Nuclear Data Needs and Capabilities for Applications...

37
Nuclear Data Needs and Capabilities for Applications (NDNCA) Triangle Universities Nuclear Laboratory Facilities Review Werner Tornow Duke University & TUNL

Transcript of Nuclear Data Needs and Capabilities for Applications...

Page 1: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

Nuclear Data Needs and Capabilities for Applications(NDNCA)

Triangle Universities Nuclear Laboratory Facilities Review

Werner TornowDuke University & TUNL

Page 2: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

2

TUNL: Accelerator Facilities1.2 GeV Storage Ring FELHigh Intensity Gamma Source (HIγS)

Eg = 1 – 100 MeVLinear and circular polarized photon beamsDelivering up to 103 γ/s/eV on target, HIgS is the most intense accelerator-driven γ-ray source in the world

World’s highest current proton beam for nuclear astrophysics research

Laboratory for Experimental Nuclear Astrophysics (LENA)

Tandem Laboratory: light-ion and pulsed neutron beams

Page 3: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

3

Tandem Lab

Accelerator and Source Features:TVmax = 10 MVParticles: light ions (p, d, 3He, 4He)Secondary beams: pulsed neutron beamsPolarized beams: p and d

Research examples:1. Few-nucleon dynamics: 2H(n,nnp)2. 2-nucleon transfer reactions

relevant to 0nbb, e.g., A(3He,n)3. Neutron multiplication: A(n,2ng)4. Detector Characterization (n scattering)5. Nuclear astrophysics6. Applications

Page 4: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

Concentrate on neutron physics capabilities

Page 5: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

Floor Plan of TUNL (Triangle Universities Nuclear Laboratory)

For neutron energies below En=0.6 MeV: 7Li(p,n)7BeFor neutron energies below En=4 MeV: 3H(p,n)3He

For neutron energies above En=4 MeV: 2H(d,n)3He

For neutron energies above En=14.5 MeV and below 35 MeV: 3H(d,n)4He

Page 6: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

DC or pulsed beam operation at 2.5 MHz (i.e., 400 ns between pulses) or factors of 2 in rep rate reduction

2H(d,n)3He; Q-value = + 3.27 MeV

� 2H(d,n)3He neutron source

� Id = (1-4) A, pulsed up to 1 A

� Deuterium gas pressure 1 - 8 atm

� Tunable energy from 4 to 20 MeV

� Flux on target (107 - 108) cm-2 s-1

� Energy spread dE/E = 0.02 to 0.15

NTOFTarget Room

ENGESpectrometer

Shielded Neutron SourceFN-Tandem 10 MVIon Sources

Page 7: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

Havar foil

D2

d

Ceramicinsulator

Aperture Suppressor

D2 gas inlet

High-pressureKr-86 sphere

Flange

n

Activation foils

(n,2n)

238U(n,2n)237U

Page 8: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

Activation and TOF Measurements at TUNL with PT Source

� 3H(p,n)3He neutron source

� Id = (1- 4) A, pulsed up to 1 A

� Tritiated titanium target (2 Ci)

� Tunable energy from 1 to 5 MeV

� Flux on target (105 - 106) cm-2 s-1

� Energy spread dE/E = 0.02 to 0.10

3H(p,n)3He; Q-value = - 0.763 MeV

Ion Sources FN-Tandem 10 MV Shielded Neutron Source

EngeSpectrometer

NTOFTargetRoom

Page 9: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

Havar foil

He

p,d

Ceramicinsulator

Aperture Suppressor

He gas inlet

FlangeTritiatedtitaniumlayer

Monitor foils

n 124Xe

Copperbacking Cd Cage

(n,g)

Page 10: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

3H(d,n)4He

108 n/(cm2s) at 14.1 to 14.8 MeV

Q=17.589 MeV

105 n/(cm2s) at 30 MeV

Page 11: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

DC or pulsed beam operation at 2.5 MHz (i.e., 400 ns between pulses) or factors of 2 in rep rate reduction

2H(d,n)3He; Q-value = + 3.27 MeV

� 2H(d,n)3He neutron source

� Id = (1-4) A, pulsed up to 1 A

� Deuteriumgas pressure 1 - 8 atm

� Tunable energy from 4 to 20 MeV

� Flux on target (107 - 108) cm-2 s-1

� Energy spread dE/E = 0.02 to 0.15

NTOFTarget Room

ENGESpectrometer

Shielded Neutron SourceFN-Tandem 10 MVIon Sources

Page 12: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

TUNL: 1 - 20 MeV mono-energetic neutrons

(n,n0) and (n,n’) ds/dW(q)

4 m detector

6 m detector

Page 13: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

FPY235U238U239Pu

Page 14: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

DC or pulsed beam operation at 2.5 MHz (i.e., 400 ns between pulses) or factors of 2 in rep rate reduction

2H(d,n)3He; Q-value = + 3.27 MeV

� 2H(d,n)3He neutron source

� Id = (1-4) A, pulsed up to 1 A

� Deuteriumcgas pressure 1 - 8 atm

� Tunable beam from 4 to 20 MeV

� Flux on target (107 - 108) cm-2 s-1

� Energy spread dE/E = 0.02 to 0.15

NTOFTarget Room

ENGESpectrometer

Shielded Neutron SourceFN-Tandem 10 MVIon Sources

Page 15: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

Shielded Neutron Source: 2H(d,n)3He

~2x104n/(cm2s)

Neutron detectors

ds/dW(q)

Page 16: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

HPGe detectors

(n,n’g)

Page 17: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

NNSA Setup at TUNL

TUNL

� 4 Clovers + BGO

� 2 Planars + BGO

� 10 keV < Eg < 10 MeV

� 200 < qlab < 1600

� array = 1.4%@Eg = 1.33 MeV

Total cost of $1M

Excellent tool for precision neutron induced cross section measurements in the fast neutron energy region (4 En 18 MeV)

� g-g coincidence measurements

�Angular distribution measurements

� Lifetimes (by Doppler method)

Capabilities

Page 18: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

HIgS

High-Intensity g-ray Source

Page 19: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

160 MeV Linac pre-injector160 MeV – 1.2 GeV Booster injector240 MeV – 1.2 GeV Storage ringFELs: OK-4 (lin), OK-5 (circ)HIgS: two-bunch, 40 – 120 mA (typ)

HIgS (High-Intensity Gamma-ray Source): An electron-photon colliderEnergy (MeV): 1 – 100 MeV Laser: FEL, 1060 – 190 nm (1.17 – 6.53 eV)Total flux: 107– 3x1010g/s (max ~10 MeV)Spectral flux: 103g/s/eV (max ~10 MeV)Research: Nuclear physics,

National Security

Page 20: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

E

8

Page 21: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko
Page 22: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko
Page 23: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

How to produce g rays?

Page 24: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

HIgS: Intracavity Compton-Back Scattering

Example: Ee = 500 MeV Î g = 978lFEL = 400 nmħω = 3.11 eVEg = 11.9 MeV

Head-on collision: Eg ≈ 4γ2ħω

2500

1500

500

1950 2000 2050Eg (keV)

Inte

nsity Eg =2032 keV

DEg =26 keVDE/E = 1.3%

Vladimir Litvinenko

¾” dia.DE/E~3%

Page 25: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

Why do we have a booster synchrotron?

Page 26: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

160 MeV Linac pre-injector160 MeV – 1.2 GeV Booster injector240 MeV – 1.2 GeV Storage ringFELs: OK-4 (lin), OK-5 (circ)HIgS: two-bunch, 40 – 120 mA (typ)

HIgS (High-Intensity Gamma-ray Source): An electron-photon colliderEnergy (MeV): 1 – 100 MeV Laser: FEL, 1060 – 190 nm (1.17 – 6.53 eV)Total flux: 107– 3x1010g/s (max ~10 MeV)Spectral flux: 103g/s/eV (max ~10 MeV)Research: Nuclear physics,

National Security

Page 27: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

How do we select our g-ray energy spread?

Page 28: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

HIgS: Intracavity Compton-Back Scattering

Example: Ee = 500 MeV Î g = 978lFEL = 400 nmħω = 3.11 eVEg = 11.9 MeV

Head-on collision: Eg ≈ 4γ2ħω

2500

1500

500

1950 2000 2050Eg (keV)

Inte

nsity Eg =2032 keV

DEg =26 keVDE/E = 1.3%

Vladimir LitvinenkoRep. rate 5.58 Mz: pulse every ~180 ns

Page 29: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

How do we change the g-ray energy?

Page 30: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

160 MeV Linac pre-injector160 MeV – 1.2 GeV Booster injector240 MeV – 1.2 GeV Storage ringFELs: OK-4 (lin), OK-5 (circ)HIgS: two-bunch, 40 – 120 mA (typ)

HIgS (High-Intensity Gamma-ray Source): An electron-photon colliderEnergy (MeV): 1 – 100 MeV Laser: FEL, 1060 – 190 nm (1.17 – 6.53 eV)Total flux: 107– 3x1010g/s (max ~10 MeV)Spectral flux: 103g/s/eV (max ~10 MeV)Research: Fundamental Nuclear Physics,

National Security

Page 31: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

Gamma-ray Energy Tuning Range at HIgS

Page 32: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

E1 transition

M1 transition

mono-energetic,polarized and pencil-like beam

E

Asymmetry:

=-1 E1 transition=+1 M1 transition

Nuclear Resonance Fluorescence (NRF)(g,g) & (g,g’)

Page 33: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

2450 2500 2550 2600 2650

0

50

100

150

200

250

300

350

Runs 330, 334 (5 hr 21 min) - 240Pu @ 2.55 MeVHorizontal and Vertical RF Subtracted

2492

2578

2566

2547

25352523

2504Cou

nts

Energy (keV)

Horizontal Vertical

Ex

Energy (keV)Jπ1+/-

2+

0+

42.8

0.0

240Pu

240Pu: Determination of spin and parity

Nuclear Forensics

(g,n)

(g,f)

(g,g’)

NNSADNDO

Page 34: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

COSTS

Tandem: $ 200-250 per hour

HIgS: $ 950 per hour

PAC

Page 35: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

Backup

Page 36: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko
Page 37: Nuclear Data Needs and Capabilities for Applications (NDNCA)bang.berkeley.edu/wp-content/uploads/LBNL_tornow.pdf · FELs: OK-4 (lin), OK-5 (circ) ... DE/E = 1.3% Vladimir Litvinenko

37

Tandem: Enge split-pole spectrometer