Dispersion in periodic porous media -...

77
Dispersion in periodic porous media B. Amazian, A. Bourgeat, M. Jurak Dispersion in periodic porous media – p.1/49

Transcript of Dispersion in periodic porous media -...

  • Dispersion in periodic porous mediaB. Amazian, A. Bourgeat, M. Jurak

    Dispersion in periodic porous media – p.1/49

  • Dimensionless field scale equations

    φ(x

    ε)∂cε

    ∂t+ ~qε(x) · ∇cε =

    ε

    Pediv(D(

    x

    ε)∇cε) in Ω × (0, T )

    ~q ε = −K(x

    ε)∇P ε, div~q ε = 0 in Ω

    + some initial and boundary conditions

    ε� 1 (separation of scales);

    φ, K, D are periodic;

    Pe = O(1) (local Peclet number);

    Time scale of global convection.

    Dispersion in periodic porous media – p.2/49

  • Dimensionless field scale equations

    φ(x

    ε)∂cε

    ∂t+ ~qε(x) · ∇cε =

    ε

    Pediv(D(

    x

    ε)∇cε) in Ω × (0, T )

    ~q ε = −K(x

    ε)∇P ε, div~q ε = 0 in Ω

    + some initial and boundary conditions

    ε� 1 (separation of scales);

    φ, K, D are periodic;

    Pe = O(1) (local Peclet number);

    Time scale of global convection.

    Dispersion in periodic porous media – p.2/49

  • Dimensionless field scale equations

    φ(x

    ε)∂cε

    ∂t+ ~qε(x) · ∇cε =

    ε

    Pediv(D(

    x

    ε)∇cε) in Ω × (0, T )

    ~q ε = −K(x

    ε)∇P ε, div~q ε = 0 in Ω

    + some initial and boundary conditions

    ε� 1 (separation of scales);

    φ, K, D are periodic;

    Pe = O(1) (local Peclet number);

    Time scale of global convection.

    Dispersion in periodic porous media – p.2/49

  • Dimensionless field scale equations

    φ(x

    ε)∂cε

    ∂t+ ~qε(x) · ∇cε =

    ε

    Pediv(D(

    x

    ε)∇cε) in Ω × (0, T )

    ~q ε = −K(x

    ε)∇P ε, div~q ε = 0 in Ω

    + some initial and boundary conditions

    ε� 1 (separation of scales);

    φ, K, D are periodic;

    Pe = O(1) (local Peclet number);

    Time scale of global convection.

    Dispersion in periodic porous media – p.2/49

  • Dimensionless field scale equations

    φ(x

    ε)∂cε

    ∂t+ ~qε(x) · ∇cε =

    ε

    Pediv(D(

    x

    ε)∇cε) in Ω × (0, T )

    ~q ε = −K(x

    ε)∇P ε, div~q ε = 0 in Ω

    + some initial and boundary conditions

    ε� 1 (separation of scales);

    φ, K, D are periodic;

    Pe = O(1) (local Peclet number);

    Time scale of global convection.

    Dispersion in periodic porous media – p.2/49

  • Assumptions

    Domain Ω ⊂ R2 is bounded;

    Porosity φ(y) > 0;

    Permeability and diffusion tensors:

    K =

    [

    k1,1(y) 0

    0 k2,2(y)

    ]

    , D =

    [

    d1,1(y) 0

    0 d2,2(y)

    ]

    ,

    are positive definite;

    All functions φ, ki,j , di,j are Y = (0, 1)2-periodic.

    Dispersion in periodic porous media – p.3/49

  • Asymptotic expansion

    J.-L. AURIAULT, L. LEWANDOWSKA (1996),Diffusion/adsorption/advection macro transport insolids, Eur. J. Mech., A/Solids, 15 (4) 681-704.

    M.B. PANFILOV (1995), Macro-scale Models of FlowThrough Heterogeneous Porous Media. Theory andApplications of Transport in Porous Media, Vol. 16, Kluwer.

    A. BOURGEAT, M. JURAK, A.L. PIATNITSKI (2003), Averaging atransport equation with small diffusion and oscillatingvelocity, Math. Meth. Appl. Sci., 26 95-117.Justification in Ω = Rd × (0, L) by use of Schauder’sestimates.

    Dispersion in periodic porous media – p.4/49

  • Asymptotic expansion

    J.-L. AURIAULT, L. LEWANDOWSKA (1996),Diffusion/adsorption/advection macro transport insolids, Eur. J. Mech., A/Solids, 15 (4) 681-704.

    M.B. PANFILOV (1995), Macro-scale Models of FlowThrough Heterogeneous Porous Media. Theory andApplications of Transport in Porous Media, Vol. 16, Kluwer.

    A. BOURGEAT, M. JURAK, A.L. PIATNITSKI (2003), Averaging atransport equation with small diffusion and oscillatingvelocity, Math. Meth. Appl. Sci., 26 95-117.Justification in Ω = Rd × (0, L) by use of Schauder’sestimates.

    Dispersion in periodic porous media – p.4/49

  • Effective equations

    〈φ〉∂c1,ε

    ∂t+ (~q 0 + ε~q 1) · ∇c1,ε =

    ε

    Pediv(Dh(x)∇c1,ε)

    in Ω × (0, T )

    ~q 0 = −Kh∇P 0, div~q 0 = 0 in Ω

    + the same boundary conditions for c1,ε and P 0

    Dispersion in periodic porous media – p.5/49

  • Effective equations

    〈φ〉∂c1,ε

    ∂t+ (~q 0 + ε~q 1) · ∇c1,ε =

    ε

    Pediv(Dh(x)∇c1,ε)

    in Ω × (0, T )

    ~q 0 = −Kh∇P 0, div~q 0 = 0 in Ω

    + the same boundary conditions for c1,ε and P 0

    〈·〉 is mean value with respect the fast variable y;

    Dispersion in periodic porous media – p.5/49

  • Effective equations

    〈φ〉∂c1,ε

    ∂t+ (~q 0 + ε~q 1) · ∇c1,ε =

    ε

    Pediv(Dh(x)∇c1,ε)

    in Ω × (0, T )

    ~q 0 = −Kh∇P 0, div~q 0 = 0 in Ω

    + the same boundary conditions for c1,ε and P 0

    Kh is effective permeability tensor;

    Dispersion in periodic porous media – p.5/49

  • Effective equations

    〈φ〉∂c1,ε

    ∂t+ (~q 0 + ε~q 1) · ∇c1,ε =

    ε

    Pediv(Dh(x)∇c1,ε)

    in Ω × (0, T )

    ~q 0 = −Kh∇P 0, div~q 0 = 0 in Ω

    + the same boundary conditions for c1,ε and P 0

    ~q 1 is the first order correction to effective Darcy’svelocity ~q 0 (defined later);

    Dispersion in periodic porous media – p.5/49

  • Effective equations

    〈φ〉∂c1,ε

    ∂t+ (~q 0 + ε~q 1) · ∇c1,ε =

    ε

    Pediv(Dh(x)∇c1,ε)

    in Ω × (0, T )

    ~q 0 = −Kh∇P 0, div~q 0 = 0 in Ω

    + the same boundary conditions for c1,ε and P 0

    Dh(x) = Dh(Pe∇P 0(x)) is effective diffusion tensor (withdispersion effects);

    Dispersion in periodic porous media – p.5/49

  • Effective permeability

    Permeability cell problem (i = 1, 2): χi ∈ H1(Y )

    divy (K(y)(∇yχi + ~ei)) = 0 in Y

    Matrix velocity Q(y):

    Q(y)~e1 = −K(y)(∇χ1(y) + ~e1),

    Q(y)~e2 = −K(y)(∇χ2(y) + ~e2),

    Effective permeability and effective Darcy’s velocity:

    Kh = −〈Q〉, ~q 0(x) = −Kh∇P 0(x).

    Dispersion in periodic porous media – p.6/49

  • Effective diffusion

    Diffusion cell problem (i = 1, 2): ψi ∈ H1(Y )

    −divy (D(y)(∇yψi + ~ei)) + Pe Q(y)~λ · ∇yψi

    = Pe

    [

    φ(y)

    〈φ〉〈Q〉~λ− Q(y)~λ

    ]

    · ~ei

    Dh(Pe~λ)~ei = 〈D(∇yψi + ~ei)〉 + Pe〈(φ

    〈φ〉〈Q〉~λ− Q~λ)ψi〉,

    Dh(x) = Dh(Pe∇P 0(x)).

    Dispersion in periodic porous media – p.7/49

  • Correction to Darcy’s velocity

    The first order correction to Darcy’s velocity has the form:

    ~q 1(x) = −2

    i,j=1

    ~N2i,j∂2P 0(x)

    ∂xi∂xj− Kh∇P 1(x),

    where vectors ~N2i,j are given by

    ~N2i,j · ~el = 〈K(∇χl + ~el)χi − K(∇χi + ~ei)χl〉 · ~ej .

    (χi = solutions to permeability cell problems.)

    Dispersion in periodic porous media – p.8/49

  • Second pressure P 1(x)

    div(

    Kh∇P 1)

    = 0 in Ω

    completed by some boundary conditions that depend onexact calculation of all boundary layers.

    In general, we do not know P 1(x)!

    Dispersion in periodic porous media – p.9/49

  • Second pressure P 1(x)

    div(

    Kh∇P 1)

    = 0 in Ω

    completed by some boundary conditions that depend onexact calculation of all boundary layers.

    In general, we do not know P 1(x)!

    Dispersion in periodic porous media – p.9/49

  • Example of P 1(x)

    Let Ω = R × (0, L). Then

    div(

    Kh∇P 1)

    = 0 in Ω

    P 1(x) =2

    i=1

    ν+i ∂iP0(x) on x2 = 0

    P 1(x) =2

    i=1

    ν−i ∂iP0(x) on x2 = L.

    Constants ν±i are introduced by boundary layer functions.

    Dispersion in periodic porous media – p.10/49

  • ν+i and ν−i

    Boundary layer problem:χ+i (i = 1, 2) is bounded solution of the problem

    −divy(

    K∇yχ+i

    )

    = 0 in (0, 1) × (0,∞)

    χ+i (y1, 0) = −χi(y1, 0) for y1 ∈ (0, 1)

    y1 7→ χ+i (y1, y2) is 1 − periodic,

    ν+i = limy2→∞χ+i (y1, y2) (exponentially).

    Similarly for ν−i .

    Dispersion in periodic porous media – p.11/49

  • Moving convection to the RHS

    ~q 1(x) = −2

    i,j=1

    ~N2i,j∂2P 0(x)

    ∂xi∂xj− Kh∇P 1(x),

    can be written as

    ε~q 1 · ∇c1,ε = −εdiv(

    (~N · ∇P 0)J∇c1,ε)

    − εKh∇P 1(x) · ∇c1,ε

    where

    ~N = 〈K(∇χ2 + ~e2)χ1 − K(∇χ1 + ~e1)χ2〉, J =

    [

    0 1

    −1 0

    ]

    .

    Dispersion in periodic porous media – p.12/49

  • Moving convection to the RHS

    ε~q 1 · ∇c1,ε = −ε[

    2∑

    i,j=1

    ~N2i,j∂2P 0(x)

    ∂xi∂xj+ Kh∇P 1(x)

    ]

    · ∇c1,ε

    can be written as

    ε~q 1 · ∇c1,ε = −εdiv(

    (~N · ∇P 0)J∇c1,ε)

    − εKh∇P 1(x) · ∇c1,ε

    where

    ~N = 〈K(∇χ2 + ~e2)χ1 − K(∇χ1 + ~e1)χ2〉, J =

    [

    0 1

    −1 0

    ]

    .

    Dispersion in periodic porous media – p.12/49

  • Moving convection to the RHS

    ε~q 1 · ∇c1,ε = −ε[

    2∑

    i,j=1

    ~N2i,j∂2P 0(x)

    ∂xi∂xj+ Kh∇P 1(x)

    ]

    · ∇c1,ε

    can be written as

    ε~q 1 · ∇c1,ε = −εdiv(

    (~N · ∇P 0)J∇c1,ε)

    − εKh∇P 1(x) · ∇c1,ε

    where

    ~N = 〈K(∇χ2 + ~e2)χ1 − K(∇χ1 + ~e1)χ2〉, J =

    [

    0 1

    −1 0

    ]

    .

    Dispersion in periodic porous media – p.12/49

  • Effective equations

    〈φ〉∂c1,ε

    ∂t+ (~q 0 + ε~q 1) · ∇c1,ε =

    ε

    Pediv(D

    h(∇P 0)∇c1,ε)

    ~q 0 = −Kh∇P 0, ~q 1 = −Kh∇P 1,

    div~q 0 = 0, div~q 1 = 0

    +boundary and initial conditions

    Dh(∇P 0) = Dh(Pe∇P 0) + Pe(~N · ∇P 0)J.

    Dispersion in periodic porous media – p.13/49

  • Material symmetries in Darcy’s law

    Consider complete symmetry: ∀(y1, y2)

    K(y1,−y2) = K(y1, y2) and K(−y1, y2) = K(y1, y2).

    Then:

    Kh is diagonal;

    ~N = 0;

    In rectangular domain all constant ν±i are equal to zero;Therefore P 1 = 0.

    This result suggests that in any domain P 1 = 0 if thereis enough symmetry.

    Dispersion in periodic porous media – p.14/49

  • Material symmetries in Darcy’s law

    Consider complete symmetry: ∀(y1, y2)

    K(y1,−y2) = K(y1, y2) and K(−y1, y2) = K(y1, y2).

    Then:

    Kh is diagonal;

    ~N = 0;

    In rectangular domain all constant ν±i are equal to zero;Therefore P 1 = 0.

    This result suggests that in any domain P 1 = 0 if thereis enough symmetry.

    Dispersion in periodic porous media – p.14/49

  • Material symmetries in Darcy’s law

    Consider complete symmetry: ∀(y1, y2)

    K(y1,−y2) = K(y1, y2) and K(−y1, y2) = K(y1, y2).

    Then:

    Kh is diagonal;

    ~N = 0;

    In rectangular domain all constant ν±i are equal to zero;Therefore P 1 = 0.

    This result suggests that in any domain P 1 = 0 if thereis enough symmetry.

    Dispersion in periodic porous media – p.14/49

  • Material symmetries in Darcy’s law

    Consider complete symmetry: ∀(y1, y2)

    K(y1,−y2) = K(y1, y2) and K(−y1, y2) = K(y1, y2).

    Then:

    Kh is diagonal;

    ~N = 0;

    In rectangular domain all constant ν±i are equal to zero;Therefore P 1 = 0.

    This result suggests that in any domain P 1 = 0 if thereis enough symmetry.

    Dispersion in periodic porous media – p.14/49

  • Material symmetries in Darcy’s law

    Consider complete symmetry: ∀(y1, y2)

    K(y1,−y2) = K(y1, y2) and K(−y1, y2) = K(y1, y2).

    Then:

    Kh is diagonal;

    ~N = 0;

    In rectangular domain all constant ν±i are equal to zero;Therefore P 1 = 0.

    This result suggests that in any domain P 1 = 0 if thereis enough symmetry.

    Dispersion in periodic porous media – p.14/49

  • Material symmetries (continued)

    Consider the group of orthogonal matrices:

    N = {C ∈ Md×d : C−1 = Cτ , CY = k + Y for k ∈ Zd}.

    Assume C ∈ N and ∀z ∈ Rd,

    CτK(Cz)C = K(z).

    Then it holds

    Q(Cz) = CQ(z)Cτ , Kh = CKhCτ ,

    for all z ∈ Rd.

    Dispersion in periodic porous media – p.15/49

  • Symmetry of effective diffusion

    Effective diffusion tensor is generally not symmetric.Symmetric and skew-symmetric parts are given by

    Dh(~λ) = Dh(~λ)symm + Dh(~λ)skew.

    where

    Dh(~λ)symmi,j = 〈D(∇yψj + ~ej) · (∇yψi + ~ei)〉

    Dh(~λ)skewi,j = Pe〈Q~λ · ∇yψiψj〉 + 〈D∇yψj · ~ei〉 − 〈D∇yψi · ~ej〉.

    Generally it holds

    Dh(−~λ) = Dh(~λ)τ .

    Dispersion in periodic porous media – p.16/49

  • Material symmetries (continued)

    Let C ∈ N and assume that ∀z ∈ Rd,

    CτK(Cz)C = K(z), CτD(Cz)C = D(z), φ(Cz) = φ(z).

    ThenD(~λ) = CD(Cτ~λ)Cτ

    Corollary:

    If we can take C = −I (complete symmetry) then D(~λ) is

    symmetric.

    Dispersion in periodic porous media – p.17/49

  • Pe 7→ Dh(Pe~λ) as Pe → ∞

    R.N. BHATTACHARYA, V.K. GUPTA, H.F. WALKER (1989),Asymptotics of Solute Dispersion in Periodic Porous Media,SIAM J. Appl. Ma th. 49(1) 86-98.A. AVELLANEDA, A. J. MAJDA (1991): An IntegralRepresentation and Bounds of the Effective Diffusivity inPassive Advection by Laminar and Turbulent Flows,Commun. Math. Phys., 138, 339-391.

    |Dh(Pe~λ)i,j | ≤ C(Pe)2.

    A.J. MAJDA, P.R. KRAMER (1999), Simplified models for tur-

    bulent diffusion: Theory, numerical modeling, and physical

    phenomena, Physics Reports 314, 237-574.

    Dispersion in periodic porous media – p.18/49

  • Pe 7→ Dh(Pe~λ) as Pe → ∞

    R.N. BHATTACHARYA, V.K. GUPTA, H.F. WALKER (1989),Asymptotics of Solute Dispersion in Periodic Porous Media,SIAM J. Appl. Ma th. 49(1) 86-98.

    A. AVELLANEDA, A. J. MAJDA (1991): An IntegralRepresentation and Bounds of the Effective Diffusivity inPassive Advection by Laminar and Turbulent Flows,Commun. Math. Phys., 138, 339-391.

    |Dh(Pe~λ)i,j | ≤ C(Pe)2.

    A.J. MAJDA, P.R. KRAMER (1999), Simplified models for tur-

    bulent diffusion: Theory, numerical modeling, and physical

    phenomena, Physics Reports 314, 237-574.

    Dispersion in periodic porous media – p.18/49

  • Pe 7→ Dh(Pe~λ) as Pe → ∞

    R.N. BHATTACHARYA, V.K. GUPTA, H.F. WALKER (1989),Asymptotics of Solute Dispersion in Periodic Porous Media,SIAM J. Appl. Ma th. 49(1) 86-98.A. AVELLANEDA, A. J. MAJDA (1991): An IntegralRepresentation and Bounds of the Effective Diffusivity inPassive Advection by Laminar and Turbulent Flows,Commun. Math. Phys., 138, 339-391.

    |Dh(Pe~λ)i,j | ≤ C(Pe)2.

    A.J. MAJDA, P.R. KRAMER (1999), Simplified models for tur-

    bulent diffusion: Theory, numerical modeling, and physical

    phenomena, Physics Reports 314, 237-574.

    Dispersion in periodic porous media – p.18/49

  • Pe 7→ Dh(Pe~λ) as Pe → ∞

    R.N. BHATTACHARYA, V.K. GUPTA, H.F. WALKER (1989),Asymptotics of Solute Dispersion in Periodic Porous Media,SIAM J. Appl. Ma th. 49(1) 86-98.A. AVELLANEDA, A. J. MAJDA (1991): An IntegralRepresentation and Bounds of the Effective Diffusivity inPassive Advection by Laminar and Turbulent Flows,Commun. Math. Phys., 138, 339-391.

    |Dh(Pe~λ)i,j | ≤ C(Pe)2.

    A.J. MAJDA, P.R. KRAMER (1999), Simplified models for tur-

    bulent diffusion: Theory, numerical modeling, and physical

    phenomena, Physics Reports 314, 237-574.

    Dispersion in periodic porous media – p.18/49

  • Pe 7→ Dh(Pe~λ) as Pe → ∞

    R.N. BHATTACHARYA, V.K. GUPTA, H.F. WALKER (1989),Asymptotics of Solute Dispersion in Periodic Porous Media,SIAM J. Appl. Ma th. 49(1) 86-98.A. AVELLANEDA, A. J. MAJDA (1991): An IntegralRepresentation and Bounds of the Effective Diffusivity inPassive Advection by Laminar and Turbulent Flows,Commun. Math. Phys., 138, 339-391.

    |Dh(Pe~λ)i,j | ≤ C(Pe)2.

    A.J. MAJDA, P.R. KRAMER (1999), Simplified models for tur-

    bulent diffusion: Theory, numerical modeling, and physical

    phenomena, Physics Reports 314, 237-574.

    Dispersion in periodic porous media – p.18/49

  • Limit behavior

    For simplicity we consider only diagonal terms.

    Minimal enhanced diffusion: Dh(Pe~λ)i,i = O(1);

    Maximal enhanced diffusion: Dh(Pe~λ)i,i = O(Pe2);

    Dispersion in periodic porous media – p.19/49

  • Minimal/maximal enhancement

    Minimal enhanced diffusion is the case where there exists aperiodic function hi ∈ H1(Y ) such that

    Q(y)~λ · ∇hi =

    [

    φ(y)

    〈φ〉〈Q〉~λ− Q(y)~λ

    ]

    · ~ei

    in Y .For maximal enhanced diffusion there must exist a nontrivial periodic function h ∈ H1(Y ) such that

    Q(y)~λ · ∇h = 0,

    in Y .

    Dispersion in periodic porous media – p.20/49

  • Minimal/maximal enhancement

    Minimal enhanced diffusion is the case where there exists aperiodic function hi ∈ H1(Y ) such that

    Q(y)~λ · ∇hi =

    [

    φ(y)

    〈φ〉〈Q〉~λ− Q(y)~λ

    ]

    · ~ei

    in Y .

    For maximal enhanced diffusion there must exist a nontrivial periodic function h ∈ H1(Y ) such that

    Q(y)~λ · ∇h = 0,

    in Y .

    Dispersion in periodic porous media – p.20/49

  • Minimal/maximal enhancement

    Minimal enhanced diffusion is the case where there exists aperiodic function hi ∈ H1(Y ) such that

    Q(y)~λ · ∇hi =

    [

    φ(y)

    〈φ〉〈Q〉~λ− Q(y)~λ

    ]

    · ~ei

    in Y .For maximal enhanced diffusion there must exist a nontrivial periodic function h ∈ H1(Y ) such that

    Q(y)~λ · ∇h = 0,

    in Y .

    Dispersion in periodic porous media – p.20/49

  • Numerical simulations

    J. SALLES, J.-F. THOVERT, R. DELANNAY, L. PREVORS, J.-L. AURIAULT,M. ADLER: Taylor dispersion in porous media. Determinationof the dispersion tensor, Phys. Fluids A 5(10), October1993.M. QUINTARD, M. KAVIANY, S. WHITAKER: Two-medium treatmentof heat transfer in porous media: numerical results foreffective properties, Advances in Water Resources, Vol. 20,No 2-3, pp. 77-94, 1997.

    F. CHERBLANC, A. AHMADI, M. QUINTARD: Two-medium descrip-

    tion of dispersion in heterogeneous porous media: Calcula-

    tion of macroscopic properties, Water Resources Res. Vol

    39, No 6, 2003.

    Dispersion in periodic porous media – p.21/49

  • Numerical simulations

    Heterogeneous simulation;

    Homogeneous simulation;

    Homogeneous simulation without dispersion.

    Dispersion in periodic porous media – p.22/49

  • Numerical methods

    Darcy’s equation: Mixed-hybrid finite element method(RT0 elements on non structured triangulation);

    Concentration equation: Vertex-centered finite volumemethod with semi-implicit time stepping;

    Unit cell problems: Finite volume method with finitedifferences on uniform mesh with up-winding;

    Solvers: CG and GMRES; preconditioners: ILU, SSOR;

    Dispersion in periodic porous media – p.23/49

  • Heterogeneous simulation

    Ω = (0, 10) × (0, 10), ε =1

    10

    ∂cε

    ∂t+ ~qε(x) · ∇cε = div(D(

    x

    ε)∇cε)

    ~q ε = −K(x

    ε)∇P ε, div~q ε = 0

    D(x

    ε)∇cε · ~n = 0 on ∂Ω

    P ε = Pbdr on ∂Ω

    + initial condition for cε

    Dispersion in periodic porous media – p.24/49

  • Heterogeneous simulation: data

    Ki, Di

    Km, Dm

    Ki = 1.0, Km= 8.0; Kh=4.416;

    Di = 0.01, Dm= 0.02; Dh=0.01569

    We have complete symmetry.

    Dispersion in periodic porous media – p.25/49

  • Heterogeneous simulation: pressurePressure

    −6

    −4

    −2

    0

    2

    4

    6

    8

    10

    12

    XY

    Z

    Z−

    Axi

    s

    −6.009

    0

    10

    12.01

    Y−Axis

    0

    10 X−Axis

    0

    10

    Dispersion in periodic porous media – p.26/49

  • Heterogeneous simulation: velocity

    5 6 7 7.2834.831

    5

    6

    7

    7.331

    Darcy’s velocity

    X−Axis

    Y−

    Axi

    s

    5 6 7 7.2834.831

    5

    6

    7

    7.331

    Dispersion in periodic porous media – p.27/49

  • Heterogeneous simulation: cinit

    0 100

    10

    Concentration: step = 0, t=0.000000

    X−Axis

    Y−

    Axi

    s

    1.2

    1.5

    1.8

    2.1

    2.4

    2.7

    3

    3.3

    3.6

    3.9

    0 100

    10

    Dispersion in periodic porous media – p.28/49

  • Heterogeneous simulation: c, t = 1.0

    0 100

    10

    Concentration: step = 696, t=1.0

    X−Axis

    Y−

    Axi

    s

    1.04

    1.12

    1.2

    1.28

    1.36

    1.44

    1.52

    1.6

    1.68

    1.76

    0 100

    10

    Dispersion in periodic porous media – p.29/49

  • Heterogeneous simulation: Pe

    Local Peclet number:

    Pe =|~q|l

    |D∇c|.

    Pe ≈ 25 −−250 for t = 0

    Pe ≈ 80 −−800 for t = 1

    Dispersion in periodic porous media – p.30/49

  • Homogeneous simulation

    We have complete symmetry.

    ∂ch

    ∂t+ ~q 0 · ∇ch = div(Dh∇ch)

    ~q 0 = −Kh∇P 0, div~q 0 = 0,

    Dh∇ch · ~n = 0 on ∂Ω

    P 0 = Pbdr on ∂Ω

    + initial condition for ch

    Dh = Dh(l∇P 0) (l = the cell length).

    Dispersion in periodic porous media – p.31/49

  • Homogeneous simulation

    Procedure:

    Solve permeability cell problems and calculate Kh;

    Run Darcy’s flow simulation and calculate ∇P 0;

    For each triangle T ⊂ Ω solve diffusion cell problem with~λ = l∇P 0|T and calculate Dh|T = D

    h(~λ).

    Since there are too many triangles perform first someclustering to reduce the amount of the calculations.

    Dispersion in periodic porous media – p.32/49

  • Homogeneous simulation

    Procedure:

    Solve permeability cell problems and calculate Kh;

    Run Darcy’s flow simulation and calculate ∇P 0;

    For each triangle T ⊂ Ω solve diffusion cell problem with~λ = l∇P 0|T and calculate Dh|T = D

    h(~λ).

    Since there are too many triangles perform first someclustering to reduce the amount of the calculations.

    Dispersion in periodic porous media – p.32/49

  • Homogeneous simulation

    Procedure:

    Solve permeability cell problems and calculate Kh;

    Run Darcy’s flow simulation and calculate ∇P 0;

    For each triangle T ⊂ Ω solve diffusion cell problem with~λ = l∇P 0|T and calculate Dh|T = D

    h(~λ).

    Since there are too many triangles perform first someclustering to reduce the amount of the calculations.

    Dispersion in periodic porous media – p.32/49

  • Homogeneous simulation

    Procedure:

    Solve permeability cell problems and calculate Kh;

    Run Darcy’s flow simulation and calculate ∇P 0;

    For each triangle T ⊂ Ω solve diffusion cell problem with~λ = l∇P 0|T and calculate Dh|T = D

    h(~λ).

    Since there are too many triangles perform first someclustering to reduce the amount of the calculations.

    Dispersion in periodic porous media – p.32/49

  • Homogeneous simulation

    Procedure:

    Solve permeability cell problems and calculate Kh;

    Run Darcy’s flow simulation and calculate ∇P 0;

    For each triangle T ⊂ Ω solve diffusion cell problem with~λ = l∇P 0|T and calculate Dh|T = D

    h(~λ).

    Since there are too many triangles perform first someclustering to reduce the amount of the calculations.

    Dispersion in periodic porous media – p.32/49

  • n×m clustering

    Divide [0, 2π] into n equal subintervals Ii, i = 1, 2, . . . ,n;

    Divide [min |~q|,max |~q|] into m equal subintervals Jj ,j = 1, 2, . . . ,m;

    Replace all vectors in Ii × Jj by their mean value.

    Example: 10 × 10 clustering.Number of vectors before clustering: 54452Number of vectors after clustering: 22L2–error introduced by clustering: absolute = 6.113882,

    relative = 10.1492 %.

    Dispersion in periodic porous media – p.33/49

  • Comparison of the simulations

    Notation: cε=heterogeneous solution; ch=homogeneoussolution; ch,0=homogeneous solution without dispersion;

    time‖cε−ch‖L2(Ω)‖cε‖L2(Ω)

    ‖cε−ch,0‖L2(Ω)‖cε‖L2(Ω)

    0.111111 9.49 % 10.91 %0.222222 8.50 % 11.30 %0.333333 6.15 % 10.19 %0.444444 5.00 % 10.01 %0.555556 4.51 % 10.13 %0.666667 4.03 % 9.92 %0.777778 3.62 % 9.71 %0.888889 3.34 % 9.55 %

    Dispersion in periodic porous media – p.34/49

  • Comparison of the simulations

    (heterogeneous and homogeneous with dispersion)

    0 100

    10

    Concentration: step = 456, t=0.888889

    X−Axis

    Y−

    Axi

    s

    1.04

    1.12

    1.2

    1.28

    1.36

    1.44

    1.52

    1.6

    1.68

    1.76

    0 100

    10

    0 100

    10

    Concentration: step = 624, t=0.888889

    X−Axis

    Y−

    Axi

    s

    1.08

    1.17

    1.26

    1.35

    1.44

    1.53

    1.62

    1.71

    1.8

    1.89

    0 100

    10

    Dispersion in periodic porous media – p.35/49

  • Comparison of the simulations

    (heterogeneous and homogeneous without dispersion)

    0 100

    10

    Concentration: step = 456, t=0.888889

    X−Axis

    Y−

    Axi

    s

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    2.6

    0 100

    10

    0 100

    10

    Concentration: step = 624, t=0.888889

    X−Axis

    Y−

    Axi

    s

    1.08

    1.17

    1.26

    1.35

    1.44

    1.53

    1.62

    1.71

    1.8

    1.89

    0 100

    10

    Dispersion in periodic porous media – p.36/49

  • Dh(Pe~λ)11, ~λ = (1, 0)

    K=1

    D=0.01

    K=8, D=0.02

    0 10 20 30 400

    1000

    1547

    PLOT

    X−Axis

    Y−

    Axi

    s

    0 10 20 30 400

    1000

    1547

    Dispersion in periodic porous media – p.37/49

  • Dh(Pe~λ)22, ~λ = (1, 0)

    K=1

    D=0.01

    K=8, D=0.02

    0 10 20 30 400

    0.01

    0.02

    0.03

    0.04

    0.05

    0.0528

    PLOT

    X−Axis

    Y−

    Axi

    s

    0 10 20 30 400

    0.01

    0.02

    0.03

    0.04

    0.05

    0.0528

    Dispersion in periodic porous media – p.38/49

  • Dh(Pe~λ)11, ~λ = (1, 1)

    K=1

    D=0.01

    K=8, D=0.02

    0 10 20 30 400

    10

    20

    30

    40

    50

    60

    70

    80

    lambda=(1,1)

    Pe

    Dxx

    0 10 20 30 400

    10

    20

    30

    40

    50

    60

    70

    80

    Dispersion in periodic porous media – p.39/49

  • ψ1(y) for ~λ = (1, 1), Pe = 20

    0 10

    1

    Cell Diffusion soluton (direction=x)

    X−Axis

    Y−

    Axi

    s

    −1.2

    −1 −0.8

    −0.

    8

    −0.6

    −0.6

    −0.

    6

    −0.4

    −0.

    4

    −0.4

    −0.4

    −0.2

    −0.

    2

    −0.2

    −0.

    2

    −0.2

    1.94

    e−16

    1.94

    e−16

    1.94e−1

    6

    1.94

    e−16

    1.94e−16

    1.94

    e−16

    0.2

    0.2

    0.2

    0.2

    0.2

    0.2

    0.2

    0.4

    0.4

    0.40.

    4

    0.4

    0.4

    0.4

    0.6

    0.6

    0.6

    0.6

    0.6

    0.6

    0.6

    0.8

    0.8

    0.8

    0.8

    0.8

    0.8

    0.8

    0.8

    1

    1

    1

    1

    1

    1

    1

    1

    1.2

    1.2

    1.2

    1.2

    1.2

    1.2

    1.2

    1.2

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.6

    1.6

    1.6

    1.6

    1.6

    1.6

    1.6

    1.6

    1.8

    1.8

    1.8

    1.8

    1.8

    0 10

    1

    Dispersion in periodic porous media – p.40/49

  • Non symmetric cell

    K=1

    D=0.01

    K=8, D=0.02

    K =

    [

    5.76 −0.185

    −0.185 5.76

    ]

    , D =

    [

    0.0176 −7.7 · 10−5

    −7.7 · 10−5 0.0176

    ]

    The same initial and boundary conditions.

    Dispersion in periodic porous media – p.41/49

  • Comparison of the simulations

    Notation: cε=heterogeneous solution; ch=homogeneoussolution; ch,0=homogeneous solution without dispersion;

    time‖cε−ch‖L2(Ω)‖cε‖L2(Ω)

    ‖cε−ch,0‖L2(Ω)‖cε‖L2(Ω)

    0.111111 7.34 % 8.14 %0.222222 4.77 % 6.23 %0.333333 3.56 % 5.54 %0.444444 3.45 % 5.84 %0.555556 3.01 % 5.67 %0.666667 2.74 % 5.57 %0.777778 2.54 % 5.45 %0.888889 2.34 % 5.34 %

    Dispersion in periodic porous media – p.42/49

  • Comparison of the simulations

    (heterogeneous and homogeneous with dispersion)

    0 100

    10

    Concentration: step = 456, t=0.888889

    X−Axis

    Y−

    Axi

    s

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    0 100

    10

    0 100

    10

    Concentration: step = 512, t=0.888889

    X−Axis

    Y−

    Axi

    s

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2

    0 100

    10

    Dispersion in periodic porous media – p.43/49

  • Conclusion

    The results suggest that acceptable effective diffusioncan be obtained with rather coarse clustering of Darcy’svelocity;

    Influence of ~q 1 is not (yet) demonstrated.

    Dispersion in periodic porous media – p.44/49

  • Taylor expansion with respect to Pe

    Solutions of diffusion cell problems: ψi = ψi(y; Pe~λ).

    Taylor expansion

    ψi = ψ0i + Peψ

    1i + Pe

    2 ψ2i + Pe3 ψ3i + . . .

    ψ0i = ψ0i (y), ψ

    1i (y,

    ~λ) =d

    k=1

    ψ1i;k(y)λk,

    ψ2i (y,~λ) =

    d∑

    k,l=1

    ψ1i;k,l(y)λkλl, . . .

    Dispersion in periodic porous media – p.45/49

  • Taylor expansion with respect to Pe

    Solutions of diffusion cell problems: ψi = ψi(y; Pe~λ).Taylor expansion

    ψi = ψ0i + Peψ

    1i + Pe

    2 ψ2i + Pe3 ψ3i + . . .

    ψ0i = ψ0i (y), ψ

    1i (y,

    ~λ) =d

    k=1

    ψ1i;k(y)λk,

    ψ2i (y,~λ) =

    d∑

    k,l=1

    ψ1i;k,l(y)λkλl, . . .

    Dispersion in periodic porous media – p.45/49

  • Taylor expansion with respect to Pe

    Solutions of diffusion cell problems: ψi = ψi(y; Pe~λ).Taylor expansion

    ψi = ψ0i + Peψ

    1i + Pe

    2 ψ2i + Pe3 ψ3i + . . .

    ψ0i = ψ0i (y), ψ

    1i (y,

    ~λ) =

    d∑

    k=1

    ψ1i;k(y)λk,

    ψ2i (y,~λ) =

    d∑

    k,l=1

    ψ1i;k,l(y)λkλl, . . .

    Dispersion in periodic porous media – p.45/49

  • Sequence of equations

    Functions ψki are periodic solutions of the followingproblems on the unit cell Y :

    −div(D(∇ψ0i + ~ei)) = 0

    −div(D∇ψ1i ) + Q(y)~λ · ∇ψ0i =

    [

    φ(y)

    〈φ〉〈Q〉~λ− Q(y)~λ

    ]

    · ~ei

    For k = 2, 3, . . .

    −div(D∇ψki ) + Q(y)~λ · ∇ψk−1i = 0

    Dispersion in periodic porous media – p.46/49

  • Expansion for effective diffusion

    Dh(Pe~λ) = Dh,0 +[

    Pe Nh,1(~λ) + Pe2 Dh,2(~λ)]

    + · · ·

    + (−1)n−1[

    Pe2n−1 Nh,2n−1(~λ) + Pe2n Dh,2n(~λ)]

    + · · ·

    Dh,0i,j = 〈D(∇ψ

    0j + ~ej) · (∇ψ

    0i + ~ei)〉,

    Nh,2n−1i,j = 〈Q

    ~λ · ∇ψnj ψni 〉 n = 1, 2, . . . skew-symmetric

    Dh,2ni,j = 〈D∇ψ

    nj · ∇ψ

    ni 〉 n = 1, 2, . . . symmetric

    Dispersion in periodic porous media – p.47/49

  • Small Peclet number approximation

    Dh(Pe~λ) ≈ Dh,0 + Pe Nh,1(~λ) + Pe2 Dh,2(~λ)(+ · · ·?)

    The first terms are very small so that higher number ofterms should be taken;

    Radius of convergence can be small;

    Accuracy can be gained by the use of Padéapproximations.

    Dispersion in periodic porous media – p.48/49

  • Standard diffusivity tensor

    Dstd(~λ) = Dh,0 + |~λ|(

    αl~λ⊗ ~λ

    |~λ|2+ αt(I −

    ~λ⊗ ~λ

    |~λ|2))

    For large Peclet numbers most often diffusivity growslinearly with Peclet number, while for small Peclet numbersthe growth can be quadratic.

    Dispersion in periodic porous media – p.49/49

    Dimensionless field scale equationsAssumptionsAsymptotic expansionEffective equationsEffective permeabilityEffective diffusionCorrection to Darcy's velocitySecond pressure $P^1(x)$Example of $P^1(x)$$u ^{+}_{i}$ and $u ^{-}_{i}$Moving convection to the RHSEffective equationsMaterial symmetries in Darcy's lawMaterial symmetries (continued)Symmetry of effective diffusionMaterial symmetries (continued)$Pe mapsto {cal D}^h(Pe lamb )$as $Pe o infty $Limit behaviorMinimal/maximal enhancementNumerical simulations Numerical simulationsNumerical methodsHeterogeneous simulationHeterogeneous simulation: dataHeterogeneous simulation: pressureHeterogeneous simulation: velocityHeterogeneous simulation: $c_{m init}$Heterogeneous simulation: $c$, $t=1.0$Heterogeneous simulation: PeHomogeneous simulationHomogeneous simulationn$imes $m clusteringComparison of the simulationsComparison of the simulationsComparison of the simulations${cal D}^h(Pe lamb )_{11}$,$;lamb =(1,0)$${cal D}^h(Pe lamb )_{22}$,$;lamb =(1,0)$${cal D}^h(Pe lamb )_{11}$,$;lamb =(1,1)$$psi _1(y)$for $lamb =(1,1)$, $Pe =20$ Non symmetric cell Comparison of the simulationsComparison of the simulationsConclusionTaylor expansion with respect to $Pe $Sequence of equationsExpansion for effective diffusionSmall Peclet number approximationStandard diffusivity tensor