Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N...

59
Advancement of Direct Catalytic Mannich-type Reactions with Esters or Ester-equivalents as Donors Yong Guan Oct. 17, 2007 Michigan State University

Transcript of Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N...

Page 1: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Advancement of Direct Catalytic Mannich-type Reactions with Esters

or Ester-equivalents as Donors

Yong GuanOct. 17, 2007

Michigan State University

Page 2: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Outline

• Background Information

• Esters or Ester-equivalents- Glycine Schiff-bases- β-Keto Esters or Malonates- Trichloromethylketones- N-acylpyrroles- N-Boc-anilides- Diazoacetates

• Conclusions

Page 3: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Background Information

Mannich, C. Arch. Pharm. 1917, 255, 261.http://www.dphg.de/images/dphg_ap_mannich.gif

O

CH3Ph

CH2O

NH4Cl

O

Ph N3

NN

O

Ph

CH3

antipyrine

CH2O

NH4Cl

NN

O

Ph

H3CCH3

CH3

N

3

Carl Mannich

Tollens and von Marle (1903)

Mannich (1917)

Mannich reaction

Tollens, B.; Marle, v. Ber. 1903, 36, 1351.Mannich, C. J. Chem. Soc., Abstracts 1917, 112, 634.

NHR

R O

HH R2

OR1

acid or baseR2

O

NR1

R

R

+ +

Page 4: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Reaction Mechanism

O

HH

RHN

R

H

HNR

R

OH H+

HNR

R

OH2

NR

R

Step 1. Formation of the Schiff base

Name Reactions – A Collection of Detailed Reaction Mechanisms. Jie Jack Li. Springer-Verlag, Berlin. 2002.

Step2. Amino alkylation of an acidic hydrogen containing compound

Basic conditions

Acidic conditions

R2

OR1

H

B:

enolateformation

R2

O-

R1

NR

R

R2

O

NR1

R

R

R2

OR1

H+

enolization R2

OR1

H

NR

R

R2

O

NR1

R

R

Page 5: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Background Information

• Indirect-type Mannich Reaction

• Direct-type Mannich Reaction

Page 6: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Indirect-type Mannich Reaction

EtO2C

NTs

R

OSiMe3+

CuClO4-tolBINAP (2-10 mol%)

THF, 0 oC EtO2C

NH

R

OTs

8 examples65-92% Yield89-98% ee

Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 4548.

Silyl enol ether

P(p-tolyl)2P(p-tolyl)2

tolBINAP

N

HO

OEt

TsCuP

P*

Page 7: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

The First Direct Catalytic Asymmetric Mannich Reaction

Yamasaki, S.; Iida, T.; Shibasaki, M. Tetrahedron Lett. 1999, 41, 307.

Direct-type Mannich Reaction

Ar

O MeOCH2NEt2ALB (30 mol%)

La(OTf)3 nH2O (30 mol%)toluene, 3 MS, 50 oC

Ar

O

NEt2

5 examples61-76% yield34-44% ee

OO

OO

Al

Li

(R)-ALB = AlLibis(binaphthoxide)

Page 8: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

General Difficulties

• Many Lewis acids are deactivated or sometimes decomposed by the nitrogen atoms of starting materials or products ( t rapped by the n i t rogen atoms)

• Imine-chiral Lewis acid complexes are rather flexible and often have several stable conformers (including E/Z-isomers of imines). Multiple transition states would exist.

Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069.

Page 9: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Background Information

O

HR

O

R2R1

Imines IminesMannichAdducts

O

OR2R1

?

Marques, M. M. B. Angew. Chem., Int. Ed. 2006, 45, 348.Shibasaki, M.; Matsunaga, S. J. Organomet. Chem. 2006, 691, 2089Córdova, A. Acc. Chem. Res. 2004, 37, 102

O

CH3H3C

pKa 20

O

CH3t-BuO

pKa 24.5

Page 10: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Outline

• Background Information

• Esters or Ester-equivalents- Glycine Schiff-bases- β-Keto Esters or Malonates- Trichloromethylketones- N-acylpyrroles- N-Boc-anilides- Diazoacetates

• Conclusions

Page 11: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Outline

• Background Information

• Esters or Ester-equivalents- Glycine Schiff-bases- β-Keto Esters or Malonates- Trichloromethylketones- N-acylpyrroles- N-Boc-anilides- Diazoacetates

• Conclusions

NOR'

OAr

Ar

Page 12: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Glycine Schiff-bases

• Cu(I) Catalyst

• Phase-Transfer Catalyst

Page 13: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Glycine Schiff-bases

Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.Ooi, T.; Takeuchi, M.; Kamede, M.; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228.Zhang, F.-Y.; Corey, E. J. Org. Lett. 2000, 2, 1097.Horikawa, M.; Busch-Petersen, J.; Corey, E. J. Tetrahedron Lett. 1999, 40, 3843.

NOR1

O

R2

R3

MeO2C CO2Me

MeO2C CO2Me

NH

CO2R1R2

R3

1,3-dipolar cycloaddition

NuSubstitution aldol reaction

Michealreaction

NOR1

O

R2

R3

CN

CH2=CHCN

OHCO2R1

NH2

OHCO2R1

NH2

CO2R1H2N

R4R5

Page 14: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Glycine Schiff-bases

• Challenges(1) “Force” the Lewis acid stabilized imino glycine alkyl ester to act

as a nucleophile rather than a 1,3-dipolar species

(2) Develop a chiral catalyst that can catalyze both a diastereo- and enantioselective addition of imino glycine alkyl ester to imines.

Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583.

NOR1

O

R2

R3

MLn

NOR1

O

R2

R3

LnM

R3N

NOR1

O

R2

R3

LnM

NOR1

O

R2

R3

LnM

N

R

PG

NOR1

O

R2

R3

R NHPG

H2NOR1

O

R NHPG

Page 15: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Cu(I) Catalyst

Optimal conditionLigand -CuClO4 (10 mol%), Et3N (10 mol%), -20 oC, THF, 4 Å MS

Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583.

NPh

PhOR1

O

Ph

NTs

+R3N

Lewis acidNPh

PhOR1

O

Ph NHTsLigand

PAr2PAr2

O

N N

O

t-Bu t-Bu

PAr2

O

N

PPh2

O

NPPh2

O

N PPh2

O

NR

Ar = 2,4,6-Me3-C6H2

Page 16: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Substrate Scope

R yield (%) syn/anti ee (%)

Ph 94 79:21 97

4-MeO-C6H4 90 82:18 97

2-Br-C6H4 99 61:39 96

2-furyl 88 54:46 90

iPr 73 >95:5 96

Cy 85 >95:5 92

nBu 61 >95:5 88

Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583.

NPh

Ph

CO2Me

R

NTs Ligand-CuClO4 (10 mol%)

Et3N (10 mol%)

THF, 4 MS, -20 oCR

CO2MeNHTs

N

Ph

Ph+

Å

PAr2

O

N

Ar = 2,4,6-Me3-C6H4

Page 17: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Coordination Modes

PAr2

O

N

NPh

PhMeO

OCu

PAr2

O

N

NPh

PhMeO

OCu

PAr2

O

N

NPh

OMe

OCu

Ph

Semiempirical PM3 calculationBernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583.

PAr2

O

N

NPh

OMe

OCu

Ph

Ar = PhΔHf

Ө = -10.9 kcal/mol14% ee

Ar = PhΔHf

Ө = -11.1 kcal/mol

Ar = 2,4,6-Me3-C6H2ΔHf

Ө = -39.2 kcal/mol97% ee

Ar = 2,4,6-Me3-C6H2ΔHf

Ө = -26.8 kcal/mol

Page 18: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Transition State

Approach of the imine (blue) to the Si face of the benzophenone imine glycine methyl ester anion

Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583.

X-ray structure

Ph CO2EtNHTs

N

Ph

PhR

S

Page 19: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Phase-Transfer Catalyst

Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. Angew. Chem. Int. Ed. 2005, 44, 4564.

tartrate-derived diammonium salt (TaDiAS)

Crystal Structure (R = nPr)

O

O

N

N

C6H4-4-MeC6H4-4-MeC6H4-4-MeC6H4-4-Me

2BF4-R

R

Me

Me

Page 20: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Substrate Scope

NPh

Ph

CO2tBu+

N

R

Boc cat. (10 mol%)

Cs2CO3 (2 eq)PhF, -45 to -20 oC

19 to 72 h(1.1 eq)

HN

R

Boc

N

CO2tBu

Ph

Ph

O

O

N

N

C6H4-4-MeC6H4-4-MeC6H4-4-MeC6H4-4-Me

2BF4-

Me

Mep-F-C6H4

p-F-C6H4

R yield (%) dr (syn/anti) ee (%)

Ph 98 99:1 70

4-MeO-C6H4 95 95:5 82

4-Me-C6H4 98 98:2 80

2-Me-C6H4 99 97:3 68

4-Cl-C6H4 87 98:2 58

2-thiophenyl 98 98:2 80

(E)-PhCH=CH2 86 98:2 66

Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. Angew. Chem. Int. Ed. 2005, 44, 4564.

Page 21: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Kinetic Study

• Initial rate kinetic studies:1) First-order dependency for the glycine Schiff base and Cs2CO3

2) Zero-order dependency for the imine and the catalyst

Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. Angew. Chem. Int. Ed. 2005, 44, 4564.

NPh

Ph

CO2tBu+

N

R

Boc cat. (10 mol%)

Cs2CO3 (2 eq)PhF, -45 to -20 oC

19 to 72 h(1.1 eq)

HN

R

Boc

N

CO2tBu

Ph

Ph

• Conclusions:1) The rate-determining step is deprotonation of the glycine Schiff base by

Cs2CO3

2) The catalyst is not involved in this step

Page 22: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Catalytic Cycle

Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. Angew. Chem. Int. Ed. 2005, 44, 4564.

N

R

Boc

N

CO2tBu

Ph

Ph

N

R

Boc

N

CO2tBu

Ph

Ph

NPh

Ph

CO2tBu

NPh

Ph

O

OtBu

Q Q+ +- Cs+

Cs2CO3

CsHCO3

NPh

Ph

O

OtBu

-Q Q+ +BF4-

CsBF4

-Cs+

N

R

Boc

TaDiAS

O

O

N

N

C6H4-4-MeC6H4-4-MeC6H4-4-MeC6H4-4-Me

2BF4-R

R

Me

Me

-Q Q+ +

BF4-

Interfacialdeprotonation

counteranionexchange

Page 23: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Control of Diastereoselectivity

The reaction may proceed via the nonchelate, acyclic transition-state model

Shibuguchi, T.; Mihara, H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem. Asian J. 2007, 2, 794

NPh

Ph

CO2tBu+

NBoc

cat. (10 mol%)

Cs2CO3 (2 eq)PhF, 4 oC

HNBoc

N

CO2tBu

Ph

PhMeO MeO

1h, 77% ee, d.r. = 95:5without cat. , 24h, d.r. = 94:6

N

R

HN

OO

Ph

Ph

O

O

/ NR

NH

Ph

Ph

O

O

/

O OtBu tBu

anti syn

_ _

tBu tBu

H H

Page 24: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Control of Enantioselectivity

• The benzyl moieties around one ammonium cation covers the Si face of the Z enolate of the glycine Schiff base

• The electrophiles approach from the less-hindered face (Re face) to afford the products with S configuration

Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. Angew. Chem. Int. Ed. 2005, 44, 4564.Shibuguchi, T.; Mihara, H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem. Asian J. 2007, 2, 794

NO

O

NMe

MeR'

R'

H HO ON

Ph PhtBu

NBoc

RH

Page 25: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Improvement

Shibuguchi, T.; Mihara, H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem. Asian J. 2007, 2, 794

R yield (%) dr (syn/anti) ee (%)

Ph 66 99:1 79

4-MeO-C6H4 96 99:1 90

4-Me-C6H4 92 99:1 88

4-Cl-C6H4 88 98:2 70

nPr 95 >20:1 71

2-thiophenyl 89 98:2 83

(E)-PhCH=CH 89 >20:1 75

NPh

Ph

CO2tBu+

N

R

Boc cat. (10 mol%)

Cs2CO3 (2 eq)PhF/pentane (4:1)

-45 to -20 oC3 to 43 h

HNBoc

N

CO2tBu

Ph

PhR

O

O

N

N

C6H4-4-MeC6H4-4-MeC6H4-4-MeC6H4-4-Me

2BF4-

Me

Me

Ph

Ph

Page 26: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Outline

• Background Information

• Esters or Ester-equivalents- Glycine Schiff-bases- β-Keto Esters or Malonates- Trichloromethylketones- N-acylpyrroles- N-Boc-anilides- Diazoacetates

• Conclusions

R1

O

OR2

O

R'O

O

OR'

O

Page 27: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

β-Keto Esters or Malonates

• Cu(II) Catalysts

• Pd Catalysts

• Cinchona Alkaloid Catalysts

Page 28: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Cu(II) Catalysts

R yield (%) dr ee (%)

76 84:16 23

75 93:7 51

81 >95:5 53

43 >95:5 -66

33 >95:5 -88

Et

O

OR

O

Me

N

CO2Et

Ts Cu(OTf)2-(R)-Ph-BOX (10 mol%)

CH2Cl2, -20 oCEt

O HNTs

CO2EtMe CO2R

* *+

Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur. J. 2003, 9, 2359.

O

N N

OMeMe

Ph Ph

(R)-Ph-BOX

Me

Ph

Ph

MeMe

Me

Et

O HNTs

CO2EtCO2CHPh2

(R,R)from X-ray structure

Me

Page 29: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Cu(II) Catalysts

R1

O

OtBu

O

Me

N

CO2Et

Ts+

Cu(OTf)2-(S)-tBu-BOX(10 mol%)

CH2Cl2R1

O HNTs

CO2EtMe CO2tBu

* *

R1 T (oC) t (h) yield (%) dr ee (%)

Me -20 40 55 97:3

84:16

93:7

84:16

95

iPr -20 40 15 92

Me RT 16 87 88

iPr RT 16 55 91

Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur. J. 2003, 9, 2359.

O

N N

OMeMe

t-But-Bu

(S)-tBu-BOX

Page 30: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

81% yield, 53% eedr = >95:5

33% yield, -68% eedr = >95:5

80% yield, 92% eedr = 98:2

Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur. J. 2003, 9, 2359.

Transition States

Et

O

OR

O

Me

N

CO2R'

Ts Cu(OTf)2-ligand (10 mol%)

CH2Cl2, -20 oCEt

O NHTs

CO2R'Me CO2R

* *+

NO

NO

Ph

Ph

Cu

Me

Me

Ph2HCO

MeO

O Et

N

EtO2C

HTs

NO

NO

Ph

Ph

Cu

Me

MeEtO

O

OtBuMe

NTs

H CO2Et

NO

NO

Cu

Me

Me

t-Bu

tBu

Me

O Et

O

t-BuO

NTs

HEtO2C

Page 31: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Pd Catalysts

a: Ar = C6H5: (R)-BINAPb: Ar = 4-Me-C6H4: (R)-TOL-BINAP

c: Ar = C6H5: (R)-SEGPHOSd: Ar = 3,5-Me2-C6H3: (R)-DM-SEGPHOS

Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem.Int. Ed. 2005, 44, 1525.

PdP

POH2OH2

2TfO-2+

* O

R1

R2

O

OtBu

PdPP

*

+ TfO-

R1

O

R2OtBu

O

H2O, TfOH

PAr2PAr2

PAr2PAr2

O

O

O

O

Page 32: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Pd Catalysts

R1

OCO2tBu

R2

N

R3

PG

R1

O

R2 CO2tBuR3

NHPGPd cat.- a or c(x mol%)

THF, 1M+

(1.5 eq)

**PPh2PPh2

a: (R)-BINAP

PPh2PPh2

O

O

O

Oc: (R)-SEGPHOS

Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem.Int. Ed. 2005, 44, 1525.

O HNCO2Et

PMP

CO2tBu

OCO2Et

HN

CO2tBu

PMPO HN

Ph

Boc

CO2tBu

O HNBoc

CO2tBu

O

O HNTs

CO2tBu

ClHN

Boc

CO2tBuH3C

O

H3C

O HNTs

CO2tBu

Ph

c (5 mol%), 35 h63%, dr = 77:23, 99% ee

a (5 mol%), 42 h70%, dr = 74:26, 86% ee

c (2.5 mol%), 5 h93%, dr = 88:12, 99% ee

a (2.5 mol%), 2 h75%, dr >95:5, 86% ee

a (2.5 mol%), 3 h71%, dr = 82:18, 96% ee

c (5 mol%), 9 h99%, dr = 85:15, 97% ee

c (1 mol%), 24 h88%, dr = 90:10, 99% ee

O

Page 33: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

One-Pot Reactions

O O

CO2EtH

OMe

NH2

THF, 1M, RT, 3 h

O

CO2tBu

HNCO2EtCO2tBu

PMP

+ + * *

O O

CO2EtH

NH2

Pd cat.- a(2.5 mol%)

THF, 1M, -20 oC, 72 h

O

CO2tBu

HNCO2EtCO2tBu + + * *

ClCl

61% yield, dr = 70:3096% ee (major), 96% ee (minor)

85% yield, dr = 95:598% ee (major), 88% ee (minor)

Pd cat.- a(2.5 mol%)

Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem.Int. Ed. 2005, 44, 1525.

PPh2PPh2

a: (R)-BINAP

Page 34: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Transition-State Model

Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem.Int. Ed. 2005, 44, 1525.

O

CO2tBu

HNPh

Boc

* *

1) LiAlH42) Ac2O

59% (2 steps)

O HNPh

Boc

PhOAc

R SCO2tBu

NMeAc

CO2tBu

P PdP

*

OO

O

R1 R2

NR3

H

H

PG

R1

O H NHR3

CO2tBuR2

PG

Re face

Page 35: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Cinchona Alkaloid Catalysts

Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256.

R1

O

OR2O

N

H Ar

O

R3O+catalyst

R1

O

OR2O

Ar

HN

O

OR3

N

N

HOH

H

cinchonine

N

H

H

OH

N

cinchonidine

quinine

N

N

HOH

H

O

quinidine

activate electrophile

activate nucleophile

N

H

H

OH

N

O

Page 36: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Cinchona Alkaloid Catalysts

H3C

O

OO

N

H Ar

O

H3CO

1) cinchonine (10 mol%)CH2Cl2, 0.5 M, -35 oC, 16 h

2) 5 mol% Pd(II)methyl acetoacetate

+ H3C

O HN

Ar

OCH3

O

N

N

HOH

H

cinchonine

H3C

O HN

Ar

OCH3

O

OO

Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256.

Page 37: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Ar yield (%) ee (%)

Ph 79 92

4-F-C6H4 95 93

3-CH3-C6H4 78 96

3,4-(OCH2O)C6H3 77 80

2-furyl 78 93

2-thienyl 69 92

2-naphthyl 80 95

H3C

O

OO

N

H Ar

O

H3CO

1) cinchonine (10 mol%)CH2Cl2, 0.5 M, -35 oC, 16 h

2) 5 mol% Pd(II)methyl acetoacetate

+ H3C

O HN

Ar

OCH3

O

N

N

HOH

H

cinchonine

Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256.

Substrate Scope

Page 38: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Transition-State Model

N

OH

HN

O

O

OMe

HH

N

HO

MeO

Cinchonine/methyl 2-oxocyclopentanecarboxylate enol tautomer complex (MMFF) approaching the Re face of methyl benzylidenecarbamate

Ting, A.; Lou, S.; Schaus, S. E. Org. Lett. 2006, 8, 2003.

O O

OMe

H

N

Ph

O

MeO

cinchonine (5 mol%)CH2Cl2, 0.5 M, -55 oC

O

Ph

HN

O

OMe

OMeO

RS+

98% yield, 98% de, 90% ee

Page 39: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Cinchona Alkaloid Derivatives

McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6367.

NN

N

NS

H

H

F3C CF3

*

OMeThiourea moiety-activate electrophiles-two coplanar protons for H-bond donation-rigid

Thiourea N-aryl group-relatively unhindered-substitution variable-CF3 gruops serve as non Lewis basic EWG

Page 40: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Cinchona Alkaloid Derivatives

R

NBoc

HCH2(COOMe)2 R

NHBoccat. (20 mol%)COOMe

COOMe

+

(1.5 eq)acetone, -60 oC, 36 h

R yield (%) ee (%)

2-Me-C6H4 98 99

4-Me-C6H4 92 97

4-Cl-C6H4 98 99

4-MeO-C6H4 98 97

2-furyl 99 97

2-thienyl 95 97

Et 63 89

nBu 64 92

N

MeO

HN

HN

SAr

N

H

Ar = 3,5-bisCF3-C6H3

Song, J.; Wang, Y.; Deng, L. J. Am.Chem. Soc. 2006, 128, 6048.

N

NH

N

H

NS

CF3

CF3

HH

O

OOMe

OMe

H

NBocR

O

H

Page 41: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Outline

• Background Information

• Esters or Ester-equivalents- Glycine Schiff-bases- β-Keto Esters or Malonates- Trichloromethylketones- N-acylpyrroles- N-Boc-anilides- Diazoacetates

• Conclusions

O

CCl3R'

Page 42: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Trichloromethylketones

• -CCl3 is a good leaving group

• Strong inductive effect of -CCl3

Morimoto, H.; Wiedemann, S. H.; Yamaguchi, A.; Harada, S.; Chen, Z.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2006, 45, 3146

CCl3

O

R

CCl3

OR E

RCCl3

O

Nu

O

RR Cl

Cl

O

M+base

a

b

c

d

Nu-

E+

enolate

haloformC-C cleavage

intermolecularreaction with E+

Favorskirearrangement

Page 43: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Substrate Scope

R

NPPh2

O

CCl3

O

MeR

NH

Me

O

CCl3

Ph2PO

p-MeO-C6H4OLi(10 mol%)

THF/CH2Cl2 = 1:1-40 oC, 3 MSÅ

+

syn (rac)(2 eq)

R t (h) yield (%) syn/anti

Ph 3 96 >20:1

4-Cl-C6H4 4 93 >20:1

4-MeO-C6H4 5 68 >20:1

2-furyl 1 88 6:1

2-thienyl 2 89 8:1

(E)-PhCH=CH 1 81 7:1

Cy 2 78 >20:1

iPr 3 71 >20:1

nBu 3 73 >20:1

Morimoto, H.; Wiedemann, S. H.; Yamaguchi, A.; Harada, S.; Chen, Z.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2006, 45, 3146

Page 44: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Catalytic Cycle

Morimoto, H.; Wiedemann, S. H.; Yamaguchi, A.; Harada, S.; Chen, Z.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2006, 45, 3146

OR' Cl

ClCl

ArOH

ArOLi

OR' Cl

ClClH

Li

R

N

R'

O

CCl3

Ph2PO

Li

R

NH

R'

O

CCl3

Ph2PO

ArOH

+

O

Cl

ClClHR

N

PPh Ph

OLi

R'

H

R

NPPh2

O

Page 45: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Asymmetric Variant

R

N

H

S OO CCl3

O

CH3

+

La(OAr)3 (10 mol%)(S,S)-iPr-pybox (10 mol%)

LiOAr (5mol%)

THF/toluene (1:1, 1.0M)3 MS, -40 oC

( Ar= 4-MeO-C6H4-)

CCl3

O

CH3

R

NHSO

O

S S

(2.0 eq) Å

NO

N N

O

(S,S)-iPr-pybox

R t (h) yield (%) dr (syn/anti) ee (%)

Ph 9 96 21:1 96

4-Cl-C6H4 20 97 20:1 96

4-MeO-C6H4 21 96 22:1 95

2-furyl 4 98 8:1 96

2-thienyl 19 98 20:1 95

(E)-PhCH=CH 19 75 21:1 96

Cy 22 85 >30:1 96

iBu 25 72 30:1 98

Morimoto, H.; Lu, G.; Aoyama, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc., 2007, 129, 9588

NO

N N

O

La(OAr)3

+LiOAr

Page 46: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Mechanism Study

• La-OAr moiety functions as a Brønsted base to form La-enolate

• Preliminary kinetic studies on the concentration of trichloromethyl ketone suggested that the enolateformation is the RDS in the absence of LiOAr.

• Two possibilities for the role of LiOAr: (a) Complexation with La(OAr)3/pybox to form more basic ate complex(b) LiOAr deprotonates trichloromethyl ketone to form Li-enolate, followed by rapid transmetallation to generate La-enolate.

NO

N N

O

La(OAr)3

+LiOAr

Morimoto, H.; Lu, G.; Aoyama, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc., 2007, 129, 9588

Page 47: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Outline

• Background Information

• Esters or Ester-equivalents- Glycine Schiff-bases- β-Keto Esters or Malonates- Trichloromethylketones- N-acylpyrroles- N-Boc-anilides- Diazoacetates

• Conclusions

O

NOH

Page 48: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

N-acylpyrroles

Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem.,Int. Ed. 2005, 44, 4365

OHOH

O

HOHO

a: X= H: (S, S)-linked-binolb: X= TMS: (S, S)-6,6',6'',6'''-TMS-linked-binol

X X

X X

+ In(OiPr)3

O

OH

O

NOH

Y

aromaticketone

N-acylpyrrole

aromaticity of pyrrolesame coordination mode as ketoneactivated carboxylic acid derivative

Page 49: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Substrate Scope

R yield (%) dr (syn/anti) ee (%) (syn, anti)

(E)-PhCH=CH 94 91:9 96, 83

Ph 98 61:39 91, 81

4-Cl-C6H4 97 59:41 96, 94

Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem.,Int. Ed. 2005, 44, 4365

R yield (%) dr (anti/syn) ee (%) (anti, syn)

2-naphthyl 87 77:23 94, 89

2-MeO-C6H4 74 77:23 92, 86

Cyclopropyl 86 75:25 98, 90

NO

NOH

In(OiPr)3 (20 mol%)Ligand a (10 mol%)

5 MS, THF, RT89-111 h

Å

O

NOH

NH

R

o-Ts

SR

O

NOH

NH

R

o-Ts

SS+

syn anti(2 eq)

+R

o-Ts

O

NOH

In(OiPr)3 (20 mol%)Ligand a or b (10 mol%)

5 MS, THF, RT65-99 h

Å

O

NOH

NH

R

o-Ts

SR

O

NOH

NH

R

o-Ts

SS +

synanti(2 eq)

+N

R

o-Ts

Page 50: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Transition-State Model

RH

NO H

o-Ts

O N

In RH

NH O

o-Ts

N OIn

O

NOH

NH

R

o-Ts

SR

syn

TS-1 TS-2

R = alkenyl,less hindered Ar

O

NOH

NH

R

o-Ts

SS

anti

R = cyclopropyl,o-substituted Ar

Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem.,Int. Ed. 2005, 44, 4365

Page 51: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Outline

• Background Information

• Esters or Ester-equivalents- Glycine Schiff-bases- β-Keto Esters or Malonates- Trichloromethylketones- N-acylpyrroles- N-Boc-anilides- Diazoacetates

• Conclusions

O

NR

OMe

Boc

Page 52: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

N-Boc-anilides

R yield (%)

Ph 91

4-MeO-C6H4 63

4-Cl-C6H4 81

1-naphthyl 95

2-furyl 78

2-thienyl 83

(E)-PhCH=CH 76

N

HR

PPh2 O

N

OMe

Boc

O

NH

OMeN

R

BocPh2PBa(Ot-Bu)2 (5 mol%)

p-MeOC6H4OH (11 mol%)

RT, DMSO, 0.2 M5 MS, 30 min

(1.2 eq)

+

O O

Å

Saito, S.; Tsubogo, T.; Kobayashi, S. Chem. Commun. 2007, 1236.

Page 53: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

N-Boc-anilides

N

HR

PPh2 O

N

OMe

Boc

O

NH

OMeN

R

BocPh2PBa(Ot-Bu)2 (5 mol%)Ligand (11 mol%)

RT, DMSO, 0.2 M5 MS, 30 min

(1.2 eq)

+

O O

Å

R yield (%) syn/anti

Ph 86 14:86

1-naphthyl 76 8:92

2-furyl 81 9:91

2-thienyl 81 15:85

OMeOH

Saito, S.; Tsubogo, T.; Kobayashi, S. Chem. Commun. 2007, 1236.

Page 54: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Catalytic Cycle

Saito, S.; Tsubogo, T.; Kobayashi, S. Chem. Commun. 2007, 1236.

N

O

OtBu

O

PMP

N

O

OtBu

O

PMP

BaOAr

N

HR

PPh2

O

O

NH

PMPN

R

BocPh2PO

R O

N N PMP

t-BuO

Ph2PArOBa O

O

O

NPMP

N

R

BocPh2P

Ba(OAr)2

ArOH

BaOAr

O

Page 55: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Outline

• Background Information

• Esters or Ester-equivalents- Glycine Schiff-bases- β-Keto Esters or Malonates- Trichloromethylketones- N-acylpyrroles- N-Boc-anilides- Diazoacetates

• Conclusions

N2

CO2tBu

Page 56: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Tert-Butyl Diazoacetate

CO2HCO2H

t-Bu

t-Bu

Ar t (h) yield (%) ee (%)

Ph 24 80 95

2-Me-C6H4 72 53 90

4-Me-C6H4 18 79 95

4-Cl-C6H4 26 89 96

4-MeO-C6H4 20 72 95

2-naphthyl 17 77 94

2-furyl 5 84 85

Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc., 2007, 129, 10054

N

Ar N2

CO2tBu

N2

CO2tBuAr

NHBoccat. (5 mol%)

CH2Cl2, 4 MS, 0 oCÅ+

Boc

Page 57: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Outline

• Background Information

• Esters or Ester-equivalents- Glycine Schiff-bases- β-Keto Esters or Malonates- Trichloromethylketones- N-acylpyrroles- N-Boc-anilides- Diazoacetates

• Conclusions

Page 58: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Conclusions

• Future challenges1) Expansion on esters or ester-equivalents2) Development of catalytic versions of the racemic reactions3) Improvement on the unsatisfactory reactions (new ligands, new

metal sources, etc.)4) One-pot cascades reactions

N OR'

OAr

Ar

R1

O

OR2

O

R'O

O

OR'

O

or

O

CCl3R'

N

O

OH

O

NR'

OMe

Boc

N2

CO2tBu

R

NH

R1R2

OPG

Page 59: Advancement of Direct Catalytic Mannich-type Reactions ... · Reaction Mechanism O H H R H N R H N H R R OH H+ N H R R OH2 N R R Step 1. Formation of the Schiff base Name Reactions

Acknowledgement

Dr. WulffDr. Walker, Dr. Staples

Li, Zhenjie, Aman, Munmun, Zhensheng, Anil, Nilanjana, Dima, Victor, Alex, Kostas

All those attended the seminar