐‘ฅ(๐‘ก) โ‡” ๐‘‹ ๐œ” then ๐‘‹(๐‘ก) โ‡” 2๐œ‹๐‘ฅ โˆ’๐œ”

Proof

From the definition of the inverse Fourier transform we get:

๐‘ฅ ๐‘ก =1

2๐œ‹เถฑโˆ’โˆž

โˆž

๐‘‹ ๐œ” ๐‘’๐‘—๐œ”๐‘ก๐‘‘๐œ”

Therefore,

2๐œ‹๐‘ฅ โˆ’๐‘ก = เถฑโˆ’โˆž

โˆž

๐‘‹ ๐œ” ๐‘’โˆ’๐‘—๐œ”๐‘ก๐‘‘๐œ”

Swapping ๐‘ก with ๐œ” and using the definition of forward Fourier transform we

have:

๐‘‹(๐‘ก) โ‡” 2๐œ‹๐‘ฅ โˆ’๐œ”

โ€ข Consider the Fourier transform of a rectangular function

rect๐‘ก

๐œโ‡” ๐œsinc(

๐œ”๐œ

2)

โ‡”

๐œsinc(๐œ๐‘ก

2) โ‡” 2๐œ‹ rect

โˆ’๐œ”

๐œ= 2๐œ‹ rect

๐œ”

๐œ

โ‡”

Duality property example

Scaling property

โ€ข If ๐‘ฅ(๐‘ก) โ‡” ๐‘‹ ๐œ” then for any real constant ๐‘Ž the following property holds.

๐‘ฅ(๐‘Ž๐‘ก) โ‡”1

๐‘Ž๐‘‹

๐œ”

๐‘Ž

โ€ข That is, compression of a signal in time results in spectral expansion and

vice versa. As mentioned, the extreme case is the Dirac function and an

everlasting constant function.

Time-shifting property with example

โ€ข If ๐‘ฅ(๐‘ก) โ‡” ๐‘‹ ๐œ” then the following property holds.

๐‘ฅ(๐‘ก โˆ’ ๐‘ก0) โ‡” ๐‘‹ ๐œ” ๐‘’โˆ’๐‘—๐œ”๐‘ก0

โ€ข Find the Fourier transform of the gate pulse ๐‘ฅ(๐‘ก) given by rect๐‘กโˆ’

3๐œ

4

๐œ.

โ€ข By using the time-shifting property we get ๐‘‹ ฯ‰ = ๐œsinc(๐œ”๐œ

2)๐‘’โˆ’๐‘—๐œ”

3๐œ

4 .

โ€ข Observe the amplitude (even) and phase (odd) of the Fourier transform.

Frequency-shifting property

โ€ข If ๐‘ฅ(๐‘ก) โ‡” ๐‘‹ ๐œ” then ๐‘ฅ(๐‘ก)๐‘’๐‘—๐œ”0๐‘ก โ‡” ๐‘‹ ๐œ” โˆ’๐œ”0 . This property states that

multiplying a signal by ๐‘’๐‘—๐œ”0๐‘ก shifts the spectrum of the signal by ๐œ”0.

โ€ข In practice, frequency shifting (or amplitude modulation) is achieved by

multiplying ๐‘ฅ(๐‘ก) by a sinusoid. This is because:

๐‘ฅ ๐‘ก cos ๐œ”0๐‘ก =1

2[๐‘ฅ(๐‘ก)๐‘’๐‘—๐œ”0๐‘ก + ๐‘ฅ(๐‘ก)๐‘’โˆ’๐‘—๐œ”0๐‘ก]

๐‘ฅ(๐‘ก) cos ๐œ”0๐‘ก โ‡”1

2[๐‘‹ ๐œ” โˆ’ ๐œ”0 + ๐‘‹ ๐œ” + ๐œ”0 ]

โ€ข Find and sketch the Fourier transform of the signal ๐‘ฅ ๐‘ก cos10๐‘ก where

๐‘ฅ ๐‘ก = rect๐‘ก

4. We know that rect

๐‘ก

4โ‡” 4sinc(2๐œ”)

๐‘ฅ ๐‘ก cos 10๐‘ก =1

2[๐‘ฅ(๐‘ก)๐‘’๐‘—10๐‘ก + ๐‘ฅ(๐‘ก)๐‘’โˆ’๐‘—10๐‘ก]

๐‘ฅ(๐‘ก) cos 10๐‘ก โ‡”1

2[๐‘‹ ๐œ” โˆ’ 10 + ๐‘‹ ๐œ” + 10 ]

๐‘ฅ ๐‘ก cos 10๐‘ก โ‡” 2 {sinc 2 ๐œ” โˆ’ 10 + sinc 2 ๐œ” + 10 }

Frequency-shifting example

Is the phase important?

Phase from (b), Amp. from (a) Phase from (a), Amp. from (b)

(a) (b)

Convolution properties

โ€ข Time and frequency convolution.

If ๐‘ฅ1(๐‘ก) โ‡” ๐‘‹1 ๐œ” and ๐‘ฅ2(๐‘ก) โ‡” ๐‘‹2 ๐œ” , then

โ–ช ๐‘ฅ1 ๐‘ก โˆ— ๐‘ฅ2 ๐‘ก โ‡” ๐‘‹1 ๐œ” ๐‘‹2 ๐œ”

โ–ช ๐‘ฅ1 ๐‘ก ๐‘ฅ2 ๐‘ก โ‡”1

2๐œ‹๐‘‹1 ๐œ” โˆ— ๐‘‹2 ๐œ”

โ€ข Let ๐ป(๐œ”) be the Fourier transform of the unit impulse response โ„Ž(๐‘ก), i.e.,

โ„Ž(๐‘ก) โ‡” ๐ป ๐œ”

โ€ข Applying the time-convolution property to ๐‘ฆ ๐‘ก = ๐‘ฅ(๐‘ก) โˆ— โ„Ž(๐‘ก) we get:

๐‘Œ ๐œ” = ๐‘‹ ๐œ” ๐ป ๐œ”

โ€ข Therefore, the Fourier Transform of the systemโ€™s impulse response is the systemโ€™s Frequency Response.

Frequency convolution example

โ€ข Find the spectrum of of the signal ๐‘ฅ ๐‘ก cos10๐‘ก where ๐‘ฅ ๐‘ก = rect๐‘ก

4.

โ€ข We know that rect๐‘ก

4โ‡” 4sinc(2๐œ”).

ร— โˆ—1/21/2

Time differentiation property

โ€ข If ๐‘ฅ(๐‘ก) โ‡” ๐‘‹ ๐œ” then the following properties hold:

โ–ช Time differentiation property.๐‘‘๐‘ฅ(๐‘ก)

๐‘‘๐‘กโ‡” ๐‘—๐œ”๐‘‹(๐œ”)

โ–ช Time integration property.

โˆžโˆ’๐‘ก

๐‘ฅ ๐œ ๐‘‘๐œ โ‡”๐‘‹(๐œ”)

๐‘—๐œ”+ ๐œ‹๐‘‹(0)๐›ฟ(๐œ”)

โ€ข Compare with the time differentiation property in the Laplace domain.

๐‘ฅ(๐‘ก) โ‡” ๐‘‹ ๐‘ ๐‘‘๐‘ฅ ๐‘ก

๐‘‘๐‘กโ‡” ๐‘ ๐‘‹ ๐‘  โˆ’ ๐‘ฅ(0โˆ’)

Appendix: Proof of the time convolution property

โ€ข By definition we have:

โ„ฑ ๐‘ฅ1 ๐‘ก โˆ— ๐‘ฅ2 ๐‘ก = เถฑ๐‘ก=โˆ’โˆž

โˆž

[เถฑ๐œ=โˆ’โˆž

โˆž

๐‘ฅ1 ๐œ ๐‘ฅ2 ๐‘ก โˆ’ ๐œ ๐‘‘๐œ]๐‘’โˆ’๐‘—๐œ”๐‘ก๐‘‘๐‘ก

= เถฑ๐œ=โˆ’โˆž

โˆž

[เถฑ๐‘ก=โˆ’โˆž

โˆž

๐‘ฅ1 ๐œ ๐‘ฅ2 ๐‘ก โˆ’ ๐œ ๐‘’โˆ’๐‘—๐œ”๐‘ก๐‘‘๐‘ก]๐‘‘๐œ

= เถฑ๐œ=โˆ’โˆž

โˆž

๐‘ฅ1 ๐œ [เถฑ๐‘ก=โˆ’โˆž

โˆž

๐‘ฅ2 ๐‘ก โˆ’ ๐œ ๐‘’โˆ’๐‘—๐œ”๐‘ก๐‘‘๐‘ก]๐‘‘๐œ

= เถฑ๐œ=โˆ’โˆž

โˆž

๐‘ฅ1 ๐œ ๐‘’โˆ’๐‘—๐œ”๐œ[เถฑ๐‘ก=โˆ’โˆž

โˆž

๐‘ฅ2 ๐‘ก โˆ’ ๐œ ๐‘’โˆ’๐‘—๐œ” ๐‘กโˆ’๐œ ๐‘‘(๐‘ก โˆ’ ๐œ)]๐‘‘๐œ

= เถฑ๐œ=โˆ’โˆž

โˆž

๐‘ฅ1 ๐œ ๐‘’โˆ’๐‘—๐œ”๐œ[เถฑ๐‘ก=โˆ’โˆž

โˆž

๐‘ฅ2 ๐‘ฃ ๐‘’โˆ’๐‘—๐œ”๐‘ฃ๐‘‘๐‘ฃ]๐‘‘๐œ

= โˆžโˆ’=๐œโˆž

๐‘ฅ1 ๐œ ๐‘’โˆ’๐‘—๐œ”๐œ๐‘‹1 ๐œ” ๐‘‘๐œ = ๐‘‹1 ๐œ” โˆžโˆ’=๐œโˆž

๐‘ฅ1 ๐œ ๐‘’โˆ’๐‘—๐œ”๐œ๐‘‘๐œ = ๐‘‹1 ๐œ” ๐‘‹2 ๐œ”

Fourier transform table 1

Fourier transform table 2

Fourier transform table 3

Summary of Fourier transform operations 1

Summary of Fourier transform operations 2