Complementi di Fisica - units.it

12
Complementi di Fisica - Lecture 24 18-11-2015 L.Lanceri - Complementi di Fisica 1 Complementi di FisicaLecture 24 Livio Lanceri Università di Trieste Trieste, 18-11-2015 18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 2 In this lecture Contents Drift of electrons and holes in practice (numbers): conductivity σ as a function of impurity concentration band bending: representation of macroscopic electric fields Diffusion in practice (numbers): Diffusion coefficient D Induced (Built-in) electric field Einstein relation between σ and D Reference textbooks D.A. Neamen, Semiconductor Physics and Devices, McGraw- Hill, 3 rd ed., 2003, p.154-188 (5 Carrier Transport Phenomena) R.Pierret, Advanced Semiconductor Fundamental, Prentice Hall, 2nd ed., p.175-215 (6 Carrier Transport)

Transcript of Complementi di Fisica - units.it

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 1

“Complementi di Fisica” Lecture 24

Livio Lanceri Università di Trieste

Trieste, 18-11-2015

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 2

In this lecture •  Contents

–  Drift of electrons and holes in practice (numbers…): •  conductivity σ as a function of impurity concentration •  “band bending”: representation of macroscopic electric

fields –  Diffusion in practice (numbers…):

•  Diffusion coefficient D •  Induced (“Built-in”) electric field •  Einstein relation between σ and D

•  Reference textbooks –  D.A. Neamen, Semiconductor Physics and Devices, McGraw-

Hill, 3rd ed., 2003, p.154-188 (“5 Carrier Transport Phenomena”) –  R.Pierret, Advanced Semiconductor Fundamental, Prentice

Hall, 2nd ed., p.175-215 (“6 Carrier Transport”)

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 2

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 3

From the Boltzmann Equation… •  The continuity equations for the electrical current density in

semiconductors can be obtained from the Boltzmann equation:

•  Multiplying by the group velocity and integrating over the momentum space dkx dky dkz:

•  One obtains the expression for current density (detailed derivation: see FELD p.187-194, MOUT p.100-104)

∂f∂t

= −! v g ⋅! ∇ ! r f −

! F "⋅! ∇ ! k f −

f − f0

τ

! F = −e

! E

Force on electrons

! v g∂f∂t∫ d3

! k = − ! v g

! v g ⋅! ∇ ! r f( )d3

! k ∫ −

! v g

! F "⋅! ∇ ! k f

'

( )

*

+ , d3! k ∫ −

! v gf − f0τ

d3! k ∫

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 4

Drift-diffusion continuity equation

relaxation time τ is small: This new term can be neglected if frequency is not too high (few hundred MHz)

For electrons (similar for holes):

τ n∂! J n∂t

+! J n = qnµn

! E + 1

nkBTq! ∇ ! r n +

kB

q! ∇ ! r T

%

& '

(

) *

Drift Diffusion

Temperature gradient: also a temperature gradient can drive an electric current! Absent at thermal equilibrium

already discussed in the Drude model

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 3

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 5

•  Drift (mobility) and diffusion (diffusivity) coefficients are correlated!

•  Why ? –  See previous lecture –  Also: no current at

equilibrium, see next

Drift and diffusion: Einstein relation

ppnn

ppnnth

qkTD

qkTD

EvEvlvD

µµ

µµ

!!"

#$$%

&=!!

"

#$$%

&=

=−=≡

drift velocity

thermal velocity

external field

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 6

Mobility and diffusivity vs. concentration

Electrons and holes:

Low doping concentration: Lattice scattering limit

High doping concentration: Impurity scattering limit

pnpn mm µµ >⇒< ∗∗

T ~ 300 K

mobility µ (cm2 V-1 s-1) diffusivity D

(cm2 s-1)

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 4

“Band bending”: “built-in” electrical field

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 8

Non-uniform doping: “built-in” field

qkT

V

dxdN

NV

dxdp

pV

dxdp

pVpq

dxdp

qkT

qpq

dxdp

DqpqJ

th

A

Athth

thn

nn

nnp

≈=

=##$

%&&'

(−=

=−=

=−=

11

01

0

µ

µµ

µ

Ɛ

Ɛ

Ɛ

Ɛ

p-type doping, thermal equilibrium (no “external” el.field applied!):

Ɛ is the “built-in” electric field:

“thermal voltage equivalent”

p(x)

n(x)

-N-A - n + p

Ɛ(x)

diffusion

Small “space charge” unbalance

Built-in field ⇒ drift

compensates diffusion

electrons

electrons

holes

holes

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 5

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 9

Non-uniform doping in equilibrium •  Under thermal and diffusive

equilibrium conditions the Fermi level (= total chemical potential) inside a material (or group of materials in intimate contact) is invariant as a function of position

•  A non-zero (“built-in”) electric field is established in nonuniformly doped semiconductors under equilibrium conditions Ɛx = (1/ q)(dEC/dx) = =  (1/ q)(dEi/dx) = =  (1/ q)(dEV/dx)

0===dzdE

dydE

dxdE FFF

“band bending”, as for an external field; here the field is “built-in”

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 10

Einstein relation - 1 Relation between electron concentration, donor concentration, Fermi level EF and intrinsic Fermi level Ei in the “quasi-neutrality” approximation (local neutrality cannot be exact, otherwise there would be no built-in field!):

n x( ) = nieEF −Ei x( )( ) kT ≈ ND x( )

At equilibrium, EF is constant ⇒ “band bending”:

EF − Ei = kT lnND x( )ni

#

$ %

&

' ( ⇒ −

dEi

dx=

kTND x( )

dND x( )dx

Induced (“built-in”) electric field:

ε x = −dVdx

= −1− q

dEi

dx= −

kTq

1ND x( )

dND x( )dx

EC

EF Ei

EV

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 6

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 11

Einstein relation - 2 At equilibrium the total electric current (diffusion + drift) must be zero; using for the electric field εx the expression just derived one obtains: Jn,x = 0 = q nµnε x + q Dn

dndx

≈ q ND x( )µnε x + q DndND x( )dx

=

= q ND x( )µn −kTq

1ND x( )

dND x( )dx

$

%&'

()+ q Dn

dND x( )dx

EC

EF Ei

EV

Dn

µn

=kTq

Dp

µp

=kTq

"

# $ $

%

& ' '

⇒ Einstein relation for electrons (similar for holes):

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 12

Non-uniform doping: an example

⇒ Built-in electric field: Ɛx = (1/ q)(dEi/dx) = = (1/ q)(d(EF-Ei)/dx) = =  - dΨ/dx

Electric potential V(x) = Ψ(x) = (1/ q)(EF - Ei (x))

Donor concentration:

Equilibrium: EF = constant

“band bending”:

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 7

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 13

Example: abrupt pn junction

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 14

pn junction

n-type p-type

Built-in electric field

At thermal and diffusive equilibrium, no external field: Net current is zero, both for electrons and holes

drift

drift

diffusion

diffusion

electrons

holes

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 8

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 15

Einstein relation – numerical examples •  In the “non-degenerate” limit:

•  Typical sizes of mobility and diffusivity:

qkTD

qkTD

p

p

n

n ==µµ

s/cm26Vs/cm1000

V026.0300

22n ≈⇒=

≈⇒=

nDqkTKT

µ

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 16

Current density equations •  When an external electric field Ɛ is present in addition

to the concentration gradient: no equilibrium! –  Both drift and diffusion currents will flow –  The total current density is different from zero in this case!

•  For electrons and holes: J = Jn + Jp

dxdp

DqpqJJJ

dxdn

DqnqJJJ

ppdiffpdriftpp

nndiffndriftnn

−=+=

+=+=

µ

µ

,,

,, Ɛ

Ɛ

drift diffusion

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 9

High field effects

Drift velocity saturation Avalanche processes

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 18

Drift velocity saturation Silicon: electrons and holes drift velocity - increases linearly at small fields - saturates (~ thermal velocity) at high fields

GaAs: electrons and holes drift velocity -  Peculiar behavior -  see next slide for an explanation

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 10

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 19

Two-valley semiconductors

GaAs: Two-valley model of E-k band diagram: Different effective masses Different mobilities

( )( ) ( )Ev

nnnnqnnnq

mq

n

c

µ

µµµ

µµµσ

τµ

=

++≡

=+=

=∗

212211

2211

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 20

Avalanche processes Mean free path

Ek,min > Eg

To start an avalanche: enough kinetic energy to create an e-h pair Order of magnitude estimate from energy and momentum conservation (process 1 → 2):

12m1vs

2 ≈ Eg + 312m1v f

2

m1vs ≈ 3m1v f

E0 =12m1vs

2 ≈1.5 Eg

GA =1qαn Jn +α p Jp( )

Band bending due to external field: Ɛx=(1/q)dEC/dx

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 11

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 21

Ionization rates and generation rate

αn,α p ionization rates (cm-1)

e − h generation rate (cm-3s-1)

GA =1qαn Jn +α p Jp( )

In Silicon: E0 = 3.2 Eg (el.) E0 = 4.4 Eg (h.) Ɛ ~ 3×105 V/cm For α ~ 104 cm-1

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 22

Lecture 24 - exercises •  Exercise 1: Find the electron and hole concentrations, mobilities

and resistivities of silicon samples at 300K, for each of the following impurity concentrations: (a) 5x1015 boron atoms/cm3; (b) 2x1016 boron atoms/cm3 together with 1.5x1016 arsenic atoms/cm3; and (c) 5x1015 boron atoms/cm3, together with 1017 arsenic atoms/cm3, and 1017 gallium atoms/cm3.

•  Exercise 2: For a semiconductor with a constant mobility ratio b ≡ µnµp > 1 independent of impurity concentration, find the maximum resistivity ρm in terms of the intrinsic resistivity ρi and of the mobility ratio.

•  Exercise 3: A semiconductor is doped with ND (ND>>ni) and has a resistance R1. The same semiconductor is then doped with an unknown amount of acceptors NA (NA>>ND), yielding a resistance of 0.5R1. Find NA in terms of ND if the ratio of diffusivities for electrons and holes is Dn/Dp=50.

Complementi di Fisica - Lecture 24 18-11-2015

L.Lanceri - Complementi di Fisica 12

Back-up slides

18-11-2015 L.Lanceri - Complementi di Fisica - Lecture 24 24

Graded np junction AD NNN −=

N: net fixed charge

n0, p0: majority carrier concentrations

net mobile charge

net total charge

potential Ψ El.field Ɛx

electron energy-band diagram