Formulario

download Formulario

of 12

description

xD

Transcript of Formulario

  • Parameter FormulaEquationNumber

    Innitesimal areaof sphere

    dA = r2 sin d d (2-1)

    Elemental solidangle of sphere

    d2 = sin d d (2-2)

    Average powerdensity

    Wav = 12 Re[E H] (2-8)

    Radiatedpower/averageradiated power

    Prad = Pav =#S

    Wav ds = 12#S

    Re[E H] ds (2-9)

    Radiation densityof isotropicradiator

    W0 = Prad4r2 (2-11)

    Radiation intensity(far eld)

    U = r2Wrad = B0F(, ) r2

    2

    [|E(r, , )|2 + |E(r, , )|2](2-12),

    (2-12a)

    DirectivityD(, )

    D = UU0

    = 4UPrad

    = 42A

    (2-16),(2-23)

    Beam solid angle2A

    2A = 2

    0

    0Fn(, ) sin d d

    Fn(, ) = F(, )|F(, )|max

    (2-24)

    (2-25)

    (continued overleaf )

    TABLE 2.3 Summary of Important Parameters and Associated Formulas and EquationNumbers

  • 110 FUNDAMENTAL PARAMETERS OF ANTENNAS

    TABLE 2.3 (continued )

    Parameter FormulaEquationNumber

    Maximumdirectivity D0

    Dmax = D0 = UmaxU0

    = 4UmaxPrad

    (2-16a)

    Partial directivitiesD,D

    D0 = D +D

    D = 4UPrad

    = 4U(Prad ) + (Prad )

    D = 4UPrad

    = 4U(Prad ) + (Prad )

    (2-17)

    (2-17a)

    (2-17b)

    Approximatemaximumdirectivity (onemain lobe pattern)

    D0 441r42r

    = 41,25341d42d

    (Kraus)

    D0 32 ln 2421r +422r

    = 22.181421r +422r

    = 72,815421d +422d

    (Tai-Pereira)

    (2-26),

    (2-27)

    (2-30),

    (2-30a),

    (2-30b)

    Approximatemaximumdirectivity(omnidirectionalpattern)

    D0 101HPBW(degrees) 0.0027[HPBW(degrees)]2(McDonald)

    D0 172.4 + 191

    0.818 + 1HPBW(degrees)

    (Pozar)

    (2-33a)

    (2-33b)

    Gain G(, )G = 4U(, )

    Pin= ecd

    [4U(, )

    Prad

    ]= ecdD(, )

    Prad = ecdPin

    (2-46),

    (2-47),

    (2-49)

    Antenna radiationefciency ecd

    ecd = RrRr + RL (2-90)

    Loss resistance RL(straightwire/uniformcurrent)

    RL = Rhf = lP

    0

    2(2-90b)

    Loss resistance RL(straight wire//2dipole)

    RL = l2P0

    2

  • TABLE 2.3 (continued )

    Parameter FormulaEquationNumber

    Maximum gain G0 G0 = ecdDmax = ecdD0 (2-49a)

    Partial gainsG,G

    G0 = G +G

    G = 4UPin

    , G = 4UPin

    (2-50)

    (2-50a),

    (2-50b)

    Absolute gainGabs

    Gabs = erG(, ) = erecdD(, ) = (1 |?|2)ecdD(, )= e0D(, )

    (2-49a)

    (2-49b)

    Total antennaefciency e0

    e0 = ereced = erecd = (1 |?|2)ecd (2-52)

    Reectionefciency er

    er = (1 |?|2) (2-45)

    Beam efciencyBE BE =

    20

    10

    U(, ) sin d d 20

    0U(, ) sin d d

    (2-54)

    Polarization lossfactor (PLF)

    PLF = |w a |2 (2-71)

    Vector effectivelength e(, )

    e(, ) = a l (, )+ al(, ) (2-91)

    Polarizationefciency pe

    pe = |e Einc |2

    |e|2|Einc |2 (2-71a)

    Antennaimpedance ZA

    ZA = RA + jXA = (Rr + RL)+ jXA (2-72),(2-73)

    Maximumeffective area Aem

    Aem = |VT |2

    8Wi

    [1

    Rr + RL]= ecd

    (2

    4

    )D0|w a |2

    =(2

    4

    )G0|w a |2

    (2-96),

    (2-111),

    (2-112)

    Apertureefciency ap

    ap = AemAp

    = maximum effective areaphysical area

    (2-100)

    (continued overleaf )

  • 112 FUNDAMENTAL PARAMETERS OF ANTENNAS

    TABLE 2.3 (continued )

    Parameter FormulaEquationNumber

    Friis transmissionequation

    Pr

    Pt=(

    4R

    )2G0tG0r |t r |2

    (2-118),

    (2-119)

    Radar rangeequation

    Pr

    Pt= G0tG0r

    4

    [

    4R1R2

    ]2|w r |2

    (2-125),(2-126)

    Radar crosssection (RCS)

    = limR

    [4R2

    Ws

    Wi

    ]= lim

    R

    [4R2

    |Es |2|Ei |2

    ]

    = limR

    [4R2

    |Hs |2|Hi |2

    ] (2-120a)

    BrightnesstemperatureTB(, )

    TB(, ) = (, )Tm = (1 |?|2)Tm (2-144)

    Antennatemperature TA TA =

    20

    0TB(, )G(, ) sin d d 2

    0

    0G(, ) sin d d

    (2-145)

  • COMPUTER CODES 215

    TABLE 4.2 Summary of Important Parameters and Associated Formulas and EquationNumbers for a Dipole in the Far Field

    Parameter Formula Equation Number

    Innitesimal Dipole(l /50)

    Normalized powerpattern

    U = (En)2 = C0 sin2 (4-29)

    Radiation resistanceRr

    Rr = (

    23

    )(l

    )2= 802

    (l

    )2 (4-19)Input resistanceRin

    Rin = Rr = (

    23

    )(l

    )2= 802

    (l

    )2 (4-19)Wave impedanceZw

    Zw = EH

    = 377 ohms

    Directivity D0 D0 = 32 = 1.761 dB (4-31)

    Maximum effectivearea Aem

    Aem = 32

    8(4-32)

    Vector effectivelength e

    e = a l sin (2-91),|e|max = Example 4.2

    Half-powerbeamwidth

    HPBW = 90 (4-65)

    Loss resistance RL RL = lP

    0

    2= l

    2b

    0

    2(2-90b)

    Small Dipole

    (/50 < G /10)

    Normalized powerpattern

    U = (En)2 = C1 sin2 (4-36a)

    Radiation resistanceRr

    Rr = 202(l

    )2(4-37)

    Input resistance Rin Rin = Rr = 202(l

    )2(4-37)

    (continued overleaf )

  • 216 LINEAR WIRE ANTENNAS

    TABLE 4.2 (continued )

    Parameter Formula Equation Number

    Wave impedanceZw

    Zw = EH

    = 377 ohms (4-36a), (4-36c)

    Directivity D0 D0 = 32 = 1.761 dB

    Maximum effectivearea Aem

    Aem = 32

    8

    Vector effectivelength e

    e = a l2 sin (2-91),

    |e|max = l2 (4-36a)

    Half-powerbeamwidth

    HPBW = 90 (4-65)

    Half Wavelength Dipole(l = /2)

    Normalized powerpattern

    U = (En)2 = C2

    cos

    (2

    cos )

    sin

    2

    C2 sin3 (4-87)

    Radiation resistanceRr

    Rr = 4 Cin (2) 73 ohms (4-93)

    Input resistance Rin Rin = Rr = 4 Cin(2) 73 ohms (4-79), (4-93)

    Input impedanceZin

    Zin = 73 + j42.5 (4-93a)

    Wave impedanceZw

    Zw = EH

    = 377 ohms

    Directivity D0 D0 = 4Cin(2)

    1.643 = 2.156 dB (4-91)

    Vector effectivelength e

    e = a

    cos(

    2cos

    )sin

    (2-91),

    |e|max = = 0.3183 (4-84)

    Half-powerbeamwidth

    HPBW = 78 (4-65)

  • MULTIMEDIA 217

    TABLE 4.2 (continued )

    Parameter Formula Equation Number

    Loss resistance RL RL = l2P0

    2= l

    4b

    0

    2Example (2-13)

    Quarter-Wavelength Monopole(l = /4)

    Normalized powerpattern

    U = (En)2 = C2

    cos

    (2

    cos )

    sin

    2

    C2 sin3 (4-87)

    Radiation resistanceRr

    Rr = 8 Cin (2) 36.5 ohms (4-106)

    Input resistance Rin Rin = Rr = 8 Cin (2) 36.5 ohms (4-106)

    Input impedanceZin

    Zin = 36.5+ j21.25 (4-106)

    Wave impedanceZw

    Zw = EH

    = 377 ohms

    Directivity D0 D0 = 3.286 = 5.167 dB

    Vector effectivelength e

    e = a

    cos(

    2cos

    )(2-91)

    |e|max = = 0.3183 (4-84)

  • MULTIMEDIA 271

    TABLE 5.1 Summary of Important Parameters, and Associated Formulas andEquation Numbers for Loop in Far Field

    Parameter Formula Equation Number

    Small Circular Loop (a < /6,C < /3)

    (Uniform Current)

    Normalized powerpattern

    U = |En|2 = C0 sin2 (5-27b)

    Wave impedanceZw

    Zw = EH

    = 377 Ohms (5-28)

    Directivity D0 D0 = 32 = 1.761 dB (5-31)

    Maximum effectivearea Aem

    Aem = 32

    8(5-32)

    Radiation resistanceRr (one turn)

    Rr = 202(C

    )4(5-24)

    Radiation resistanceRr (N turns)

    Rr = 202(C

    )4N2 (5-24a)

    Input resistance Rin Rin = Rr = 202(C

    )4(5-24)

    Loss resistance RL(one turn)

    RL = lP

    0

    2= C

    2b

    0

    2(2-90b)

    Loss resistance RL(N turns)

    RL = NabRs

    (Rp

    R0+ 1

    )(5-25)

    Loop externalinductance LA

    LA = 0a[

    ln(

    8ab

    ) 2

    ](5-37a)

    Loop internalinductance Li

    Li = ab

    0

    2(5-38)

    Vector effectivelength e

    e = ajk0a2 cosi sin i (5-40)

    Half-powerbeamwidth

    HPBW = 90 (4-65)

    (continued overleaf )

  • 272 LOOP ANTENNAS

    TABLE 5.1 (continued )

    Parameter Formula Equation Number

    Large Circular Loop (a /2, C 3.14)(Uniform Current)

    Normalized powerpattern

    U = |En|2 = C1J 21 (ka sin ) (5-57)

    Wave impedanceZw

    Zw = EH

    = 377 Ohms (5-28)

    Directivity D0(a > /2)

    D0 = 0.677(C

    )(5-63b)

    Maximum effectivearea Aem (a > /2)

    Aem = 2

    4

    [0.677

    (C

    )](5-63c)

    Radiation resistance(a > /2),(one turn)

    Rr = 602(C

    )(5-63a)

    Input resistance(a > /2),(one turn)

    Rin = Rr = 602(C

    )(5-63a)

    Loss resistance RL(one turn)

    RL = lP

    0

    2= C

    2b

    0

    2(2-90b)

    Loss resistance RL(N turns)

    RL = NabRs

    (Rp

    R0+ 1

    )(5-25)

    External inductanceLA

    LA = 0a[

    ln(

    8ab

    ) 2

    ](5-37a)

    Internal inductanceLi

    Li = ab

    0

    2(5-38)

    Vector effectivelength e

    e = ajk0a2 cosi sin i (5-40)

    Small Square Loop (Figure 5.17)(Uniform Current, a on Each Side

    Normalized powerpattern (principalplane)

    U = |En|2 = C2 sin2 (5-70)

  • REFERENCES 273

    TABLE 5.1 (continued )

    Parameter Formula Equation Number

    Wave impedanceZw

    Zw = EH

    = 377 Ohms (5-28)

    Radiation resistanceRr

    Rr = 20(

    2a

    )4= 20

    (C

    )4

    Input resistanceRin

    Rin = Rr = 20(

    4a

    )4= 20

    (P

    )4

    Loss resistance RL RL = 4aP

    0

    2= 4a

    2b

    0

    2(2-90b)

    External inductanceLA

    LA = 20 a

    [ln(ab

    ) 0.774

    ](5-37b)

    Internal inductanceLi

    Li = 4aP

    0

    2= 4a

    2b

    0

    2(5-38)

    Ferrite Circular Loop (a < /6, C < /3)

    (uniform current)

    Radiation resistanceRf (one turn)

    Rf = 202(C

    )42cer

    (5-73)

    cer = fr1+D(f r 1) (5-75)

    Radiation resistanceRf (N turns)

    Rf = 202(C

    )42cerN

    2 (5-74)

    Ellipsoid: D =(al

    )2 [ln(

    2la

    ) 1

    ]

    Demagnetizingfactor D

    l a (5-75a)

    Sphere: D = 13

  • 312 ARRAYS: LINEAR, PLANAR, AND CIRCULAR

    TABLE 6.5 Nulls, Maxima, Half-Power Points, andMinor Lobe Maxima for Uniform AmplitudeHansen-Woodyard End-Fire Arrays

    NULLS n = cos1[

    1 + (1 2n) 2dN

    ]n = 1, 2, 3, . . .n = N, 2N, 3N, . . .

    MAXIMA m = cos1{

    1 + [1 (2m+ 1)] 2Nd

    }m = 1, 2, 3, . . .d/ 1

    HALF-POWERPOINTS

    h = cos1(

    1 0.1398 Nd

    )d/ 1N large

    MINOR LOBEMAXIMA

    s = cos1(

    1 sNd

    )s = 1, 2, 3, . . .d/ 1

    TABLE 6.6 Beamwidths for Uniform AmplitudeHansen-Woodyard End-Fire Arrays

    FIRST-NULLBEAMWIDTH(FNBW)

    4n = 2 cos1(

    1 2dN

    )

    HALF-POWERBEAMWIDTH(HPBW)

    4h = 2 cos1(

    1 0.1398 Nd

    )d/ 1N large

    FIRST SIDE LOBEBEAMWIDTH(FSLBW)

    4s = 2 cos1(

    1 Nd

    )d/ 1

  • N-ELEMENT LINEAR ARRAY: DIRECTIVITY 313

    TABLE 6.7 Maximum Element Spacing dmax to Maintain Either One or Two AmplitudeMaxima of a Linear Array

    Array Distribution TypeDirection

    of MaximumElementSpacing

    Linear Uniform Broadside 0 = 90 only dmax < 0 = 0, 90, 180simultaneously

    d =

    Linear Uniform Ordinaryend-re

    0 = 0 only dmax < /20 = 180 only dmax < /20 = 0, 90, 180simultaneously

    d =

    Linear Uniform Hansen-Woodyardend-re

    0 = 0 only d /40 = 180 only d /4

    Linear Uniform Scanning 0 = max dmax < 0 < 0 < 180

    Linear Nonuniform Binomial 0 = 90 only dmax < 0 = 0, 90, 180simultaneously

    d =

    Linear Nonuniform Dolph-Tschebyscheff

    0 = 90 only dmax

    cos1( 1zo

    )0 = 0, 90, 180simultaneously

    d =

    Planar Uniform Planar 0 = 0 only dmax < 0 = 0, 90 and 180;0 = 0, 90, 180, 270simultaneously

    d =