Reactions at the αCarbon of Carbonyl Compounds Enols and … · 2011. 6. 26. · Stork Enamine...

63
Chapter 18 Reactions at the α Carbon of Carbonyl Compounds Enols and Enolates Ch. 18 - 1

Transcript of Reactions at the αCarbon of Carbonyl Compounds Enols and … · 2011. 6. 26. · Stork Enamine...

  • Chapter 18

    Reactions at the α Carbon of Carbonyl CompoundsEnols and Enolates

    Ch. 18 - 1

  • Ch. 18 - 2

    O

    RR'

    Nu

    Reactions at the α Carbon of Carbonyl Compounds:

    Enols and Enolates

    O

    R R'δ+

    δ−

    O

    RR'

    Hα Hydrogens are weakly acidic (pKa = 19 – 20)

    Nu

  • Ch. 18 - 3

    1. The Acidity of the α Hydrogens of Carbonyl Compounds: Enolate Anions

    H C C H H2C C H

    H3C C

    H

    H

    H

    O

    RR'

    H

    H

    pKa 25 44

    50 19-20pKa

  • Ch. 18 - 4

    C C

    O

    R

    H

    Resonance structures forthe delocalized enolates

    B:

    C C

    O

    R

    C C

    R

    O

  • Ch. 18 - 5

    C C

    R

    O

    Enolate

    C CHO

    R

    Enol form

    C

    R

    O H

    Keto form

    H+ H+

  • Ch. 18 - 6

    2. Keto and Enol Tautomers

    Interconvertible keto and enol forms are called tautomers, and their interconversion is called tautomerization

  • Ch. 18 - 7

    O

    H

    OH

    HAcetaldehyde

    Keto form Enol form

    (extremely small)(~100%)

    O OHAcetone

    (1.5 X 10-4%)(>99%)

    O OH

    Cyclohexanone

    (1.2%)(98.8%)

  • Ch. 18 - 8

    O OHO

    Pentane-2,4-dione(24%)

    O

    Enol form(76%)

    O OH

    : ::

    :

    Resonance stabilization of the enol form

    Hydrogen bond

    O OH

    : :

    ::

  • Ch. 18 - 9

    3. Reactions via Enols & Enolates3A. Racemization

    Racemization at an α carbon takes place in the presence of acids or bases

    O

    tBuEt

    H Me

    (chiral)(s)

    OH

    tBuEt

    Me

    OHor

    H3O

    Enol(achiral)

    O

    tBuEt

    O

    tBuEt

    H MeMe H

    +

    H3O

    ( 1 : 1 ) racemate

  • Ch. 18 - 10

    C C

    H

    O

    HO

    C C

    O H+

    Enol (achiral)HO

    Base-Catalyzed Enolization

    C C

    OEnolate (achiral)

    H OH

  • Ch. 18 - 11

    C C

    O

    H

    O HH

    H

    + C C

    O

    H

    H

    O

    H

    H+

    Acid-Catalyzed Enolization

    C CO H

    +O HH

    HEnol

    (achiral)

  • Ch. 18 - 12

    3B. Halogenation at the α Carbon

    C C

    OH+ X2

    acid

    or baseC C

    OX+ HX

    (racemic)

  • Ch. 18 - 13

    Base-Promoted Halogenation

    C C

    OHB: + + C C

    Oδ−

    δ−Step 1slow

    C C

    OH+

    fast

    Enolate

    EnolB:

    B:H: : : :

    Step 2

    C C

    O

    C C

    O

    + X X

    fast OX+ X

    Enolate anion

    : : : :

  • Ch. 18 - 14

    Acid-Promoted Halogenation

    C C

    OH

    C C

    OH

    fastC C

    O H

    Step 1

    H+

    Enol

    +

    :B

    H:B H:B

    : :

    slow

    Step 2fast

    X X C C

    O H+ C C

    X O+ X

    H

    : :

    C C

    X O+ X

    H fastC C

    X O+ HX

    Racemic

    Step 3

  • Ch. 18 - 15

    3C. The Haloform ReactionO

    3 X2

    3 OH

    CX3

    O

    + 3 X

    OH

    O

    O

    +CHX3A haloform

    (X = Cl, Br, I)

  • Ch. 18 - 16

    O

    R

    O

    R O(Both in excess)

    + CHI3

    A methylketone

    Iodoform(a yellow

    precepitate)

    I2, HO

  • Ch. 18 - 17

    O

    RX + X

    O

    RH + B

    Mechanism

    O

    R R

    O

    EnolateX X

    Repeatsteps

    twice

    O

    R CX3

  • Ch. 18 - 18

    O

    R CX3OH

    O

    R CX3

    :OH

    : :

    ● Acyl Substitution Step

    O

    R OH+ :CX3

    O

    R O:+CHX3

    Ahaloform

    Carboxylateanion

    : :

    HO

  • Ch. 18 - 19

    3D. α-Halo Carboxylic Acids: The Hell–Volhard–Zelinski Reaction

    O

    OHR

    O

    OHR

    X

    1. X2, P

    2. H2O

  • Ch. 18 - 20

    OH

    O

    Br

    O

    OH

    O

    Br

    Br

    Br2

    H2O

    P

    Example

  • Ch. 18 - 21

    O

    BrR

    Br

    O

    OHR

    P + Br2[PBr3]

    O

    BrR

    O

    BrR

    H:Br Br

    O

    OHR

    Br

    H2O

  • Ch. 18 - 22

    O

    ClR

    O

    ClR

    I

    I2HI, SOCl2

    O

    ClR

    Br

    N

    O

    O

    Br

    HBr, SOCl2

    (NBS)

  • Ch. 18 - 23

    O

    OHR

    X O

    OR

    NH3α-Amino acid

    NH3

    O

    OHR

    OH

    1. HO2. H3O

    α-Hydroxy acid

  • Ch. 18 - 24

    4. Lithium EnolatesO

    H

    O+ EtO Na

    weakeracid

    (pKa = 19)

    weaker base

    stronger base

    strongeracid

    (pKa = 16)

    + EtOH

    O O+ iPr2N Li +

    iPr2NH

    H stronger base

    weaker base

    weakeracid

    (pKa = 38)weaker

    acid(pKa = 19)

  • Ch. 18 - 25

    Preparation of lithium diisopropylamide (LDA)

    Li N

    H

    +

    N

    THF

    Li

    Buyllithium(BuLi)

    Diisopropylamine(pKa = 38)

    Lithium diisopropylamine

    [LDA or LiN(iPr)2]

    Butane(pKa = 50)

    +

  • Ch. 18 - 26

    4A. Regioselective Formation of Enolates

    O

    H3CH3C

    O

    H

    HLi N(iPr)2

    DME

    Li

    Kineticenolate

    Formation of a Kinetic Enolate

    This enolate is formed faster because the hindered strong base removes the less hindered proton faster.

  • Ch. 18 - 27

    Formation of a Thermodynamic Enolate

    H3C

    H

    H

    HO

    2-Methylcyclo-hexanone

    This enolate is more stable because the double bond is more highly substituted. It is the predominant enolate at equilibrium.

    B

    O

    HH3CH

    Kinetic(less stable)

    enolate

    O

    H3C

    Thermodynamic(more stable)

    enolate

    weak base in a protic solvent

  • Ch. 18 - 28

    4B. Direct Alkylation of Ketones via Lithium Enolates

    OO Li

    LDA

    DME

    O

    O

    CH3

    PhBr Ph

    H3C I

    (- LiI)

    (- LiBr)

    (56%)

    (42-45%)

  • Ch. 18 - 29

    4C. Direct Alkylation of Esters

    O

    OR'R

    H

    LDA

    THF

    O

    OR'R

    O

    OR'R

    E

    E

  • Ch. 18 - 30

    Examples

    O

    OMe

    1. LDA, THF

    2. MeI

    O

    OMe

    Me

    O

    O

    O

    O

    Ph1. LDA, THF

    2. Ph Br

  • Ch. 18 - 31

    5. Enolates of β-Dicarbonyl Compounds

    O O

    H

    O

    H

    pKa = 9-11(more acidic)

    pKa = 18-20

  • Ch. 18 - 32

    Recall

    O

    H

    O

    + + EtOHEtO

    α-hydrogens of β-dicarbonyl compounds are more acidicO

    H

    + + EtOHEtO

    O O O

  • Ch. 18 - 33

    O

    CC

    O

    CC

    C

    O

    C

    O O

    CC

    C

    O

    Contributing resonance structures

    Resonancehybrid

    O

    CC

    C

    O

    δ−

    δ−δ−

  • Ch. 18 - 34

    6. Synthesis of Methyl Ketones: The Acetoacetic Ester Synthesis

    O O

    OEt

    O O

    OEt

    EtO NaNa

    O O

    OEt

    R X

    R

    O O

    OEt

    R

    tBuO K

    O O

    OEt

    R' X

    R R'

    (R, R' = 1o

    alkyl groups)

  • Ch. 18 - 35

    Synthesis of monosubstituted methyl ketones

    O

    OEt

    O 1. EtO Na , EtOH O

    OEt

    O

    2. Ph Br

    Ph

    O

    OH

    O1. NaOH

    2. H3O+

    Ph

    heat

    (- CO2)

    O

    Ph (Decarboxylationof β-keto acid)

  • Ch. 18 - 36

    Synthesis of disubstituted methyl ketones

    O

    OEt

    O1. EtO Na , EtOH O

    OEt

    O

    Me

    2. MeI

    O

    OEt

    O1. tBuOK, tBuOH

    2. Et-Br

    Me Et

    1. NaOH

    2. H3O+

    O

    OH

    O

    Me EtO

    Me

    Etheat

    (- CO2)

  • Ch. 18 - 37

    O O O

    Ethyl acetoacetate ion Acetate enolate

    is the syntheticequivalent of

  • Ch. 18 - 38

    Synthesis of γ-keto acids and γ-diketonesO

    OEt

    OEtO Na O

    OEt

    O

    O

    OEt

    O

    BrX

    O

    X

    O

    1. NaOH (aq)

    2. H3O+

    O

    OH

    O

    O

    X O

    heat(- CO2)

    X

    O

    α

    βγ X=OH: γ-keto acid

    X=R: γ-diketone

  • Ch. 18 - 39

    6A. Acylation Synthesis β-diketones

    O

    OEt

    O O

    OEt

    ONaHDMF

    (cannot use EtOH because it will react with acid chloride)

    O

    OEt

    O

    R Cl

    O

    OR

    1. NaOH (aq)

    2. H3O+

    O

    OH

    O

    R O O

    heat(- CO2)

    R

    O

  • Ch. 18 - 40

    7. Synthesis of Substituted Acetic Acids: The Malonic Ester Synthesis

    O

    EtO

    O

    OEt

    Diethyl malonate

    O

    EtO

    O

    OEt

    is the synthetic equivalent of:

    O

    OEt

    O

    Oand

  • Ch. 18 - 41

    O

    EtO OEt

    O

    O

    OHR

    O

    OHR

    R'

  • Ch. 18 - 42

    O

    EtO OEt

    O

    R

    Synthesis of monoalkylacetic acidO

    EtO OEt

    O

    H

    OEt O

    EtO OEt

    O

    R X

    1. NaOH (aq)

    2. H3O+

    O

    HO OH

    O

    Rheat

    O

    HO O

    O

    R

    H

    HO

    OH

    RHO

    O

    R

  • Ch. 18 - 43

    O

    EtO OEt

    O

    R

    1. tBuOK, tBuOH

    2. R'X

    R'

    Synthesis of dialkylacetic acidO

    EtO OEt

    O

    1. NaOH (aq)

    2. H3O+

    O

    HO OH

    O

    R R'

    heat

    (- CO2)

    O

    HOR

    R'

    1. EtONa

    2. RX

    O

    EtO OEt

    O

    R

  • Ch. 18 - 44

    Example 1O

    EtO OEt

    O O

    EtO OEt

    O1. EtONa, EtOH

    2.

    Br

    1. 50% KOH, reflux2. dil. H2SO4, reflux

    O

    HO OH

    O(-CO2)

    HO

    O

    (Heptanoic acid)

  • Ch. 18 - 45

    Example 2

    O

    EtO OEt

    O

    Me

    1. tBuOK, tBuOH

    2. Ph Br

    Ph

    O

    EtO OEt

    O

    1. NaOH (aq)

    2. H3O+

    O

    HO OH

    O

    Me Ph

    180oC

    (- CO2)

    O

    HO

    Me

    Ph

    1. EtONa, EtOH

    2. MeI

    O

    EtO OEt

    O

    Me

  • Ch. 18 - 46

    8. Further Reactions of Active Hydrogen Compounds

    Z Z'

    Active hydrogen compound

    (Z and Z' are electron withdrawing groups)

    Z, Z':O

    R

    O

    H

    O

    OR

    O

    NR2

    O

    SR

    S

    O

    O

    R S OR

    O

    O

    S NR2

    O

    O

    N NO2

    or

  • Ch. 18 - 47

    Example

    NCOEt

    O

    NCOEt

    O1. EtONa, EtOH

    2. Br

    1. tBuOK, tBuOHNCOEt

    O

    Ph Br

    Ph

    2.

  • Ch. 18 - 48

    O

    CC

    H

    HN R

    R

    Aldehyde or ketone

    2o Amine

    +

    9. Synthesis of Enamines: Stork Enamine Reactions

    C C

    H

    N

    OH R

    R

    C C

    N

    R

    R

    Enamine

    + H2O

  • Ch. 18 - 49

    2° amines most commonly used to prepare enamines

    NH

    NH

    NH

    O

    Pyrrolidine Piperidine Morpholine

    N

    H

    O N

    p-TsOH, −H2O

    ● e.g.

  • Ch. 18 - 50

    NR X+

    R = H2C CH

    or Ph

    N R

    + X

    N-alkylated product

    (a)

    N

    RC-alkylatedproduct

    (b)

    + X

    H2OO

    R

    H

    N +

    heat

    (a)

    (b)

  • Ch. 18 - 51

    N O

    ClR

    Synthesis of β-diketones

    O N

    NH

    p-TsOH(enamine)

    O

    R Cl

    N O

    R

    O

    R

    O

    H2O

  • Ch. 18 - 52

    N

    NH

    p-TsOH(enamine)

    BrOEt

    O

    Synthesis of γ-keto esters

    O

    N

    OEt

    O

    O

    H2OOEt

    O

  • Ch. 18 - 53

    Enamines can also be used in Michael additions

    NCN+

    N

    CNEtOH

    reflux

    OH2OCN

  • Ch. 18 - 54

    10. Summary of Enolate Chemistry1. Formation of an Enolate

    O

    R

    H

    + :B

    Resonance-stabilized enolate

    O

    R

    O

    RH:B +

  • Ch. 18 - 55

    2. Racemization

    Ph

    OR'

    HR

    Enantiomers

    Ph

    OH

    R

    R'OH

    or H3O

    Enol(achiral)

    Ph

    OR'

    RH

    OH

    or H3O

  • Ch. 18 - 56

    3. Halogenation of Aldehydes & KetonesO

    RR'

    H

    O

    RR'

    X

    + X2acid

    or base

    Specific example: haloform reactionO

    PhH

    H

    O

    Ph

    X

    + 3 X2OH

    H2O

    X

    X

    O

    Ph OCHX3 +

    H

  • Ch. 18 - 57

    4. Halogenation of Carboxylic Acids: The HVZ Reaction

    O

    OHR

    O

    OHR

    X

    1. X2, P

    2. H2O

  • Ch. 18 - 58

    5. Direct Alkylation via Lithium Enolates

    Specific example:

    O

    H(R')

    O

    H(R')

    LDA, THFR

    (formation of thekinetic enolate)

    RR'' X

    O

    H(R')R

    -78oC

    R''

    O O Li O

    CH3ILDA, THF

    -78oC

  • Ch. 18 - 59

    6. Direct Alkylation of Esters

    O

    OEtR

    O

    OEtR

    LDA

    THF

    R' BrO

    OEtR

    R'

  • Ch. 18 - 60

    7. Acetoacetic Ester SynthesisO

    OEt

    1. NaOEt

    2. RBr

    O O

    OEt

    O

    RO

    1. OH−, heat2. H3O

    +

    3. heat, (− CO2)R

    O

    OEt

    1. tBuOK

    2. R'Br

    O O

    OEt

    O

    O

    R

    RR R'

    R'

    1. OH−, heat

    2. H3O+

    3. heat, (− CO2)

  • Ch. 18 - 61

    8. Malonic Ester SynthesisO

    OEt

    1. NaOEt

    2. RBrEtO

    O O

    OEtEtO

    O

    R

    HO

    O1. OH−, heat2. H3O

    +

    3. heat, (− CO2)R

    O

    OEt

    1. tBuOK

    2. R'BrEtO

    O O

    OEtEtO

    O

    HO

    O

    R

    RR R'

    R'

    1. OH−, heat

    2. H3O+

    3. heat, (− CO2)

  • Ch. 18 - 62

    9. Stork Enamine Reaction

    1.2. heat3. H2O

    O

    RR + R'2NH R

    NR'2

    R

    R R

    O

    R''

    R'' Br

    Enamine

  • Ch. 18 - 63

    END OF CHAPTER 18

    Chapter 18Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44Slide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51Slide Number 52Slide Number 53Slide Number 54Slide Number 55Slide Number 56Slide Number 57Slide Number 58Slide Number 59Slide Number 60Slide Number 61Slide Number 62Slide Number 63