Gfz-65165e-01 Alpha Series Control Motor

Post on 28-Nov-2014

431 views 23 download

Transcript of Gfz-65165e-01 Alpha Series Control Motor

B65165E/01

PREFACE

PREFACE

This manual describes information necessary to maintain FANUC control motor amplifier series products, such as a power supply module, servo amplifier module, and spindle amplifier module. Part I explains the startup procedure, and part II focuses on troubleshooting. The abbreviations listed below are used in this manual.Product name FANUC Series 0TC FANUC Series 0MC FANUC Series 15 FANUC Series 16 FANUC Series 18 FANUC Series 20 FANUC Series 21 FANUC Power Mate MODEL D FANUC Power Mate MODEL F Abbreviations FS0TC FS0MC FS15 FS16 FS18 FS20 FS21 PMD PMF Product name Power Supply Module Servo Amplifier Module Spindle Amplifier Module Abbreviations PSM SVM SPM

In this manual, the servo parameter number is explained as shown below. (Example)Series 15 1877 2062 8X62

Servo parameter function name or bit Overload protection coefficient (OVC1)

Series 0C Series 16, 18, 20, 21 Power Mate MODEL D, F

PREFACE

B65165E/01

Related manuals

The following six kinds of manuals are available for FANUC CONTROL MOTOR series. In the table, this manual is marked with an asterisk (*).Document number D D D D D D D D

Document name

Major contents Specification Characteristics External dimensions Connections Specification Characteristics External dimensions Connections

Major usage

FANUC AC SERVO MOTOR series DESCRIPTIONS

B65142E

D Selection of motor D Connection of motor

FANUC AC SPINDLE MOTOR series DESCRIPTIONS

B65152E

FANUC CONTROL MOTOR AMPLIFIER B65162E series DESCRIPTIONS

D Specifications and functions D Installation D External dimensions and maintenance area D Connections D Start up procedure D Troubleshooting D Maintenance of motor D Initial setting D Setting parameters D Description of parameters D Initial setting D Setting parameters D Description of parameters

D Selection of amplifier D Connection of amplifier D Start up the system (Hardware) D Troubleshooting D Maintenance of motor

FANUC CONTROL MOTOR series MAINTENANCE MANUAL

B65165E

*

FANUC AC SERVO MOTOR series PARAMETER MANUAL FANUC AC SPINDLE MOTOR series PARAMETER MANUAL

B65150E

B65160E

D Start up the system ( ) (Software) D Turning the system (Parameters)

B65165E/01

Table of contents3 44 55 5 7

I STARTUP PROCEDURE1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.1 2.2 CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAJOR COMPONENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2.1 2.2.2 2.2.3 Power Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Servo Amplifier Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spindle Amplifier Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. STARTUP PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1 3.2 SUMMARY OF THE STARTUP PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CONNECTING THE POWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.2.1 3.2.2 3.2.3 Checking The Voltage And Capacity Of The Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting A Protective Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting The Ground Fault Interrupter That Matches The Leakage Current . . . . . . . . . . . . . . . . . . . Power Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Servo Amplifier Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spindle Amplifier Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Servo Amplifier Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spindle Amplifier Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

88 99 9 9

3.3

SETTING THE PRINTEDCIRCUIT BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3.1 3.3.2 3.3.3

1010 10 13

3.4

INITIALIZING SERVO PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.4.1 3.4.2

1414 20

4. CONFIRMATION OF THE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1 POWER SUPPLY MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Check Terminal On The Printedcircuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking The Power Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking The Status Leds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The PIL LED (power ON indicator) Is Off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking For What Keeps The Mcc From Being Switched On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Check Pin Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking The Control Power Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking The STATUS Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The STATUS Display Does Not Light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Servo Check Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spindle Check Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking The Control Power Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STATUS Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The PIL LED (power ON indicator) Is Off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The STATUS Display Is Blinking With . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Checking The Feedback Signal Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Observing The Internal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

242425 26 26 27 27

4.2

SERVO AMPLIFIER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.1 4.2.2 4.2.3 4.2.4 4.2.5

2828 31 32 33 33

4.3

SPINDLE AMPLIFIER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7

3738 41 42 43 43 44 49

II TROUBLESHOOTING1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. ALARM NUMBERS AND BRIEF DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . .2.1 ALARM NUMBERS IN SERIES 15 (SERVO ALARMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61 6262

TABLE OF CONTENTS

B65165E/01

2.2 2.3

FOR SERIES 0C (SERVO ALARM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FOR SERIES 16,18,20 (SERVO ALARM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65 68

3. TROUBLESHOOTING AND ACTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1 POWER SUPPLY MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 Alarm Code 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Code 02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Code 03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Code 04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Code 05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Code 06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm Code 07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abnormal Current Alarms (8, 9, A, b, C, d, and E in the LED display) . . . . . . . . . . . . . . . . . . . . . . . IPM Alarms (8., 9., A., b., C., d., and E in the LED display; note these codes are displayed simultaneously with a period.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control Power Supply Undervoltage Alarm (2 in the LED display) . . . . . . . . . . . . . . . . . . . . . . . . . DC link Undervoltage Alarm (5 in the LED display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fan Stopped Alarm (1 in the LED display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Conversion Error Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Servo Adjustment Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Feedback Disconnected Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motor Overheat Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Invalid Servo Parameter Setting Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulse Coder Error Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rotation Speed Data Error Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulse Coder Communication Error Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm A0, A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

717171 71 72 72 72 72 72

3.2

SERVO AMPLIFIER MODULE TROUBLESHOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6

7373 74 75 75 75 75

3.3

SERVO SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8

7676 77 77 78 78 84 84 85

3.4

SPINDLE AMPLIFIER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 3.4.8 3.4.9 3.4.10 3.4.11 3.4.12 3.4.13 3.4.14 3.4.15 3.4.16 3.4.17 3.4.18 3.4.19 3.4.20

8686 86 87 87 87 88 88 88 89 89 89 89 90 90 90 91 92 92 92 93

B65165E/01

TABLE OF CONTENTS

3.4.21 3.4.22 3.4.23 3.4.24 3.4.25 3.4.26 3.4.27 3.4.28 3.4.29 3.4.30 3.4.31 3.4.32 3.4.33 3.4.34 3.4.35 3.4.36 3.4.37 3.4.38

Alarm AL34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL53, AL53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm AL56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

93 93 93 94 94 95 95 96 96 97 97 97 98 98 98 98 99 99

4. HOW TO REPLACE THE FUSES AND PRINTED CIRCUIT BOARDS . . . . . . . . .4.1 HOW TO REMOVE THE CASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1.1 4.1.2 60/90 mm Width Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 mm Width Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing The Printedcircuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing The Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing The Printedcircuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing The Fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing The Printedcircuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing The ROM And Detection Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100100100 102

4.2

POWER SUPPLY MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.1 4.2.2

105105 106

4.3

SERVO AMPLIFIER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.3.1 4.3.2

106106 106

4.4

SPINDLE AMPLIFIER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.4.1 4.4.2 4.4.3

107107 107 108

III MOTOR MAINTENANCE1. AC SERVO MOTOR MAINTENANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1 1.2 1.3 1.4 1.5 RECEIVING AND KEEPING AC SERVO MOTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DAILY INSPECTION OF AC SERVO MOTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PERIODIC INSPECTION OF AC SERVO MOTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REPLACING THE PULSE CODER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REPLACEMENT PARTS SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

111111 111 113 115 118

2. SPINDLE MOTOR MAINTENANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.1 2.2 2.3 PREVENTIVE MAINTENANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PARTS FOR MAINTENANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALLOWABLE RADIAL LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

120120 121 122

I STARTUP PROCEDURE

B65165E/01

STARTUP PROCEDURE

1. OVERVIEW

1

OVERVIEW

This part describes the units and components of the FANUC control motor amplifier series. It also explains the following information necessary to start up the control motor amplifier: D Connecting the power D Setting the printedcircuit board D Initializing the parameter D Confirmation of the operation

3

2. CONFIGURATIONS

STARTUP PROCEDURE

B65165E/01

22.1

CONFIGURATIONS

CONFIGURATIONS

The FANUC control motor amplifier series consists of the units and components listed below: (1) Power supply module (PSM) (basic) (2) Servo amplifier module (SVM) (basic) (3) Spindle amplifier module (SPM) (basic) (4) AC reactor (basic) (5) Connectors (for connecting cables) (basic) (6) Fuses (basic) (7) Power transformer (option) (8) Fan adaptor (option) The diagram below shows an example of a basic configuration of the FANUC control motor amplifier series system. The basic configuration consists of two twoaxis servo amplifier modules and one spindle amplifier module.

Power supply module P N

Spindle amplifier Servo amplifier Servo amplifier module module (2axis) module (2axis)

AC input for control power supply

200R, 200S, PE

L1 L2 L3 PE

Circuit breaker 2

(380VAC) (415VAC) (460VAC)

200 VAC 220 VAC 230 VAC

Magnetic AC contactor reactor

|Circuit breaker 1

Power transformer

Circuit breaker 3 Standard Optional Units prepared by the machine tool builder

DC link (300 VDC) PSM SPM U V W PE Spindle motor Fa n

SVM

SVM

UL VL WL PE UM VM WM PE

UL VL WL PE UM VM WM PE

Servo motor

Servo motor

Servo motor

Servo motor

4

B65165E/01

STARTUP PROCEDURE

2. CONFIGURATIONS

NOTE1 Refer to the Control Motor Amplifier series Specifications for combinations of the power supply module, servo amplifier module, and spindle amplifier module. NOTE2 Always use the circuit breakers, magnetic contactor, and AC reactor. NOTE3 Install a surge suppressor between the power lines and between each power line and a ground at the input of the power magnetics cabinet to protect the system from lightning surge.

2.2MAJOR COMPONENTS 2.2.1Power Supply ModuleModel PSM5.5 PSM11 PSM15 PSM26 PSM30 Order specification A06B6077H106 A06B6077H111 A06B6077H115 A06B6077H126 A06B6077H130 Wiring board specification A16B22020460 A16B22020461 A20B10050590 A16B22020080 P.C.B.specification A16B22020420 Remarks

2.2.2Servo Amplifier Module(1) Servo amplifier module (1axis)Model SVM112 SVM120 SVM140S SVM140L SVM180 SVM1130 Order specification A06B6079H101 A06B6079H102 A06B6079H103 A06B6079H104 A06B6079H105 A06B6079H106 Wiring board specification A16B22020480 A16B22020481 A16B22020600 A16B22020601 A16B22020602 A16B22020510 A20B20010822 P.C.B.specification A20B20010820 Remarks

5

2. CONFIGURATIONS

STARTUP PROCEDURE

B65165E/01

(2) Servo amplifier module (2axis)Model SVM212/12 SVM212/20 SVM220/20 SVM212/40 SVM220/40 SVM240/40 SVM240/80 SVM280/80 Order specification A06B6079H201 A06B6079H202 A06B6079H203 A06B6079H204 A06B6079H205 A06B6079H206 A06B6079H207 A06B6079H208 Wiring board specification A16B22020490 A16B22020491 A16B22020492 A16B22020610 A16B22020611 A16B22020612 A16B22020613 A16B22020614 A20B20010823 P.C.B.specification A20B20010821 Remarks

(3) Servo amplifier module (3axis) Your order specification will vary with the interface you use for the NC. (a) When you use an NC other than the FS20 or FS21GAModel SVM312/12/12 SVM312/12/20 SVM312/20/20 SVM320/20/20 SVM312/12/40 SVM312/20/40 SVM320/20/40 Order specification A06B6079H301 A06B6079H302 A06B6079H303 A06B6079H304 A06B6079H305 A06B6079H306 A06B6079H307 Wiring board specification A16B22020500 A16B22020501 A16B22020502 A16B22020503 A16B22020504 A16B22020505 A16B22020506 P.C.B.specification A20B20010750 Remarks

Corresponding NC: FS15A/B, FS0C, FS16A/B, FS18A, FS21TA Power Mate MODEL D, Power Mate MODEL F (b) When you use the FS20 or FS21GAModel SVM312/12/12 SVM312/12/20 SVM312/20/20 SVM320/20/20 SVM312/12/40 SVM312/20/40 SVM320/20/40 Order specification A06B6080H301 A06B6080H302 A06B6080H303 A06B6080H304 A06B6080H305 A06B6080H306 A06B6080H307 Wiring board specification A16B22020500 A16B22020501 A16B22020502 A16B22020503 A16B22020504 A16B22020505 A16B22020506 P.C.B.specification A20B20010760 Remarks

Corresponding NC: FS20, FS21GA

6

B65165E/01

STARTUP PROCEDURE

2. CONFIGURATIONS

2.2.3(1) Type I (standard specification)Model SPM2.2 SPM5.5 SPM11 SPM15 SPM22 SPM26 SPM30 Order specification

Spindle Amplifier Module

Your order specification will vary with the detector (function) you use for the spindle amplifier module.

Unit specification

Wiring board specification A16B22020470 A16B22020471 A16B10050572 A16B10050571 A16B10050570 A16B10050573

P.C.B.specification A16B22020430 A16B22020431 A16B22020070

ROM (type) A06B6072H500 (9D00)

A06B6078H202#H500 A06B6078H202 A06B6078H206#H500 A06B6078H206 A06B6078H211#H500 A06B6078H211 A06B6078H215#H500 A06B6078H215 A06B6078H222#H500 A06B6078H222 A06B6078H226#H500 A06B6078H226 A06B6078H230#H500 A06B6078H230

Applicable detectors: 1 Pulse generator, position coder, and magnetic sensor 2 Sensor built in the motor (2) Type II (Cs contour control/separate builtin sensor specification)Model SPM2.2 SPM5.5 SPM11 SPM15 SPM22 SPM26 SPM30 Order specification Unit specification Wiring board specification A16B22020470 A16B22020471 A16B10050572 A16B10050571 A16B10050570 A16B10050573 P.C.B.specification A16B22020433 A16B22020434 A16B22020160 ROM (type) A06B6072H500 (9D00)

A06B6078H302#H500 A06B6078H302 A06B6078H306#H500 A06B6078H306 A06B6078H311#H500 A06B6078H311 A06B6078H315#H500 A06B6078H315 A06B6078H322#H500 A06B6078H322 A06B6078H326#H500 A06B6078H326 A06B6078H330#H500 A06B6078H330

Applicable detectors: 1 2 3 4

Pulse generator + builtin sensor (using position coder signals only) Highresolution magnetic pulse coder (motor only) Highresolution magnetic pulse coder (motor and spindle) Highresolution position coder + highresolution magnetic pulse coder (motor only)

(3) Type III (spindle switch/differential speed control specification)Model SPM11 SPM15 SPM22 SPM26 SPM30 Order specification Unit specification Wiring board specification A20B10050574 A20B10050572 A20B10050571 A20B10050570 A20B10050573 P.C.B.specification A16B22020160 ROM (type) A06B6072H500 (9D00)

A06B6078H411#H500 A06B6078H411 A06B6078H415#H500 A06B6078H415 A06B6078H422#H500 A06B6078H422 A06B6078H426#H500 A06B6078H426 A06B6078H430#H500 A06B6078H430

Applicable function: 1 Spindle switch control (switching only the speed or both the speed and position) 2 Spindle switch control (switching the builtin sensor) 3 Differential speed control (position coder signal input circuit)

7

3. STARTUP PROCEDURE

STARTUP PROCEDURE

B65165E/01

33.11.

STARTUP PROCEDURE

SUMMARY OF THE STARTUP PROCEDUREStartup procedure

First make sure that the specifications of the CNC, control motors, control motor amplifiers, and other units you received are exactly what you ordered. Then, connect the units and make sure that the connections are correct. Now start up the power supply module, servo amplifier module, and spindle amplifier module in the stated order.

Check the CNC model, control motors, detectors, and control motor amplifier, etc.

2.

Check the appearance of each unit for scratches and other flaws.

3.

Check the line voltage and current capacity.

See Section 3.2.

4.

Connect the grounding line and the power lines.

See Section 3.2.

5.

Check the setting and adjustments.

See Section 3.4.

6.

Start up the power supply module.

See Section 4.1.

7.

Start up the servo amplifier module.

See Section 4.2.

8.

Start up the spindle amplifier module.

See Section 4.3.

8

B65165E/01

STARTUP PROCEDURE

3. STARTUP PROCEDURE

3.2CONNECTING POWER 3.2.1Checking The Voltage And Capacity Of The Power

THE

Measure the voltage of the AC power. Depending on the measurement, take action as follows:Table 3.2.1 (1) Action for the AC powerAC power voltage 170VA220V 210VA253V Nominal voltage 200V 230V Action These power lines can be connected directly to the system. Note) If the voltage is below the rated value, the rated output may not be obtained. This power line must be connected through an insulation transformer to step down the voltage to 200 V.

254V or more

380VA550V

Table 3.2.1 (2) lists the input power specification for the power supply module. Use a power source with sufficient capacity so that the system will not malfunction due to a voltage drop even at a time of peak load.Table 3.2.1 (2) Action for the AC PowerModel Allowable inputvoltage fluctuation Power source frequency Power source capacity (kVA) PSM 5.5 PSM 11 PSM 15 PSM 26 PSM 30

AC200/220/230V15%, +10% 50/60Hz^1Hz 9 17 22 37 44

3.2.2Connecting A Protective Ground

Before connecting the power source, attach the protective ground line to the connection terminal PE of the power supply module.

3.2.3Selecting The Ground Fault Interrupter That Matches The Leakage Current

Because the drive circuit of the servo amplifier module and spindle amplifier module uses an IGBT pulse width modulation control method, highfrequency current leaks to the ground through the stray capacitance in the motor windings, power line, and amplifiers. The leakage current may cause the ground fault interrupter or leakageprotection relay on the power source side to malfunction. Therefore, use a ground fault interrupter designed for operation with an inverter, which is protected against such malfunctions.

9

3. STARTUP PROCEDURE

STARTUP PROCEDURE

B65165E/01

(1) Leakage current from the control motor The limits of leakage current in motors and amplifiers have not yet been determined. The following tables show the leakage current limits for the S series motors and amplifiers. Use them for reference. (a) Servo motorsMotor model 0.5 to 6 12 to 22 30 to 40 Leakage current of commercially available power frequency component 1.8mA 2.0mA 2.5mA

(b) Spindle motorsMotor model 1 to 22 Leakage current of commorcially available power frequency component 2.0mA

(2) Example of selecting a ground fault interrupter Servo motor 12/3000 x 3, each with a 5meter power cord Spindle motor 15, with a 10meter power cord With the conditions above:YYY Servo motor 12/2000 3 + fff Spindle motor 15 1 = jjj[mA]

From a manufacturers brochure, select the ground fault interrupter designed for operation with an inverter that has a rated nooperation current greater than mA.

3.3SETTING THE PRINTEDCIRCUIT BOARD 3.3.1Power Supply Module

Before supplying power, set the printedcircuit board as listed below.

(1) Checking the DIP switch settingModel PSM5.5 to 11 PSM15 to 30 DIP switch S1 S2 RSW Position SHORT OPEN 3 Description Do not change the setting of the DIP switches because they were already set at the factory.

3.3.2Servo Amplifier Module

(1) Checking the jumper plug setting (for 1axis and 2axis servo amplifier modules) Set the servo amplifier module to either interface type A or B with the jumper plugs.10

B65165E/01

STARTUP PROCEDURE

3. STARTUP PROCEDURE

FANUC

F F F F

S1 S2

FUSE

Move the jumper plugs as required. If you cannot pull out a jumper plug with your thumb and finger, use longnose pliers or the like.

Jumper plug S1 S2

Description With this setting, the servo amplifier module can operate with the NC (such as FS0, FS15, FS16, FS18, or PMD) designed for operation with interface type A. In this case the JV*B connector is sued.

SHORT OPEN

OPEN

SHORT With this setting, the servo amplifier module can operate with the NC (such as FS20 or FS21G) designed for operation with interface type B. In this case the JS*B and JF* connectors are used.

NOTE There is no jumper plug or DIP switch on the threeaxis servo amplifier module. The specification of the servo amplifier module determines the type (A or B) of the interface with which it can operate.

11

3. STARTUP PROCEDURE

STARTUP PROCEDURE

B65165E/01

(2) Mounting the batteries for the ABS pulse coder If your servo amplifier is the one that operates with interface type B, it can contain batteries (backup batteries) for the ABS pulse coder.

FANUC Battery specification A06B- 6073- K001

Lithium battery 6V Connector

Battery cover

CX 5X FUSE

CX 5Y

Remove the battery cover and put a battery in the holder, then put on the battery cover. Attach the battery connector to CX5X or CX5Y.

NOTE1 Connectors CX5X and XX5Y are connected internally. When the battery is connected for the first time, either connector may be used. NOTE2 Be very careful when handling a lithium battery. If a lithium battery is shortcircuited, it may overheat, blow out, or catch fire.

12

B65165E/01

STARTUP PROCEDURE

3. STARTUP PROCEDURE

3.3.3Spindle Amplifier Module

(1) (1) SPM2.2 to 11 types I and II These modules do not have a jumper plug or DIP switch. (2) SPM15 to 30 types I and II, and SPM11 to 30 type III Location of the DIP switch

SW

S7

DIP switch S1S7

S1

F2 5A

DIP switch

Switch setting (factoryset to the underlined position) ON

Description

S1 OFF S2 S3 ON OFF ON OFF S4: ON, S5: OFF S4 S5 S4: OFF, S5: ON S4: OFF, S5: OFF S6: ON, S7: OFF S6 S7 S6: OFF, S7: ON

If two SPMs are connected to one serial interface cable, S1 is set to ON in one SPM, and to OFF in the other. If an analog filter is used at the load meter outg put, S2 is set to ON. If not, it is set to OFF. If an analog filter is used at the speedometer g p output, S3 is set to ON. If not, it is set to OFF. Reference switch of NPN type (pull up) Reference switch of PNP type (pull down) The external reference signal receive function. Reference switch of NPN type (pull up) Reference switch of PNP type (pull down) Reference switch (ex (external reference signal set receive function) setting for the subspindle Reference switch (external reference signal receive function) setting for the main spindle

The external reference S6: OFF, S7: OFF signal receive function is not used.

13

3. STARTUP PROCEDURE

STARTUP PROCEDURE

B65165E/01

3.4INITIALIZING SERVO PARAMETERS 3.4.1Servo Amplifier ModuleBefore servo parameter initialization Before starting servo parameter initialization, confirm the following: 1 NC model (Example: Series 15B) 2 Servo motor model (Example: 6/2000) 3 Pulse coder built in a motor (Example: pulse coder) 4 Whether a separate position detector is used or not (Example: Not used) 5 Distance the machine tool moves per revolution of the motor (Example: 10 mm per one revolution) 6 Machine detection unit (Example: 0.001 mm) 7 NC command unit (Example: 0.001 mm) Servo parameter initialization procedure 1 Switch on the NC in an emergency stop state. Enable parameter writing (PWE = 1). 2 Initialize servo parameters on the servo setting screen. To display the servo setting screen, follow the procedure below, using the key on the NC. Series 15 Press the SERVICE key several times, and the servo setting screen will appear. Series 16, 18, 20, and 21 SYSTEM [SYSTEM] [ ] [SVPRM] If no servo screen appears, set the following parameter as shown, and switch the NC off and on again.

b7 3111

b6

b5

b4

b3

b2

b1

b0 SVS

SVS (b0)=1 (to display the servo screen) Series 0C Press the PARAM key several times, and the servo setting screen will appear. If no servo screen appears, set the following parameter as shown, and switch the NC off and on again.

b7 389

b6

b5

b4

b3

b2

b1

b0 SVS

SVS (b0)=0 (to display the servo screen) When the following menu appears on the screen, move the cursor to the item you want to set and enter data directly.

14

B65165E/01

STARTUP PROCEDURE

3. STARTUP PROCEDURE

Servo set

01000 N0000 X axis 00001010 16 00000000 2 1 100 111 8192 12500 10000 Z axis 00001011 16 00000000 2 1 1 111 819 1250 10000

INITIAL SET BITS Motor ID No. AMR CMR Feed gear (N/M) Direction Set Velocity Pulse No. Position Palse No. Ref. counter Value SETTING =

N M

Servo setting menu

3

Start initializing

b7

b6

b5

b4

b3

b2

b1 DGPR

b0 PLC0

Initial set bits

Start initializing

(Keep the CNC switched on up until step 11.)

0.1m Increment system 1m PLC0 (b0) = 0 PLC0 (b0) = 1

DGPR (b1) = 0

This bit is set to 1 automatically after initialization.

15

3. STARTUP PROCEDURE

STARTUP PROCEDURE

B65165E/01

4

Specify the motor ID No. Select the motor ID No. according to the model and specification (four digits in the middle segment of A06BXXXXBXXX) of your motor.

Motor model Motor specification Motor type No. 0.5 0142 13 30/2000 0152 22 22/1500 0146 27 2/2000 0372 46 3/3000 0123 15 30/3000 0153 23 30/1200 0151 28 L3/2000 0561 56

12HV 0176 3

22HV 0177 4

30HV 0178 5 6/3000 0128 17

C3/2000 0142 7 12/2000 0142 18 M9/3000 0163 26 E6/2000 0106 34 L25/3000 0571 59

C6/2000 0123 8 12/3000 0143 19

C12/2000 0127 9 22/2000 0147 20

C22/1500 0128 10 22/3000 0148 21

6/2000 0127 16 M3/3000 0161 24 40/2000with FAN

M6/3000 0162 25 40/2000without FAN

E1/3000 0101 35 L50/2000 0572 60

E2/3000 0102 36 1/3000 0371 61 2/3000 0373 62

0158 29 L6/3000 0562 57

0157 30 L9/3000 0564 58

5

Set AMR as described below. The setting does not depend on the model of the motor. pulse coder 00000000

6

Set CMR with the scale of a distance the NC instructs the machine to move. CMR = Command unit/Detection unitCMR 1/2 to 48 Setting value = CMR _ 2

Usually, CMR=1, so specity 2.7

Specify the flexible feed gear (F.FG). This function makes it easy to specify a detection unit for the leads and gear reduction ratios of various ball screws by changing the number of position feedback pulses from the pulse coder and separate detector.

Setting for the pulse coder and serial pulse coder A in the semiclosed mode (Note1) F.FG numerator (x32767) F.FG denominator (x32767) Number of position pulses necessary for each revolution of the motor 1000000

=

(as irreducible fraction)

NOTE1 For both F.FG numerator and denominator, the maximum setting value (after reduced) is 32767.

16

B65165E/01

STARTUP PROCEDURE

3. STARTUP PROCEDURE

(Example of setting) For detection in 1 m units, specify as follows:Ball screw lead 10 (mm/rev) 20 30 Number of necessary position pulses 10000 (pulses/rev) 20000 30000 F&FG 1/100 2/100 or 1/50 3/100

(Example of setting) If the machine is set to detection in 1,000 degree units with a gear reduction ratio of 100:1 for the rotation axis, the table rotates by 360/100 degrees each time the motor makes one turn. 1000 position pulses are necessary for the table to rotate through one degree. The number of position pulses necessary for the motor to make one turn is: 360/100 _ 1000 = 3600F.FG numerator F.FG denominator

=

3600 1000000

=

36 10000

Setting for use of a separate detector (fullclosed) Number of position pulses necessary for the motor to make one turn Number of position pulses from the separate detector when the motor makes one turn

F.FG numerator (x32767) F.FG denominator (x32767)

=

(as irreducible fraction)

NOTE2 DMR can also be used with the separate position detector, provided that F.FG = 0. Example of setting) When the separate detector detects 1 m for 10000 (pulses/rev)Ball screw lead 1 (mm/rev) 5 10 Number of necessary position pulses 1000 (pulses/rev) 5000 10000 F&FG 1/10 1/2 1/1 DMR 2 4

8111

Specify the direction in which the motor rotates.Clockwise as viewed from the pulse coder Counterclockwise as viewed from the pulse coder

-111

17

3. STARTUP PROCEDURE

STARTUP PROCEDURE

B65165E/01

9

Specify the number of velocity pulses and the number of position pulses.Semiclosed Fullclosed 1 b0=0 8192 Np 0.1 b0=1 819 Np/10 1 b0=0 8192 12500 0.1 b0=1 819 1250

Command unit (m) Initialization bit Number of velocity pulses Number of position pulses

Np: Number of position pulses from the separate detector when the motor makes one turn When using a separate detector (fullclosed mode), also specify the following parameters: Series 15, 16, 18, 20, 21

b7 1807

b6

b5

b4

b3 PFSE

b2

b1

b0

Must be specified only for Series 15

PFSE(b3) The separate position detector is: 0:Not used 1:Used NOTE This parameter is used only for Series 15.

b7 1815

b6

b5

b4

b3

b2

b1 OPTX

b0

Must be specified for all NCs.

OPTX(b1) The separate position detector is: 0:Not used 1:Used NOTE For Series 16, 18, 20, and 21, setting this parameter causes bit 3 of parameter No. 2002 to be set to 1 automatically. Series 0C

b7 37

b6

b5 STP8

b4 STP7

b3 STP4

b2 STPZ

b1 STPY

b0 STPX

STPX to 8 The separate position detector is: 0:Not used for the Xaxis, Yaxis, Zaxis, fourth axis, seventh axis, or eighth axis 1:Used for the Xaxis, Yaxis, Zaxis, fourth axis, seventh axis, and eighth axis18

B65165E/01

STARTUP PROCEDURE

3. STARTUP PROCEDURE

10 Specify the reference counter. The reference counter is used in

making a return to the reference position by a grid method. The value to be specified is the number of pulses necessary for the motor to make one turn, or a value obtained by dividing the number by an integer. (Example of setting) pulse coder, semiclosed (detection in 1 m units)Ball screw lead 10mm/rev 20 30 Number of necessary position pulses 10000pulses/rev 20000 30000 Reference counter 10000 20000 30000 Grid width 10mm 20 30

11 Switch the NC off and on again.

This completes servo parameter initialization. If a servo alarm related to pulse coders occurs for an axis for which a servo motor or amplifier is not connected, specify the following parameter.b7 1953 2009 8X09 SERD b6 b5 b4 b3 b2 b1 b0

SERD(b0) The serial feedback dummy function is: 0:Not used 1:Used12 When you are going to use an pulse coder as an absolute pulse

coder, use the following procedure. The procedure for setting absolute position communication using the pulse coder is somewhat different from the procedure using serial pulse coder A. 1. Set the following parameter, and switch the CNC off. Series 15, 16, 18, 20, 21b7 1815 b6 b5 APCX b4 b3 b2 b1 b0

Bit 5 (APCX) 0:Does not perform as absolute position pulsecoder. 1:Performs absolute position as communication pulsecoder. Series 0Cb7 21 b6 b5 APC8 b4 APC7 b3 APC4 b2 APCZ b1 APCY b0 APCX

STPX to 8 0:Does not perform absolute position communication for the X, Y, Z, 4, 7, or 8axis.19

3. STARTUP PROCEDURE

STARTUP PROCEDURE

B65165E/01

1:Performs absolute position communication for the X, Y, Z, 4, 7, or 8axis. 2. After making sure that the battery for the pulse coder is connected, switch the NC on. 3. Absolute position communication is performed, and a request to return to the reference position is displayed. 4. More motor more than one revolution by JOG Feed. 5. Turm off and on the CNC. These step were added

6. Absolute position communication is performed, and a request to return to the reference position is displayed. 7. Return to the reference position.

3.4.2Spindle Amplifier Module

(1) Automatic spindle parameter initialization Start automatic spindle parameter initialization using the following procedure. The automatic initialization sets the initial values for both the parameters common to all models and those for an individual model. 1 Specify the model code number for motor parameters to be set automatically. For model codes, refer to the respective parameter manual. For motors with no model code, use the method (a) or (b) below. (a) Specify the model code for the parameter values similar to those for your motor model. After automatic initialization, adjust the parameters by entering appropriate values manually so that they fit your motor. (b) If there is no parameter value similar to those for your motor model, specify the model code for your motor as 0 (for a motor with output control switching, as 64). After automatic initialization, adjust the parameters by entering appropriate values manually so that they fit your motor.Parameter No. FS0C No. 1 6633 No. 2 6773 No. 1 3133 FS15 No. 2 3273 FS16/18/20/21 PMD/F 4133 Value V l Model code

2

Specify so that automatic spindle parameter initialization is performed.Parameter No. FS0C FS15 No. 1 5607#0 No. 2 5607#1

No. 1 6519#7

No. 2 6659#7

FS16/18/20/21 PMD/F 4019#7

Value V l 1 0

20

B65165E/01

STARTUP PROCEDURE

3. STARTUP PROCEDURE

NOTE These bits are reset to the original setting after automatic parameter initialization. When you switch the CNC off and on again, the spindle parameter values assigned to the specified model code are set for your motor model automatically. 4 If no model code is available, enter the parameter values for your motor model according to the list of parameters for individual models. (2) Spindle speed command parameters Set the spindle speed command parameters listed below. For details, refer to the relevant CNC manual.3Parameter No. FS0TC FS0MC FS15 FS16/18/ 20/21 PMD/F 3706 #7, 6 3735 3736 4020 3741 A 3744 Description D i i

0013 #7, 6 0543 (Note1) 0542 (Note1) 6520 0539 0516 0540 A 0543 0541 0539 0555 (Note2) 0577

Polarity of the spindle speed command (valid when SSIN = 0 for DI signal) Lowest clamp speed for the spindle motor Highest clamp speed for the spindle motor Highest spindle motor speed Spindle speed command offset (always to be set as 0) Spindle speed command gain (always to be set as 1000) Highest spindle speed corresponding to each gear

5618 5619 3020 5613 5614 5621 A 5628

NOTE1 Valid only for M series. However, invalid if the constant surface speed control option is used.) NOTE2 or M series using the constant surface speed control option, the same parameter Nos. (parameter Nos. 0540 to 0543) as for T series are used.

21

3. STARTUP PROCEDURE

STARTUP PROCEDURE

B65165E/01

(3) Parameters for the detectors The list below contains the parameters for the detectors. The parameters to be set vary with the detectors you use. Refer to the parameter manual for details.Parameter No. FS0 TC FS0 MC FS15 FS16/18/ 20/21 PMD/F 4000 #0 Description D i i

6500 #0

3000 #0

Directions in which the spindle and motor rotate 0: Same directions 1: Different directions Motor speed detector 0, 0, 0: 64/rev 0, 0, 1: 128/rev 0, 1, 0: 256/rev 0, 1, 1: 512/rev 1, 0, 0: 192/rev 1, 0, 1: 384/rev Sensor built in the motor 0: Not to be used 1: To be used Type of sensor built in the motor 0: Standard 1: For 0.5 Builtin sensor on the spindle 0: Not to be used 1: To be used Position coder signal 0: No to be used 1: To be used Direction in which the position coder rotates 0: Same as the direction in which the spindle rotates 1: Reverse to the direction in which the spindle rotates Position coder signal 0, 0, 0: Position coder Builtin sensor 256/r Cs sensor /65 Highresolution position coder 0, 0, 1: Builtin sensor 128/r 0, 1, 0: Builtin sensor 512/r Cs sensor o/130 0, 1, 1: Builtin sensor 64/r 1, 0, 0: Cs sensor o/195 1, 1, 0: Builtin sensor 384/r Cs sensor /97.5 Detector for Cs contour control 0: Not to be used 1: To be used Detector with Cs contour control for built in motor 0: Motor not built in the spindle 1: Builtin motor

6511 #2, 1, 0

3011 #2, 1, 0

4011 #2, 1, 0

6503 #1 6504 #4 6504 #1 6501 #2

3003 #1 3004 #4 3004 #1 3001 #2

4003 #1 4004 #4 4004 #1 4001 #2

6500 #2

3000 #2

4000 #2

6503 #7, 6, 4

3003 #7, 6, 4

4003 #7, 6, 4

6501 #5

3001 #5

4001 #5

6501 #6

3001 #6

4001 #6

22

B65165E/01

STARTUP PROCEDURE

3. STARTUP PROCEDURE

6504 #0

3004 #0

4004 #0

Highresolution position coder 0: No to be used 1: To be used Direction in which the detector for Cs contour control rotates 0: Same as the direction in which the spindle rotates 1: Reverse to the direction in which the spindle rotates Spindlemotor gear ratio (This data is selected with the spindle control DI signals CTH1A and CTH2A.)

6501 #7

3001 #7

4001 #7

6556 to 6559

3056 to 3059

4056 to 4059

23

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

44.1POWER MODULE1. 2.

CONFIRMATION OF THE OPERATION

Check each item according to the procedure described below.

SUPPLY

Supply control power (200 VAC).

Check the STATUS LEDs. See Section 4.1.3. OK Alarm condition See Section 3.1.2 of Part II.

3.

Release the system from emergency stop state.

4.

Make sure that the MCC is turned on. OK NG See Section 4.1.4.

5.

Check the operation of the servo and spindle motors.

24

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

4.1.1Check Terminal On The Printedcircuit Board

Location of the check terminal

IR IS +24V +5V 0V

Table 4.1.1 Check TerminalCheck terminal IR IS Phase L1 (phase R) current Phase L2 (phase S) current Description The current is positive when it is input to the amplifier. M d l Model PSM5.5 PSM11 PSM15 PSM26 PSM30 A t f t Amount of current 25A/1V 37.5A/1V 50A/1V 75A/1V 100A/1V O t l Overcurrent alarm Depending on IPM alarm output 300A (6V) 450A (6V) 600A (6V)

If phase L1 and L2 currents exceed the overcurrent alarm level, PSM enters an alarm state. F MCC trips, and IGBT switching stops. F Alarm output (latch, alarm code 01) +24V +5V 0V Control power

25

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

4.1.2Checking The Power Supply VoltagesTable 4.1.2 Checking the Power Supply VoltagesMeasurement item AC power line voltage Check method Check on L1, L2, and L3 at terminal board TB2. See Section 3.2.1. Check on the check terminals. Control power voltage Check terminal +24V - 0V +5V - 0V Rating 24V 5% 5V 5%

4.1.3Checking The Status LedsPosition of the STATUS LEDs

STATUS PIL ALM

STATUS LEDs On No.Off

Description

The LED that is on is indicated in black. 1.PIL ALM

The PIL LED (power ON indicator) is off. Control power has not been supplied. The control power circuit is defective. See Section 4.1.2. PSM not ready The main circuit is not supplied with power (MCC OFF). Emergency stop state PSM ready The main circuit is supplied with power (MCC ON). The PSM is operable. Alarm state The PSM is not operable. See Section 3.1 of Part II.

2.

PIL ALM

3.

PIL ALM

4.

PIL ALM

Alarm code 01 or above is indicated.

26

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

4.1.4The PIL LED (power ON indicator) Is Off.No. 1.

Table 4.1.4 Check Method and ActionCause of trouble Check method Action

No AC power is ap- Check R and S of con- Ensure a secure conplied. nector CX1. nection. The power supply cir- The PIL LED (power Check the printedcircuit is defective. ON indicator) oper- cuit board. ates on the +5V power supply. Check the control power supply voltage according to Section 4.1.2.

2.

4.1.5Checking For What Keeps The Mcc From Being Switched On

(1) The emergency stop state has not been released. Ensure a secure connection. (2) A terminating connector has not been attached. Check whether connector K9 for the SVM or SPM has been attached at the end of the connection chain. (3) The MCC driving relay is defective. Check that a circuit between pins 1 and 3 of connector CX4 are closed and opened.CX3- 1 MCC driving relay Make sure that the contact is closed and opened. CX3- 3

(4) The MCC driving power has not been supplied or connected. Ensure a secure connection.

27

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

4.2SERVO AMPLIFIER MODULE

Check each item according to the procedure described below.

1.

Check the connection, and supply control power (200 VAC) to the power supply module.

2.

Check the STATUS LEDs. See Section 4.2.3. Alarm condition See Section 3.2 of Part II.

3.

Check the CNC parameters (including servo parameters), and reset emergency stop state. Alarm condition See Section 3.2 of Part II.

4.

Check the power supply module. See Section 4.1.

5.

Check the operation of the servo motor. Abnormal operation Refer to the FUNAC AC SERVO MOTOR series Parameter Manual.

4.2.1Check Pin Board

Overview Unlike conventional servo amplifiers, the servo amplifier module does not have check pins. When you are going to observe the signals inside the amplifier with an oscilloscope, attach the pin board listed below to the connector.Order No. A03B6071K290 Description of the order Printedcircuit board A20B10050340 Cable (20 m) A6602042T031#L200R0

28

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

Pin arrangement on the pin board

| | CN1 | |

5

|

4 9

| |

3 8

| |

2 7

| |

1 6 11 16 CN2 34mm

10 | 15 | 20 |

14 | 19 |

13 | 18 |

12 | 17 |

86mm

Connection to the servo amplifier moduleConnector used SVM J X 5 C N 1 check pin board C N 2

29

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0V IRL ISL

Signal name

Description

Reference voltage (NOTE3) (NOTE3) Laxis phase R motor current signal Laxis phase S motor current signal Maxis phase R motor current signal Maxis phase S motor current signal Naxis phase R motor current signal Naxis phase S motor current signal Reference voltage Reference voltage +24 V power (with tolerance of +5%) +15 V power (with tolerance of +5%) +15 V power (with tolerance of +5%) +5 V power (with tolerance of +5%) Laxis phase T motor current signal(NOTE2) Reference voltage Maxis phase T motor current signa l(NOTE2) Reference voltage Naxis phase T motor current signal(NOTE2) Reference voltage

IRM (NOTE1) (NOTE3) ISM (NOTE1) (NOTE3) IRN (NOTE1) (NOTE3) ISN (NOTE1) (NOTE3) 0V 0V +24V +15V 15V +5V ITL 0V ITM 0V ITN 0V

NOTE1 If there is no axis corresponding to the SVM, no relevant signal is output. NOTE2 This signal is not output by A06B6079H3**. NOTE3 The output voltage reflects directly the actual current in the motor. To observe the output voltage, use an oscilloscope. The voltmeter position of a voltohmmilliammeter or other voltmeters cannot be used.

30

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

Currenttovoltage conversion tableServo amplifier module SVM112 SVM212/12 SVM212/20 SVM212/40 SVM312/12/12 SVM312/12/20 SVM312/12/40 SVM312/20/20 SVM312/20/40 SVM120 SVM212/20 SVM220/20 SVM220/40 SVM312/12/20 SVM312/20/20 SVM320/20/20 SVM312/20/40 SVM320/20/40 SVM140S SVM240L SVM212/40 SVM220/40 SVM340/40 SVM340/80 SVM312/12/40 SVM312/20/40 SVM320/20/40 SVM180 SVM240/80 SVM280/80 L, M axis L axis L axis L, M, N axis L, M axis L, M axis L axis L axis M axis L, M xis L axis N axis M, N axis L, M, N axis M axis L, M axis Typical applicable motor 0.5/3000 1/3000 2/2000 2/3000 3 A/V Conversion result

C3/2000 C6/2000 C12/2000 5 A/V

M axis M axis L, M axis L axis N axis N axis N axis

3/3000 6/2000 12/2000 22/1500 C22/1500 M3/3000 L3/3000

10 A/V

6/3000 12/3000 22/2000 30/1200 M6/3000 M9/3000 L6/3000 L9/3000 22/3000 30/2000 30/3000 40/3000 L25/3000 L150/2000

20 A/V

SVM1130

32.5 A/V

4.2.2Checking The Control Power Supply VoltageTable 4.2.2 Checking the Control Power Supply VoltageMeasurement item Check methodCheck pin 24V 0V 15V 0V 5V 0V 15V 0V Rating 24V5% 15%5% 5V5% 15V5%

Check Ch k on the check h h k Control power supply pins on the check C l l board. voltage

31

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

4.2.3Checking The STATUS DisplayPosition of the STATUS LEDs

STATUS

No.

STATUS display

Description The STATUS display is not on.

1.

The control power supply has not been switched on. The power supply circuit is defective. Check the voltages with the data listed in Section 4.2.2.

2.

The control power supply is waiting for a ready signal (*MCON).

3.

The servo circuit is ready to operate. The motor is supplied with power.

4. Alarm code from 01 to E is indicated.

Alarm state See Section 3.2 of Part II.

32

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

4.2.4The STATUS Display Does Not Light.

When the PSM is supplied with control power, if the SVM STATUS display does not light, check the items listed below.Table 4.2.4 Check Method and ActionNo. 1. Cause of trouble Check method Action

No control power is Check 24 V and 0 V on Ensure a secure conapplied. connector CX2. nection. The STATUS display operates on the +5V The power supply cir- power supply. Check Check the printedcirthe control power sup- cuit board. cuit is defective. ply voltage according to Section 4.2.2.

2.

4.2.5Servo Check Board

(1) General The servo check board receives the digital value used for control inside the digital servo as numerical data and converts it to an analog form. (2) Servo check board specificationsSpecification A06B6057H602 A02B0120C211 Name Servo check board (with a cable having a provision to prevent incorrect insertion) Servo adaptor board (not required for Series 0C or 15A)

(3) Connecting the servo check board When connecting the check board, always keep the NC switched off. If you do not obtain a correct waveform, install strapping on the 5 MHz side of clock pin S1 on the check board.

33

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

&Series 15B, 16, 18, 20, 21, Power Mate MODEL D, Power Mate MODEL F

NC MAIN CPU

Servo check board first and second axes

Servo check board third and fourth axes

Preventing reverse insertion cable Adaptor cable

Connector JA8A

TEST1 CN0

TEST2 CN1

To the analog spindle

Adaptor board OPTION2 JA8B Fifth to eight axes Do not mix up CN0 with CN1.

&Series 0C, 15A Preventing reverse insertion cable

Axis control board

Servo check board

(4) Location of signal outputCheck pin Signal TSAL !! TSAM !! CH1 CH2 CH3 CH4 CH5 L axis TSA CH6 M axis TSA

L axis L axis M axis M axis VCMD TCMD VCMD TCMD

(Check terminal TSAL or TSAM is not used.) (5) VCMD signal The VCMD signal is used to output a speed command. It can also be used to measure a very small vibration or uneven movement of the motor. The VCMD signal conversion mode can be switched by a parameter. Because the VCMD signal is clamped at +5 V, the waveform may become difficult to observe. In such a case, switch for easier observation.

34

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

b7 1956 2012 8X12

b6

b5 VCM2

b4 VCM1

b3

b2

b1

b0

VCM2 0 0 1 1

VCM1 0 1 0 1

Specified speed / 5V 0.9155 rpm 14 rpm 234 rpm 3750 rpm

To check small vibrations, monitor the entire vibration on the DC mode of the ascilloscope then enlarge monitor the desired range on the AC mode.

E GND VCMD GND DC mode AC mode

Enlarge

1/f

When the signal conversion result for the VCMD waveform is W (rpm/5 V), the voltage per positional shift pulse is:300 Position gain (S1) Number of positional feedback pulses/motor revolution W

Voltage (V) per positional deviation pulse =

(Example) Assume the conditions: Position gain = 30 (S1), the number of positional feedback pulses/motor revolution = 1000 pulses, and signal conversion result for the VCMD waveform = 14 rpm/5 V with 1 m/pulse) Under these conditions, if you observe E = 300 mV and 1/f = 20 ms: Voltage per positional deviation pulse = 64 mv/pulse Therefore, table vibration = 300 _ 1/64 = 4.6 m, with a vibration period of 50 Hz (6) TCMD signal The TCMD signal outputs a motor torque command. It may be different from the actual current (IR, IS) of the motor rotating at high speed, because the motor produces a back electromotive force.35

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

Maximum current 12Ap 20Ap 40Ap

Signal output for maximum current 4.44V 4.44V 4.44V

Ap/V 2.7 4.5 9

Applicable servo moter 0.5, 1/3000 2/2000, 2/3000 C3/2000, C6/2000, C12/2000 12HV, 22HV, 30HV C22/1500, C30/1200 M3/3000 3/3000, 6/2000 12/2000, 22/1500 L3/3000 M6/3000, M9/3000 6/3000, 12/3000 22/2000, 30/1200 L6/3000, L9/3000 22/3000, 30/2000, 30/3000 40/2000 L25/3000, L50/2000

80Ap

4.44V

18

130Ap

4.44V

29

Root mean square value (RMS) = TCMD signal output (Ap) _ 0.71 (7) TSA signal The TSA signal outputs a motor speed.Signal Conversion 3750 rpm/5V

If the TSA signal is clamped at 5 V, check whether the following parameter is specified.

1726 2115 Be sure to specify 0.

Not used

36

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

4.3SPINDLE AMPLIFIER MODULE

Check each item according to the procedure described below.

1. Supply control power (200 VAC) to the power supply module.

2. Check the STATUS LEDs. OK Alarm condition Part II Troubleshooting

3. Did another machine with the same software system start once? No Yes

4. Prepare and check the PMC ladder. (Refer to the specification manual).

5. Set and check the parameters for serial spindles. (Refer to the parameter manual.)

6. Check the waveform from the detector. See Section 4.4.3.

7. Release the emergency stop state.

8. Make sure that the MCC of the power supply module is on. See Section 4.1.

9. The machine starts operating in normal mode.

10. Check individual functions.

37

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

4.3.1Spindle Check Board

By connecting the check board, you can observe: Various signal waveforms. Internal data (1) Check board specification There are two types of check boards. They are not interchangeable. Select one that matches your application. For the items that vary between the two check boards, they are identified by the drawing number of the printedcircuit board.1 2 Table 4.3.1 (1) Check Board SpecificationName Applicable unit SPM2.2 to 11 TYPE I SPM2.2 to 11 TYPE II Specification A06B6078H001 A06B6072H051 Printedcircuit board drawing number A20B20010830 A20B10050740

Spindle check board

SPM15 to 30 TYPE I SPM15 to 30 TYPE II SPM11 to 30 TYPE III

(2) Check terminal output signal. (See Section 4.3.3 for details of signals.)Table 4.3.1 (2)1 Check Terminal Output Signals (A20B20010830)Check terminal LM SM CH1 CH2 CH1D CH2D VRM LSA1 EXTSC1 LSA2 EXTSC2 PAD PBD PSD Signal name Load meter signal Speedometer signal Channel 1, for internal data observation Channel 2, for internal data observation Bit 0 on channel 1, for internal data observation Bit 0 on channel 2, for internal data observation Reference voltage (2.5 VDC) Magnetic sensor output LSA signal 1 External reference signal 1 Magnetic sensor output LSA signal 2 External reference signal 2 Equivalent position coder output signal phase A Equivalent position coder output signal phase B Equivalent position coder output signal phase Z Check terminal PA1 PB1 PS1 PA2 PB2 PS2 PA3 PB3 PA4 PB4 OVR2 24V 15V 5V GND Signal name Phase A sine wave signal 1 Phase B sine wave signal 1 Phase Z signal 1 Phase A sine wave signal 2 Phase B sine wave signal 2 Phase Z signal 2 Phase A sine wave signal 3 Phase B sine wave signal 3 Phase A sine wave signal 4 Phase B sine wave signal 4 Analog override input signal DC+24V DC+15V DC+5V 0V

38

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

Table 4.3.1 (2)2 Check Terminal Output Signals (A20B10050740)Check terminal LM SM IU IV Check terminal Load meter signal PAD Speedometer signal PBD Phase U current The current is p positive when it PSD is input to the amplifier. h lifi Phase V current i i PA1 Model Conversion result PB1 SPM- 11 33. 3A/ 1V PS1 SPM- 15 50. 0A/ 1V PA2 SPM- 22 66. 7A/ 1V PB2 SPM- 26 100A/ 1V PS2 SPM- 30 133A/ 1V PA3 VDC DC link voltage signal PB3 VRM Reference voltage (2.5 VDC) PA4 MSA1 Magnetic sensor output MSA signal 1 PB4 LSA1 Magnetic sensor output LSA signal 1 OVR2 EXTSC1 External reference signal 1 24V MSA2 Magnetic sensor output MSA signal 2 15V LSA2 Magnetic sensor output LSA signal 2 5V EXTSC2 External reference signal 2 GND Signal name Signal name Equivalent position coder signal phase A Equivalent position coder signal phase B Equivalent position coder signal phase Z Phase A sine wave signal 1 Phase B sine wave signal 1 Phase Z signal 1 Phase A sine wave signal 2 Phase B sine wave signal 2 Phase Z signal 2 Magnetic sensor output LSA signal 1 Phase B sine wave signal 3 Phase A sine wave signal 4 Phase B sine wave signal 4 Analog override input signal DC+24V DC+15V DC+5V DC 0V

(3) Connecting the check board 1 Connecting the check board (A20B20010830)

JX4

JY1 Spindle amplifier module Spindle check JY1A JX4A board JY1B JX4B

To power magnetics cabinet (as required) Position coder signal output To power magnetics cabinet (as required) Load meter output Speedometer output Analog override input

39

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

2

Connecting the check board (A20B10050740)

JX4

JY1 Spindle amplifier module Spindle check board

JY1A JX4 JY1B

To power magnetics cabinet (as required) Load meter output Speedometer output Analog override input

(4) Check terminal arrangement 1 Check terminal arrangement (A20B20010830)

JY1A fPIL fLSA2 f EXTSC2 f PAD f PBD f PSD f 5V f 15V f-15V Switch 7segment display

JX4A

LM f SM f VRM f 0V F PA2 f PB2 f PS2 f 0V F

f CH1 f CH1D f EXTSC1 f CH2 CH2D f F 0V PA3 f f PA1 PB3 f f PB1 PA4 f f PS1 PB4 f F 0V OVR2 f LSA1f

JY1B

JX4B

40

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

2

Check terminal arrangement (A20B10050740)

JY1A fPIL fLSA2 f MSA2 7segment display

JX4

LM f SM f VRM f 0V F PA2 f PB2 f PS2 f 0V F

f IU LSA1f MSA1f f IV f VDC F 0V f PA1 f PB1 f PS1 F 0V f OVR2

f EXTSC2 f PAB f PBB f PSB f PA4 f PB4 Switch

EXTSC1f PA3 f PB3 f 5V f 15V f 24V f

JY1B

4.3.2Checking The Control Power Supply Voltage

(1) SPM2.2 to 11 types I and IITable 4.3.2 (1) Checking the Control Power Supply VoltageCheck item Check methodCheck terminal Rating 5V^5% 15V^5% 15V^5%

C l Control power supply voltage

Ch k on the check termih h k i Check nals on the check board.

+5 0V +15V 0V 15V 0V

41

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

(2) SPM15 to 30 types I and II, SPM11 to 30 types III

Table 4.3.2 (2) Checking the Control Power Supply VoltageCheck item Check methodCheck terminal Rating 5V^5% 15%^5% 24V^5%

Control power C l supply voltage

Check Ch k on the check termih h k i nals on the check board.

+5 0V +15V 0V +24V 0V

4.3.3STATUS DisplaySTATUS display On No.Off

Description

The LED that is on is indicated in black. 1.PIL ALM ERR PIL ALM ERR PIL ALM ERR PIL ALM ERR

The PIL LED (power ON indicator) is off. The control power supply has not been switched on. The power supply circuit is defective. See Section 4.3.2. For about 1.0 s after the control power supply is switched on, the lower two digits of the ROM series No. are indicated. Example) 00: ROM series No. 9D00 The ROM edition number is displayed for about 1.0 s. 01, 02, 03, and so on correspond to A, B, C, and so on, respectively. Example) 04: ROM edition D The CNC has not been switched on. The machine is waiting for serial communication and parameter loading to end. Blinking

2. 3.

4.

5.

PIL ALM ERR PIL ALM ERR PIL ALM ERR

Parameter loading has ended. The motor is not supplied with power. The motor is supplied with power.

6.

7.

Alarm codes 01 or above is displayed.PIL ALM ERR

Alarm state The SPM is not operable. See Section 3.3 of Part II.

8.

Error code 01 or above is displayed.

Error state Incorrect parameter setting or improper sequence. Refer to the parameter manual.

42

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

4.3.4The PIL LED (power ON indicator) Is Off.

When the power supply module is supplied with control power, if the PIL LED on the spindle amplifier module is off, check according to the table below.Table 4.3.4 Check Method and ActionNo. 1. Cause of trouble Check method Action

Control power is not sup- Check for 24 V and 0 V on Ensure a secure plied. connector CX2. connection. The power supply circuit The PIL LED operates on Check the printed is defective. +5 V. Check the control circuit board. power supply voltages with the values described in section 4.3.2.

2.

4.3.5The STATUS Display Is Blinking With

After the CNC has started up, if the STATUS display is still blinking with , check according to the table below.Table 4.3.5 Check Method and ActionNo. Cause of trouble Check method Action

1.

When only one SPM is Check the switch setting. Set DIP switch S1 available, the setting is to OFF. such that two SPMs are connected. (SPM15 to 30). The CNC has not been Check the parameters. Set the parameset in such a way that Refer to the parameter ters correctly. series (serial spindle) can manual. be used. The CNC has not been Be careful that the speci- Check the conconnected. fication of the electricto nection and specielectric interface cable is fication. different from that of the I/O link adaptor cable.

2.

3.

43

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

4.3.6Checking The Feedback Signal Waveform

The measurement positions and connector connections vary from one detector configuration to another. Check the waveform with Table 4.3.4. The check terminals are on the check board. Do not observe the feedback signal before the parameters for the detectors are set. Phase A, B, and Z signals are not output until the parameters are loaded from the CNC.Table 4.3.6 Check Terminals by Detector Configuration

No.

Detector Pulse generator

Motor speed p feedback signal

Cs contour controlPosition feedback signal Onerotation signal Motor speed Spindle position Connector connection

PA1,PB1 PAD,PBD MSA1 PA1,PB1 PA1,PB1 PSD LSA1 PS1 EXTSC1 PA2,PB2 PA1,PB1 PA2,PB2 PS1 Z (NOTE2) PSD PA3,PB3 PA4,PB4 PA2,PB2 Z(NOTE2) PSD PA4,PB4 PAD,PBD PA1,PB1 PAD,PBD MSA1 PA2,PB2 PAD,PBD MSA2 PA1,PB1 PA1,PB1 PSD LSA2 PS1 EXTSC1 PA2,PB2 PA2,PB2 PS2 EXTSC2 PSD LSA1 PSD PA3,PB3 PA3,PB3 PA3,PB3

JY2 JY4 JY3 JY2 JY3 JY5 (NOTE1) JY2 (NOTE1) JY5 JY2 JY5 JY2 JY4 JY2 JY4 JY3 JY6 JY8 JY7 JY2 JY3 JY6 JY7

1. 1

Position coder Magnetic sensor Builtin sensor External reference signal Pulse generator

2. 2

3.

Separate builtin sensor (spindle) Highresolution magnetic pulse PA2,PB2 coder (builtin motor) Highresolution magnetic pulse PA1,PB1 coder (motor) Highresolution magnetic pulse coder (spindle) Highresolution magnetic pulse PA1,PB1 coder (motor) Highresolution magnetic pulse coder (spindle) Pulse generator MAIN Position coder side (NOTE 3) Magnetic sensor Pulse generator SUB side Position coder (NOTE 3) Magnetic sensor Builtin sensor MAIN id side External reference (NOTE 3) signal Builtin sensor SUB side (NOTE 3) External reference signal

4.

5. 5

6.

7. 7

8. 8

NOTE1 Position where the connector for SPM2.2 to 11 is connected. For SPM15 to 30, see the table below.

44

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

Table 4.3.6 Check Terminals by Detector Configuration (continued)No. Detector Pulse generator 9. 9 Separate builtin sensor (spindle)Motor speed p feedback signal

Cs contour controlPosition feedback signal Onerotation signal Motor speed Spindle position Connector connection

PA1,PB1 PA2,PB2 PS2

JY2 JY6

NOTE2 Check terminal Z is on the preamplifier printedcircuit board. The PSD signal is a square wave produced from the Z signal (analog waveform). It is on the check board. NOTE3 All output signals are for the currently selected spindle (MAIN or SUB). (1) Motor speed feedback signal (pulse generator) Measurement conditions Direction of rotation: Normal (CCW), reverse (CW) Motor speed : 1500 rpmNo. 1. Measurement location PA1,PB1 (PA2, PB2 for the sub spindle) Vs VRM (2. 5V) 0VMake sure that the measurement meets the standard.

Sample waveform

Vo

Measurement item

Standard

Vs ampli- 0.64 to 0.90V tude Vo offset 2.5V 90mV Measure with a digital voltmeter in the DC range.

45

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

(2) Motor speed feedback signal (for other than builtin sensor 0.5) Measurement conditions Direction of rotation: Normal (CCW), reverse (CW) Motor speed : 1500 rpmNo. 1. Measurement location PA1,PB1 (PA2, PB2 for the sub spindle) Ripple 70mV max. Sample waveform

Vs

VRM (2. 5V) 0V PA1 (PA2) 0V PB1 (PB2) 0V

Vo

Adjust the mounting position of the detector so that the ripple in the output signal does not exceed 70 mV.Make sure that the measurement meets the standard.

Measurement item

Standard

Vs ampli- 0.66 to 0.93V tude

Detection gear CWMotor

Vo offset

2.5V 272mV

Measure with a digital voltmeter in the DC range. When the motor is rotating clockwise (CW) as viewed from the detection gear side

phase 903 difference

2.

PS1 (PS2 for the subspindle) Vs VRM (2. 5V) 0VMake sure that the measurement meets the standard.

Vo

Measurement item

Standard

Vs ampli- 1.08 to 2.40V tude Vo offset 2.5V 500mV Measure with a digital voltmeter in the DC range.

46

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

(3) Motor speed feedback signal Measurement conditions Direction of rotation: Normal (CCW), reverse (CW) Motor speed: 1500 rpmNo. 1. Measurement location PA1,PB1 (PA2, PB2 for the sub spindle) Ripple 70mV max. Sample waveform

Vs

VRM (2. 5V) 0V PA1 (PA2) 0V PB1 (PB2) 0V

Vo

Adjust the mounting position of the detector so that the ripple in the output signal does not exceed 70 mV.Make sure that the measurement meets the standard.

Measurement item

Standard

Vs ampli- 0.50 to 1.45V tude

Detection gear CWMotor

Vo offset

2.5V 295mV

Measure with a digital voltmeter in the DC range. When the motor is rotating clockwise (CW) as viewed from the detection gear side

phase 903 difference

2.

PS1 (PS2 for the subspindle) Example 1

Example 2

Vs VRM (2. 5V) 0VMake sure that the measurement meets the standard. If the Vs amplitude is not less the 2 V, the waveform may be clamped. Measure with a digital voltmeter in the DC range.

Vo

Measurement item

Standard

Vs ampli- 2V min. tude

Vo offset

2.5V 500mV

47

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

(4) Cs contour control feedback signal (motor speed feedback signal, spindle position feedback signal) The preamplifier was factoryset, but you should check its waveform after it is mounted on the machine. If it does not meet the standard, you must readjust it. After mounting the sensor, check the waveform before you mount the pulley, draw bar, brake, etc. Direction of rotation: Normal (CCW), reverse (CW) Motor speed: 1500 rpmNo. 1. Measurement location Motor speed feedback signal (128/rev.) PA1,PB1 (PA2, PB2 for the built in type) Spindle position feedback signal (128/rev.) PA2,PB2 0VMeasurement point (The name of the potentiometer is underlined.) MeasureM ment item Standard If the measurement does not meet the standard, adjust by turning the potentiometer on the preamplifier. PA1(PA2) : A3G PB1(PB2) : B3G Measure with a digital voltmeter in the DC range. PA1(PA2) : A30 PB1(PB2) : B30

Sample waveform

Vs VRM (2. 5V) Vo

Vs ampli- 0.86 to 1.20V tude Vo offset 2.5V 24mV

2.

Spindle position feedback signal (90,000/rev.) PA3,PB3 Motor speed feedback signal (90,000/rev.) PA4,PB4 0V

Vs VRM (2. 5V) Vo

Measurement point (The name of the potentiometer is underlined.) M Measurement item Standard If the measurement does not meet the standard, adjust by turning the potentiometer on the preamplifier. PA3(PA4) : A1G PB3(PB4) : B1G Measure with a digital voltmeter in the DC range. PA3(PA4) : A1O PB3(PB4) : B1O

Vs ampli- 1.20 to 1.51V tude Vo offset 2.5V 15mV

48

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

No. 3.

Measurement location 1. Onerotation signal Z Observe the waveform between the check terminal Z on the preamplifier and VRM.

Sample waveform Z2 Z1

VRM (2. 5V)

Measurement item

Standard Z18Z2 Z1,Z2 y60mV

Measurement point (The name of the potentiometer is underlined.)

Z1,Z2

If the measurement does not meet the standard, adjust by turning potentiometer ZO on the preamplifier.

B1O B1G A3O A3G B3O B3G

A1O A1G ZO Z VRM 0V 5V f f f f CN0 CN1 CN2

Table 4.3.4 (d) Preamplifier PrintedCircuit Board

4.3.7Observing The Internal Data

(1) Overview By using the check board, you can convert digital signals used for control in the spindle amplifier module to analog voltage, and observe the conversion result with an oscilloscope. The internal data can be indicated also with the fivedigit display. D A20B20010830 This model has two analog output channels (CH1 and CH2) at which the internal data (with output of 5 V to +5 V) can be observed. It also has CH1D and CH2D at which specific bits such as data bits can be observed. D A20B10050740 This model outputs internal data (output of 0 to 11 V) at terminals LM and SM using the analog output circuit for the load meter (LM) and speedometer (SM).

49

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

(2) Major characteristicsApplicable module Printedcircuit board Item SPM2.2 to 11 TYPE I SPM2.2 to 11 TYPE II A20B200010830 Measurement point Output voltage range Resolution CH1,CH2 5V to 5V About 38mV (10V/256) SPM15 to 30 TYPE I SPM15 to 30 TYPE II SPM11 to 30 TYPE III A20B10050740

CH1D,CH2D LM,SM H :2Vmin L :0.8Vmax 10kmin 0V to 11V About 43mV (11V/256) 10kmin

Input impedance of the external measur- 10kmin ing instrument

(3) Observation method By setting data using four DIP switches on the check board, you can output internal data to the fivedigit display, analog voltage output circuit, channels 1 and 2 (LM and SM or CH1 and CH2). Data on channels 1 and 2 is the one from an 8bit D/A convertor. The correspondence between channel 1/2 and the check terminal is listed below.Check terminal Measurement point Channel 1 Channel 2 Printedcircuit board A20B20010830 CH1 CH1D, data bit 0 CH2 CH2D, data bit 0 A20B10050740 LM SM

NOTE When using printedcircuit board A20B10050740, set DIP switches S2 and S3 on the spindle amplifier module front panel to OFF. After observation, set them to ON. This operation is not necessary when you use printedcircuit board A20B20010830.

DIP switch S2, S3

ON position

OFF position

Output voltage is filtered out. Output voltage is not filtered out.

(4) Specifying data to be monitored 1 Press the four setting switches at the same time for at least a second.HFFFFFIwill be displayed on the indicator.

50

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

Turn off the switches and press theHMODEIswitch.Hd-00Iwill be displayed on the indicator and the system will enter the mode for monitoring internal data. In this mode, the motor can be operated normally. 3 Press theHUPIorHDOWNIswitch while holding down theHMODEIswitch. The indicator display will change in the range ofHd-00ItoHd-12I. 4 The following shows the correspondence between the destinations of the internal data of the serial spindle and addresses d-01 to d-12. d-01 to d-04 : Specifies the amount of data to be output to the indicator, data shift, and output format (decimal or hexadecimal). d-05 to d-08 : Specifies the amount of data to be output to the LM terminal, data shift, and whether an offset is provided. d-09 to d-12 : Specifies the amount of data to be output to the SM terminal, data shift, and whether an offset is provided. 5 Select address d-xx in the procedure for setting data described in (3). 6 Turn off theHMODEIswitch. Hd-xxIwill disappear 0.5 second later, and the data will be displayed for a second. Change the set data using theHUPIorHDOWNIswitch within the second the data is displayed. 7 When more than a second elapses without pressing theHUPIorHDOWNIswitch, data cannot be changed. If theHMODEIswitch is turned on or off, however, setting can be started from the beginning of the step in item (6). (5) Description of Addresses2

[Output to the indicator]Address d01 d02 d03 Description Specifies a data number. Shift at data output (0 to 31 bits) Data shift direction 0 : Data is shifted right. 1 : Data is shifted left. Display format 0 : Decimal notation 1 : Hexadecimal notation(0 to F) Initial value 0 0 0

d04

0

51

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

[Output to the channel 1]Initial value Address Add Description D i i Printedcircuit board (output terminal name) A20B20010830 (CH1) d05 d06 d07 Specifies a data number Shift at data output (0 to 31 bits) Data shift direction 0 : Data is shifted right 1 : Data is shifted left Offset 0 : Not provided 1 : Provided 218 8 0 A20B10050740 (LM) 132 0 0

d08

1

0

[Output to the channel 2]Initial value Address Add Description D i i Printedcircuit board (output terminal name) A20B20010830 (CH2) d09 d10 d11 Specifies a data number Shift at data output (0 to 31 bits) Data shift direction 0 : Data is shifted right 1 : Data is shifted left Offset 0 : Not provided 1 : Provided 19 18 0 A20B10050740 (SM) 131 0 0

d12

1

0

(6) Principles in Outputting the Internal Data of the Serial Spindle The length of data is 32 bits (BIT31 TO BIT00) unless it is described as 16 bits.

BIT31

&&&&

BIT03

BIT02

BIT01

BIT00

1

Example of output to the indicator

Example1 Displaying data in decimal When the number of digits to shift data (d-02)=0 and display format (d-04)=0 (decimal notation): The last 16 bits of data (BIT15 to BIT00) are converted into decimal (0 to 65535 max.) and displayed.

52

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

BIT15

&&&&

BIT01

BIT00

16 bits Converted into decimal data and displayed Indicator X X X X X

Example2 Displaying data in hexadecimal When the number of digits to shift data (d-02)=0 and display format (d-04)=1 (hexadecimal notation): The last 16 bits of data (BIT15 to BIT00) are converted into hexadecimal (0 to FFFFF max.) and displayed.BIT15 &&&& BIT01 BIT00

16 bits Converted into hexadecimal data and displayed Indicator X X X X (The fifth digit is blank.)

Example3 Shifting data left When the number of digits to shift data (d-02)=3, the shift direction is left (d-03=1), and display format (d-04)=1 (hexadecimal notation): Data in BIT12 to BIT00 and the last three bits of data (=0) are converted into hexadecimal (0 to FFFFF max.) and displayed.BIT12 &&& BIT01 BIT00 0 0 0

16 bits Converted into hexadecimal data and displayed Indicator X X X X (The fifth digit is blank.)

Example4 Shifting data right When the number of digits to shift data (d-02)=5, shift direction is right (d-03=0), and display format (d-04)=0 (decimal notation): Data in BIT20 to BIT05 is converted into decimal (0 to 65535 max.) and displayed.BIT20 &&&& BIT06 BIT05

16 bits Converted into decimal data and displayed Indicator X X X X X

53

4. CONFIRMATION OF 4. THE OPERATION

STARTUP PROCEDURE

B65165E/01

Example5 Shifting data right when the data length is 16 bits When the data length is 16 bits, data shift (d-02)=5, shift direction is right (d-03=0), and display format is decimal notation (d-04=0): The first five bits of data and data in BIT15 to BIT05 are converted into decimal and displayed.

0

0

0

0

0

BIT15

&&&

BIT05

16 bits Converted into decimal data and displayed Indicator X X X X X

Example of output to the channel 1 Internal data is output to channel 1 by setting it in an 8bit D/A convertor. The output range of the D/A convertor varies from one printedcircuit board to another. The output ranges from 5 V to +5 V (printedcircuit board A20B20010830) or from 0 V to +11 V (printedcircuit board A20B10050740) according to the internal data that is set. See the table below.2Internal data in binary (decimal) 00000000(1110) 11111111(1255) 10000000(-128) 00000000(1110) 01111111(1127) Setting d08 (whether there is offset) 0 0 1 1 1 Output on channel 1 Printedcircuit board A20B20010830 5V +4.96V 5V 0V +4.96V A20B10050740 0V +11V 0V +5.5V +11V

Example1 Data set When the number of digits to shift data (d-06)=0 and when no offset is provided (d-08=0): The last eight bits of data (BIT07 to BIT00) is set in the D/A converter of the LM terminal.

BIT07

BIT06

BIT05

BIT04

BIT03

BIT02

BIT01

BIT00

Set in the D/A converter for channel 1 output

Example2 Shifting data left When the number of digits to shift data (d-06)=3, shift direction is right (d-07=1), and no offset is provided (d-08=0): Data in BIT14 to BIT00 and the last three bits of data (=0) are set in the D/A converter.54

B65165E/01

STARTUP PROCEDURE

4. CONFIRMATION OF THE OPERATION

BIT04

BIT03

BIT02

BIT01

BIT00

0

0

0

Set in the D/A converter for c