metaptixiaki

download metaptixiaki

of 114

description

Postgraduate thesis

Transcript of metaptixiaki

  • , 2009

    :: . ...

  • i

    5 10

  • ii

    .............................................................. 1 1: ................................................. 5 1.1 .................................................................................... 6 1.1.1 .................................................................................. 6 1.1.2 ............................................................................. 8

    1.1.2.1 .............................................. 8 1.1.2.2 ................................... 11 1.1.2.3 .............................................. 14 1.1.2.4 ...................................... 15 1.1.2.5 ........................16

    1.2 .................................................................................................. 17 1.2.1 ..................................................................... 17 1.2.2 Cauchy............................................................... 18 1.2.3 .................................................................................. 19 1.2.4 Piola Kirchhoff............................21 1.2.5 ................................................................................ 23 1.2.6 Piola Kirchhoff......................... 26 1.2.7 ......................................................28 1.2.8 Cauchy ....................................... 29

    2: ............................................ 30 2.1 .................................. 31 2.2 ......................................................................................32

    3: ............................................................... 37 3.1 ..................................................................................................................38 3.2

    .....................................................................................................43

  • iii

    3.2.1 ......................................................................................43 3.2.2 .....................................................................................43 3.2.3 ............................................................................... 47 3.2.4 ............................................................................................... 49 3.2.5 -

    ....................................................... 51 3.2.6 ( )mu x,t , ( )x x,t - .................................................................... 61 3.2.7

    .................................................................................67 3.2.8

    ................................................................. 70

    4: .... 72 4.1 ( )mu x,t , ( )x x,t ..73 4.2.1

    PS .................................................................................................................... 80 4.2.2

    SS ......................................................................................................................80 4.2.3

    , , , , , , , , , , , , , P PP n t S y z yy zz yz w wy wzA I I I I C S S I I I A A A ..................................85

    5: ..................... 87 5.1 ........................................................................................................... 88 5.2 .....................................................................................88 5.2.1 1 .............................................................................. 88 5.2.2 2 .............................................................................. 95 5.2.3 3 .............................................................................. 99 5.3 ................................................................................................. 104 ......................................................................................... 106

  • 2

    , , . Coulomb (1784) . . St. Venant (1855) .

    St. Venant , , ( ). (). , . . / . - St. Venant- . , .

    : , St. Venant. . Wagner (1929), Kappus (1937) Marguerre (1940) Benscoter (1954) Vlasov (1963) St. Venant.

  • 3

    , . Schulz & Filippou (1998), Ladevze & Simmonds (1998) Sapountzakis & Mokos (2003) , .

    , . , . Young (1807), . Weber (1921) Cullimore (1949). , Attard (1986), .

    , . Gere (1954) . Petersen (1991) . Sapountzakis (2005) .

    30 . , - , - - . Rozmarynowski & Szymczak (1984) ( - ). .

    , . , . -

  • 4

    , . , , , ( Pai & Nayfeh, 1994) .

    . , 3, . . , . , . . . , , , . , , .

    . . , , , . , , . , 2009

  • 1 :

    6

    1.1

    Novozhilov (1953), Bathe (1996) (1998).

    1.1.1

    , t 0= , Q . 1 2 3Ox x x . P 1x , 2x , 3x . t , Q. P,

    ( )1 2 3P , , ,t . P :

    ( )1 1 1 2 3x ,x ,x ,t = (1.1.1) ( )2 2 1 2 3x ,x ,x ,t = (1.1.1) ( )3 3 1 2 3x ,x ,x ,t = (1.1.1)

    1 , 2 , 3 . . , 1-1 P P , . , :

    ( )1 1 1 2 3x x , , ,t = (1.1.2) ( )2 2 1 2 3x x , , ,t = (1.1.2) ( )3 3 1 2 3x x , , ,t = (1.1.2)

    . (1.1.1) Lagrange, . (1.1.2) Euler. Lagrange ( )1 2 3P x ,x ,x

    . Euler ( )1 2 3P , , t .

  • 1 :

    7

    t .= , . P

    1 2 3u u u= + + 1 2 3u e e e (1.1.3) , ,1 2 3e e e 1Ox , 2Ox ,

    3Ox 1u , 2u , 3u

    1 1 1u x= (1.1.4) 2 2 2u x= (1.1.4) 3 3 3u x= (1.1.4)

    ( )1 1 1 2 3u u x ,x ,x= , ( )2 2 1 2 3u u x ,x ,x= , ( )3 3 1 2 3u u x ,x ,x= 1u , 2u , 3u . . 1-1 P, P,

    1 1 1

    1 2 3

    2 2 2

    1 2 3

    3 3 3

    1 2 3

    x x x

    J 0x x x

    x x x

    =

    1 1 1

    1 2 3

    2 2 2

    1 2 3

    3 3 3

    1 1 1

    u u u1x x x

    u u uJ 1 0x x xu u u1x x x

    + = + +

    (1.1.5)

    t 0= , ,

    1u 0= , 2u 0= , 3u 0= . ( )J t 0 1= = (1.1.6)

    J , . (1.1.5), (1.1.6) J 0> , t 0 (1.1.7) . (1.1.7) 1-1 P, P / .

    [ ]X . (1.1.5), J , (deformation gradient).

  • 1 :

    8

    1.1.2

    , . , . . . , . ( ) ( ).

    1.1.2.1

    PA , ds . P 1 2 3P( x ,x ,x ) A 1 1 2 2 3 3A( x dx ,x dx ,x dx )+ + + .

    ( ) ( ) ( )2 2 21 1 1 2 2 2 3 3 3ds x dx x x dx x x dx x= + + + + + 2 2 2 2

    1 2 3ds dx dx dx = + + (1.1.8) , PA , P A ,

    ( )1 2 3P , , ( )1 1 2 2 3 3A d , d , d + + + . PA . P A

    ( ) ( ) ( )2 2 21 1 1 2 2 2 3 3 3ds d d d = + + + + + 2 2 2 2

    1 2 3ds d d d = + + (1.1.9) (1.1.2), (1.1.4), :

    1 1 1 1 1 11 1 2 3 1 1 2 3

    1 2 3 1 2 3

    u u ud dx dx dx d 1 dx dx dxx x x x x x = + + = + + +

    (1.1.10)

    2 2 2 2 2 22 1 2 3 2 1 2 3

    1 2 3 1 2 3

    u u ud dx dx dx d dx 1 dx dxx x x x x x = + + = + + +

    (1.1.10)

  • 1 :

    9

    3 3 3 3 3 33 1 2 3 3 1 2 3

    1 2 3 1 2 3

    u u ud dx dx dx d dx dx 1 dxx x x x x x = + + = + + +

    (1.1.10)

    ( )

    2 2 2 2 211 1 22 2 33 3

    12 1 2 13 1 3 23 2 3

    1 ds ds dx dx dx2

    2 dx dx 2 dx dx 2 dx dx

    = + + ++ + +

    (1.1.11)

    . (1.1.11) (strains)

    2 2 231 1 2

    111 1 1 1

    uu u u1x 2 x x x

    = + + +

    (1.1.12)

    2 2 232 1 2

    222 2 2 2

    uu u u1x 2 x x x

    = + + +

    (1.1.12)

    2 2 23 31 2

    333 3 3 3

    u uu u1x 2 x x x

    = + + +

    (1.1.12)

    3 32 1 1 1 2 212

    1 2 1 2 1 2 1 2

    u uu u u u u u1 12 x x 2 x x x x x x

    = + + + + (1.1.12)

    3 3 31 1 1 2 213

    1 3 1 3 1 3 1 3

    u u uu u u u u1 12 x x 2 x x x x x x

    = + + + + (1.1.12)

    3 3 32 1 1 2 223

    2 3 2 3 2 3 2 3

    u u uu u u u u1 12 x x 2 x x x x x x

    = + + + + (1.1.12)

    Green

    11 12 13

    21 22 23

    31 32 33

    = G (1.1.13)

    ij Green . (1.1.12). 21 , 31 , 32 . (1.1.12--) .

    21 12 = (1.1.14) 31 13 = (1.1.14) 32 23 = (1.1.14)

  • 1 :

    10

    T = G G (1.1.15) Green .

    PA (magnification factor of the extension of line element PA ),

    2

    A 21 dsMF 12 ds

    = (1.1.16)

    PA , 11dxnds

    = , 22 dxn ds= , 3

    3dxnds

    = , , 2ds . (1.1.11), AMF

    2 2 2A 11 1 22 2 33 3 12 1 2 13 1 3 23 2 3MF n n n 2 n n 2 n n 2 n n = + + + + +

    (1.1.17) AMF PA ( Ae )

    ( )A Ads dse ds 1 e dsds = = + (1.1.18)

    ( )2 2 22 2 2 AA 2 2 2

    1 e ds ds1 ds 1 ds ds 1MF 12 2 2ds ds ds

    + = = =

    ( )2A A A A1MF 1 e 1 e 1 2 MF 12 = + = + (1.1.19) . , 1-1 , ds 0 > . . (1.1.18) Ae 1> . (1.1.19) A

    1MF2

    > . . (1.1.19) Taylor

    2A A A

    1e MF MF ...2

    = + (1.1.20)

    . (1.1.20) AMF : AMF 1

  • 1 :

    11

    AMF () PA . , . (1.1.12), (1.1.12), (1.1.12). , 1Ox , 1n 1= , 2n 0= , 3n 0= . , . (1.1.17) 2Ax1 11 1 Ax1 11MF n MF = = , . (1.1.20)

    2Ax1 11 11

    1e ...2

    = + (1.1.21) , ( )211 111 0

  • 1 :

    12

    31 1 1 1 2 1 1 1 1 11 2 3

    1 2 3 1 2 3

    dxd u dx u dx u d u u u1 1 n n nds x ds x ds x ds ds x x x = + + + = + + +

    (1.1.26)

    32 2 1 2 2 2 1 2 2 21 2 3

    1 2 3 1 2 3

    dxd u dx u dx u d u u u1 n 1 n nds x ds x ds x ds ds x x x = + + + = + + +

    (1.1.26)

    3 3 3 3 3 3 3 3 31 21 2 3

    1 2 3 1 2 3

    d u u u dx d u u udx dx 1 n n 1 nds x ds x ds x ds ds x x x = + + + = + + +

    (1.1.26) . (1.1.18)

    ( ) ( 1.1.19 )AA A

    ds 1 ds 1ds 1 e dsds 1 e ds 1 1 2 MF 1

    = + = = + + +

    A

    ds 1ds 1 2 MF

    = + (1.1.27) . (1.1.26), (1.1.27) ()

    11 1

    31 2A1 1 2 3

    A A A

    uu u1xx xn n n n

    1 2 MF 1 2 MF 1 2 MF

    + = + + + + + (1.1.28)

    22 2

    31 2A2 1 2 3

    A A A

    uu u1xx xn n n n

    1 2 MF 1 2 MF 1 2 MF

    + = + + + + + (1.1.28)

    33 3

    31 2A3 1 2 3

    A A A

    uu u 1xx xn n n n

    1 2 MF 1 2 MF 1 2 MF

    + = + + + + + (1.1.28)

    12 , 13 , 23 2 PA , PB . , , ( P A , P B ).

    cos 1 1 cos cos = = = A B A B A Bn n n n n n A1 B1 A2 B2 A3 B3cos n n n n n n = + + (1.1.29)

  • 1 :

    13

    : PA , PB 1Ox , 2Ox . ( ) ( )A1 A2 A3n ,n ,n 1,0,0= , ( ) ( )B1 B2 B3n ,n ,n 0,1,0= , A 11MF = ,

    22MF = 90 = . . (1.1.28)

    1

    1A1

    11

    u1xn

    1 2

    + = + , 1

    2B1

    22

    uxn

    1 2

    = + (1.1.30)

    2

    1A2

    11

    uxn

    1 2

    = + ,

    2

    2B2

    22

    u1xn

    1 2

    + = + (1.1.30)

    3

    1A3

    11

    uxn

    1 2

    = + ,

    3

    2B3

    22

    uxn

    1 2

    = + (1.1.30)

    . (1.1.29) , :

    3 32 1 1 1 2 2

    1 2 1 2 1 2 1 2

    11 22

    u uu u u u u ux x x x x x x xcos

    1 2 1 2

    + + + + = + + (1.1.31) 12 (. (1.1.12)),

    12

    11 22

    2cos1 2 1 2

    = + + (1.1.32)

    : , . (1.1.19), (1.1.21)

    1111

    11 11 2

  • 1 :

    14

    12 2 1Ox , 2Ox . ij ( i j ) () 2 iOx jOx .

    ij ij2 = , i j (1.1.34) ij () .

    1.1.2.3

    , () . 1Ox , 2Ox , 3Ox . 1 2 3dV dx dx dx= . dV , : ( )T 1dx ,0,0=OA O

    ( ) 31 21 2 3 1 1 11 1 1

    d ,d ,d dx , dx , dxx x x

    = = O (1.1.35) (1.1.10) 3 . 2 , ( )T 20,dx ,0=OB ( )30,0,dx =O

    ( ) 31 21 2 3 2 2 22 2 2

    d ,d ,d dx , dx , dxx x x

    = = O (1.1.35)

    ( ) 31 21 2 3 3 3 33 3 3

    d ,d ,d dx , dx , dxx x x

    = = O (1.1.35) dV

    ( )dV = O O O (1.1.36)

  • 1 :

    15

    . , dV J dV = (1.1.37) J (. (1.1.5)).

    1.1.2.4

    dA n . dA n . ,

    ( )1 2 3dx ,dx ,dx =1n .

    ( )dV dA= 1n n (1.1.38) ( )

    1n , (, ) .

    ( )dV dA = 1n n (1.1.39)

    ( ) ( )1 2 3d ,d ,d =1n . . (1.1.5) (1.1.10) [ ] () .

    [ ] = 1 1n n (1.1.40) . (1.1.37)

    ( ) ( ) ( 1.1.40 )dV J dV dA J dA = = 1 1n n n n [ ] ( ) ( )dA J dA = 1 1 n n n n (1.1.41)

    1n ,

    [ ] ( )dA J dA = n n (1.1.42)

  • 1 :

    16

    .

    1.1.2.5

    Green . ,

    ij 1

  • 1 :

    17

    , , ( ) . , . , . , ( ) .

    1.2

    1.2.1

    , . , .. 1 1t t= .

    () 1t t= . 1Q , 2Q

    1d A

    ( )1 2 3P , , , 1n 1Q

    1 n 2Q . (traction vector) ( )1 1t n 1n , P ,

    ( ) 1 11 1 1d A 0 dlim d A= pt n (1.2.1) 1d p ()

    1d A . ,

    1Q ( 1d A , P )

    2Q . (1.2.1) ( ) ( )1 1 1 1= t n t n (1.2.2)

    Cauchy.

  • 1 :

    18

    , . . , , .

    (traction forces) , (body forces), . , . . 1d V ( )1 2 3P , , ,

    1

    11

    1d V 0

    dlimd V

    = fpf (1.2.3) 1d fp

    1d V . , 1f ( 1t ).

    1.2.2 Cauchy

    . 1d A 1Ox .

    ( )1 T T 1,0,0= =1n e , 1e 1Ox .

    11 j , j 1,2,3=

    ( )1 1t e ,

    ( ) ( )T1 1 1 111 12 13, , =1t e (1.2.4) , 2 . ( )1 11 12 13 = + + 1 1 2 3t e e e e (1.2.5) ( )1 21 22 23 = + + 2 1 2 3t e e e e (1.2.5)

  • 1 :

    19

    ( )1 31 32 33 = + + 3 1 2 3t e e e e (1.2.5) Cauchy (true or Cauchy stress tensor) 1

    11 12 13

    121 22 23

    31 32 33

    = (1.2.6)

    ij . ij , i 1,2,3= , j 1,2,3= jOx

    1d A () ie . Cauchy ( ).

    1.2.3

    , Cauchy . () ( )1 1t n Cauchy 1 , 1e , 2e , 3e 1n . , , , 1 1 1 1

    1 11 1 21 2 31 3t n n n = + + (1.2.7) 1 1 1 1

    2 12 1 22 2 32 3t n n n = + + (1.2.7) 1 1 1 1

    3 13 1 23 2 33 3t n n n = + + (1.2.7)

    ( ) ( )T1 1 1 1 11 2 3t , t , t=t n ( )1 T 1 1 11 2 3n , n , n=n . . (1.2.7)

    ( ) T1 1 1 1 = t n n (1.2.8)

  • 1 :

    20

    .

    1V ( 1t t= ), 1 1A V= . 1V , .

    1t ( 1A ) 1f ( 1V ) : ( )1 1

    1 1 1 1 1

    A Vd A d V+ = t n f 0 (1.2.9)

    . (1.2.8)

    1 1

    T1 1 1 1 1

    A Vd A d V + = n f 0 (1.2.10)

    Gauss (Gauss divergence theorem) , . (1.2.10)

    1 1 1

    T T1 1 1 1 1 1 1

    V V Vd V d V d V + = + = div f 0 div f 0 (1.2.11)

    1V , . (1.2.11)

    T1 1 + = div f 0 (1.2.12) . (1.2.12) . :

    13111 211

    1 2 3f 0

    + + + = (1.2.13) 13212 22

    21 2 3

    f 0 + + + = (1.2.13)

    113 23 333

    1 2 3f 0

    + + + = (1.2.13) ( 1 ,

  • 1 :

    21

    2 , 3 ) ( 1x , 2x , 3x ). , 1d , 2d , 3d .

    K : ( )1 1

    1 1 1 1 1

    A Vd A d V + = t n KE f KB 0 (1.2.14)

    , 1E A 1B V 1V . . (1.2.9), (1.2.13), (1.2.14) ,

    T1 1 = (1.2.15) Cauchy .

    21 12 = (1.2.16) 31 13 = (1.2.16) 32 23 = (1.2.16)

    .

    1.2.4 Piola Kirchhoff

    1 Piola Kirchhoff ( t 0= ). . (1.2.9) 1t t=

    ( )1 1 0 0

    1 11 1 1 1 1 1 0 1 0

    0 0A V A V

    d A d Vd A d V d A d Vd A d V

    + = + = t n f 0 t f 0 (1.2.17) , , ( )1 00 t n 10f

    ( ) 0 11 00 0d A 0 dlim d A= pt n (1.2.18)

  • 1 :

    22

    0

    110 0d V 0

    dlimd V

    = fpf (1.2.18) (1.2.1) (1.2.18)

    ( ) ( ) ( ) ( ) 11 0 0 1 1 1 1 0 1 10 0 0d Ad A d A d A= =t n t n t n t n (1.2.19) (1.2.3) (1.2.18)

    11 10 0

    d Vd V

    =f f 1 10 J=f f (1.2.19) . (1.1.27) 1 0d V Jd V= . (1.2.17) ( )0 0

    1 0 0 1 00 0

    A Vd A d V+ = t n f 0 (1.2.20)

    (1.2.19)

    ( ) ( ) ( )1 1T1 0 1 1 1 0 1 10 00 0d A d Ad A d A = = t n t n t n n (1.2.21) . (1.1.42) ,

    ( ) T1 0 1 1 00 J = t n n ( )1 0 1 1 00 J = t n n (1.2.22) Cauchy .

    1 Piola Kirchhoff 10 P

    1 1 10 J

    = P (1.2.23) . (1.2.22) 1 Piola Kirchhoff 0n () 0d A ( )1 00 t n , ( )1 0 1 00 0 = t n P n (1.2.24) . (1.2.20) 10 P

  • 1 :

    23

    0 0

    1 0 0 1 00 0

    A Vd A d V + = P n f 0 (1.2.25)

    Gauss ( ) ( )0 0 0

    1 0 1 0 1 1 00 0 0 0

    V V Vd V d V d V + = + = div P f 0 div P f 0 (1.2.26)

    0V , () ( )1 10 0 + = div P f 0 (1.2.27) , ( 10 ijP )

    11311 120 1

    1 2 3

    PP P f 0x x x

    + + + = (1.2.28) 12321 220 2

    1 2 3

    PP P f 0x x x

    + + + = (1.2.28) 131 32 330 3

    1 2 3

    P P P f 0x x x

    + + + = (1.2.28) 1 Piola Kirchhoff Lagrange. . (1.2.23) ( Cauchy) .

    1.2.5

    2 Piola Kirchhoff , .

    . , .

  • 1 :

    24

    1t t= . 1V , (. (1.2.21)):

    ( )1 1

    T1 1 1 1 1 1

    V Vd V d V + = + = div f 0 div f 0 (1.2.29)

    ( )

    ( ) ( )T1 1 1 11 2 3u , u , u =r (1.2.30) , (1.2.29)

    ( )1

    T1 1 1 1

    Vd V 0 + = div f r (1.2.31)

    ( ) (calculus of variations). (1.2.31) .

    ( ) T T1 1 1 1 1 1 1 = + div r div r tr r (1.2.32) . (1.2.31) :

    ( )1

    T1 1 1 1 1 1 T 1 1

    Vd V 0 + = div r tr r f r

    ( ){ }1 1

    T1 1 1 T 1 1 1 1 1 1

    V Vd V d V + = div r f r tr r (1.2.33)

    Gauss ,

    ( )1 1 1

    T T1 1 1 1 1 T 1 1 1 1 1 1

    A V Vd A d V d V + = n r f r tr r

    (1.2.34) (1.2.8)

  • 1 :

    25

    ( )1 1 1

    T T1 1 1 1 1 T 1 1 1 1 1 1

    A V Vd A d V d V + = t n r f r tr r (1.2.34)

    , (spatial virtual work equation), (spatial external virtual work) 1 extW (spatial internal virtual work) int

    1W . ,

    . , 1 , 2 , 3 ( Euler).

    1 1 r

    1 1 11 1 1

    1 2 31 1 1

    1 1 2 2 2

    1 2 31 1 1

    3 3 3

    1 2 3

    u u u

    u u u

    u u u

    =

    r (1.2.35)

    , , . . (1.2.34)

    T1 1 = ,

    T1 1 1 31 211 22 33

    1 2 3

    3 31 2 1 212 13 23

    2 1 3 1 3 2

    uu u

    u uu u u u

    = + + + + + + + +

    tr r

    (1.2.36)

    .

    ( )int1

    T1 1 1 1

    VW d V = tr (1.2.37)

  • 1 :

    26

    1 1t t=

    31 1 2 1

    1 2 1 3 1

    1 31 2 2 2

    2 1 2 3 2

    3 3 31 2

    3 1 3 2 3

    uu u u u1 12 2

    uu u u u1 12 2

    u u uu u1 12 2

    + + = + + + +

    (1.2.38)

    1 , 1 (work conjugate) () .

    1.2.6 Piola Kirchhoff

    1x , 2x , 3x , Piola Kirchhoff . , (1.2.34) 1.2.4 :

    ( )0 0 0

    T T1 0 1 0 1 T 1 0 1 1 00 0 0

    A V Vd A d V d V + = t n r f r tr P (1.2.39)

    int

    1W ,

    int0

    T1 1 1 00

    VW d V = tr P (1.2.40)

    10 P 1 .

    Piola Kirchhoff, , Green 10 G . Green ( ) Green . , , (

  • 1 :

    27

    ) ( ), .

    Piola Kirchhoff, 0d p

    1d p

    10 1 1d d = p p (1.2.41)

    (1.2.24) (1.2.18)

    10 1 1 0 00d d A

    = p P n (1.2.42) 10 P (. (1.2.23))

    10 1 1 1 0 0d J d A = p n (1.2.42)

    , 2 Piola Kirchhoff 10 S 0 0d An

    0d p .

    11 1 1 10 J

    = S 11 1 1

    0 0 = S P (1.2.43-)

    , 10 S ( 10 P ),

    T1 10 0 = S S (1.2.44)

    . (1.2.40)

    [ ]1 1 10 12 =

    G I (1.2.45)

    [ ]I 3 3 , :

  • 1 :

    28

    int0

    T1 1 1 00 0

    VW d V =

    Gtr S (1.2.46)

    10 S , 10 G ,

    ( )0 0 0

    T T1 0 1 0 1 T 1 0 1 1 00 0 0 0

    A V Vd A d V d V + =

    Gt n r f r tr S (1.2.47)

    10 S . ( )1 00 t n ext

    1W 1 Piola Kirchhoff 10 P 10 S (1.2.24).

    1.2.7

    Cauchy . 1 11 ()

    1d A 1Ox

    1d A . 1 Piola Kirchhoff

    . 10 11P 1Ox

    1d A 0d A . 0d A 1Ox

    , 1d A .

    2 Piola Kirchhoff . 1 Piola Kirchhoff . , 10 11S

    () 1d A 0d A . 1Ox

  • 1 :

    29

    , 1d A .

    , 2 Piola Kirchhoff ( ) , Cauchy 1 Piola Kirchhoff . 2 Piola Kirchhoff .

    1.2.8 Cauchy

    , . , ( 1x , 2x , 3x ) ( 1 , 2 , 3 ) , Cauchy . , (1.2.13)

    3111 210 1

    1 2 3f 0

    x x x + + + = (1.2.48)

    3212 220 2

    1 2 3f 0

    x x x + + + = (1.2.48)

    13 23 330 3

    1 2 3f 0

    x x x + + + = (1.2.48)

    (. (1.2.7)) 0 1 11 0 1 21 0 2 31 0 3t n n n = + + (1.2.49) 0 2 12 0 1 22 0 2 32 0 3t n n n = + + (1.2.49) 0 3 13 0 1 23 0 2 33 0 3t n n n = + + (1.2.49) Cauchy , .

  • 2 :

    31

    2.1

    Novozhilov (1953). : 6 (. (1.1.12)

    Green . (1.1.45) )

    3 (. (1.2.13) Cauchy . (1.2.28) 1 Piola Kirchhoff)

    ( ) :

    (

    )

    ( )

    t : 3 1u , 2u , 3u 6 11 , 22 , 33 , 12 21 = , 13 31 = ,

    23 32 = 6 , 2 Piola Kirchhoff 11S ,

    22S , 33S , 12 21S S= , 13 31S S= , 23 32S S= . [ ]X . , . 1.2, .

    15 9 ,

    . 6 ( ). . . .

  • 2 :

    32

    . .

    . . . , .

    2.2

    , , . , .

    . () (ideally elastic) () . : ,

    . .

    , . , , .

    ,

    , . . (hyperelastic) Green (Green elastic) ( )t t t t t t t t t0 11 0 22 0 33 0 21 0 12 0 31 0 13 0 32 0 23 1 2 3F F , , , , , ,x ,x ,x = = = = , Green ( )1 2 3x ,x ,x , : ( )t t t t t t t 00 11 0 22 0 33 0 12 0 13 0 23 1 2 3d W F , , , , , ,x ,x ,x d V = (2.2.1) 0 1 2 3d V d x d x d x = , t0 ij

  • 2 :

    33

    Green td W () () 0d V . F (strain energy function per unit initial volume). F ( )t t t t t t t 00 11 0 22 0 33 0 12 0 13 0 23d W F , , , , , d V = (2.2.2) , (homogeneous). . F (2.2.1) . (2.2.2) .

    . (1.2.46) 2 Piola Kirchhoff Green ( )d , ( ) ( )t t t t t t t t t 00 11 0 11 0 22 0 22 0 23 0 23 0 32 0 32d d W S d S d ... S d S d d V = + + + + (2.2.3) . (2.2.2) ( )d ,

    ( )t t t t t 00 11 0 22 0 23 0 32t t t t0 11 0 22 0 23 0 32

    F F F Fd d W d d ... d d d V = + + + +

    (2.2.4) . (2.2.3), (2.2.4) t

    0 ij t0 ij

    FS = , i, j 1,2,3 = (2.2.5-)

    6 (2.2.5-) . F (15 15 ).

    F ,

  • 2 :

    34

    ( ) ( )( )

    3 3 3 3 3 3t t t

    ij 0 ij ijkl 0 ij 0 kli 1 j 1 i 1 j 1 k 1l 1

    3 3 3 3 3 3t t t

    ijklmn 0 ij 0 kl 0 mni 1 j 1 k 1l 1 m 1 n 1

    F A B

    C ...

    = = = = = =

    = = = = = =

    = + +

    + +

    (2.2.6)

    ijA , ijklB , ijklmnC , . . (2.2.6)

    t0 ij 0 td W . , . (2.2.5) , . . (2.2.6) . (2.2.5)

    ( ) ( )3 3 3 3 3 3t t t t0 rs rsij 0 ij rsijkl 0 ij 0 kli 1 j 1 i 1 j 1 k 1 l 1

    S A B C ... = = = = = =

    = + + + (2.2.7) , . (2.2.7) A 0= (2.2.8)

    ( ) ( )3 3 3 3 3 3t t t t0 rs rsij 0 ij rsijkl 0 ij 0 kli 1 j 1 i 1 j 1 k 1 l 1

    S B C ... = = = = = =

    = + + (2.2.9)

    , t0 ij 1

  • 2 :

    35

    eD : ijd , 6 6 . ijd .

    Hooke (generalized Hookes law). Hooke

    = t e t0 0 D (2.2.11) :

    ( ) ( )t t t t t t0 11 0 22 0 33 0 12 0 13 0 23, , , , , =t0 : Cauchy. .

    ( ) ( )t t t t t t t t t0 11 0 22 0 33 0 12 0 12 0 13 0 13 0 23 0 23, , , 2 , 2 , 2 = = = =t0 : .

    eD 6 6 36 =

    ijk . , . , (anisotropic). 3 (orthotropic) , (isotropic). ijk .

    . , , eD :

    ij jik k= , i, j 1,2,3 = (2.2.12) 2

  • 2 :

    36

    ( )( )

    ( )

    11 12 12

    12 11 12

    12 12 11

    11 12

    11 12

    11 12

    k k k 0 0 0k k k 0 0 0k k k 0 0 00 0 0 1 0 0k k

    20 0 0 0 1 0k k

    20 0 0 0 0 1 k k

    2

    =

    eD

    (2.2.13)

    12k = (2.2.14) 11 12k k 2 = (2.2.14)

    () Lam , (Lam constants). :

    ( )t t t t0 11 0 11 0 22 0 331 S S SE = + (2.2.15) ( )t t t t0 22 0 22 0 11 0 331 S S SE = + (2.2.15) ( )t t t t0 33 0 33 0 11 0 221 S S SE = + (2.2.15)

    t t t0 12 0 12 0 12

    12 SG

    = = , t t t0 13 0 13 0 1312 SG = = , t t t

    0 23 0 23 0 2312 SG

    = = (2.2.15--) :

    ( )3 2E + = + : Young (elastic modulus,

    Young s modulus) G = : (shear modulus) ( )2

    = + : Poisson (Poisson s ratio) G, E,

    ( )EG

    2 1 = + (2.2.16)

  • 3 :

    38

    3.1

    , 15 15 (3 , 6 , 6 ). , , . , .

    : ,

    . , , , . , .

    , , .

    St. Venant . : , , .

    (, ). , St. Venant , , . , , .

    (torsional loading) . : Mt (torque), . Mt

  • 3 :

    39

    , . .

    . 3.1.1, - : .

    . 3.1.2, : , . , , ( ) . .

    () () 3.1.1 () . () .

  • 3 :

    40

    ()

    () ()

    3.1.2 () . () . () .

    Coulomb (1784), . . Coulomb . .

    , . St. Venant (1855)

  • 3 :

    41

    (. 3.1.3, 3.1.4). , .

    3.1.3 .

    t

    ()

    3.1.4 Saint-Venant, .

    St. Venant

    St. Venant (uniform torsion, St. Venant torsion) (. 3.1.4). . St. Venant (St. Venant shear stresses, primary shear stresses). ( ) , (non uniform torsion). St. Venant (. 3.1.4, 3.1.5). St. Venant

  • 3 :

    42

    (secondary shear stresses, warping shear stresses). , (. 3.1.6).

    3.1.5 (,

    ) ().

    (A)

    (A)

    dx

    x+dx

    x

    x+dx

    x

    S2

    k, Gk

    k, Gk

    j, Gj S1

    S

    () () ()

    3.1.6 (, ) () .

    St. Venant . (), . , , . , , ( ) . . .

  • 3 :

    43

    3.2

    3.2.1

    . , , . : ,

    ( ). .

    : . .

    : . , . , - - () .

    : , Green ij 1

  • 3 :

    44

    2006, Timoshenko & Goodier, 1951) () . ) ) ( ), .

    l , . = (. 3.2.1). E, G ( Poisson ) . C (centroids) . . S , S C . S . (center of gravity) . Sxyz , x , y z (. 3.2.1). x t ( )x x,t , .

    n t

    y

    z

    2

    1

    CS ()

    s

    P

    q

    ( ) = +

    ()

  • 3 :

    45

    x,u

    z,w

    l

    CS y,v ( ),tm x t

    ( ),wm x t

    : :

    SC

    ( ),n x t ()

    3.2.1 () ().

    ,

    Sx . , , v w ( v Sy w Sz ) . (. 3.2.2): ( ) ( ) ( ) ( ) ( )x xv x, y,z,t PP sin MP x,t sin z x,t = = = (3.2.1) ( ) ( ) ( ) ( ) ( )x xw x, y,z,t PP cos MP x,t cos y x,t = = = (3.2.1)

    2 0t =3 0t =

    +1

    ()

    1 2

    11+= = Kj j

    3u2u

    x (x, t)

    n

    t

    s

    S

    z

    y

    3.2.2

    .

  • 3 :

    46

    , , 2 3u u (Chen & Trahair, 1992): ( ) ( ) ( )( )x xv x, y,z,t z sin x,t y 1 cos x,t = (3.2.2) ( ) ( ) ( )( )x xw x, y,z,t y sin x,t z 1 cos x,t = (3.2.2)

    ,

    , 1u . St. Venant, ( ), ( ) ( ) ( )Px Su x, y,z x y,z = (3.2.3)

    ( )PS y,z - - (primary warping function). S Sxyz . , . (3.2.3) ( ) ( ) ( ) ( ) ( )P Sm x S Su x, y,z,t u x,t x,t y,z x, y,z,t = + + (3.2.4)

    ( )mu x,t - - x ( )SS x, y,z,t - - (secondary warping function).

    mu . (3.2.4) 3.2.1 (3 ). mu . .. , y,z C . (3.2.4) , . mu . , . (3.2.4) . , .

  • 3 :

    47

    3.2.3

    . (. . (1.1.45), (1.1.46)). . (3.2.1), (3.2.3) :

    SP S

    xx m x Su ux x

    = = + + (3.2.5)

    yyv 0y

    = = (3.2.5)

    zzw 0z

    = = (3.2.5) P SS S

    xy xu v zy x y y

    = + = + (3.2.5)

    P SS S

    xz xu w yz x z y

    = + = + + (3.2.5)

    yz x xv w 0z y

    = + = + = (3.2.5)

    Green (. . (1.1.12) (1.1.34)). . : ,

    x . , . ( ) . , , () .

    , , ( )u x, y,z,t x , . , , .

  • 3 :

    48

    Green :

    2 2 2 2 2

    xx xxu 1 u v w u 1 v wx 2 x x x x 2 x x

    = + + + = + + (3.2.6)

    2 2 2 2 2

    yy yyv 1 u v w v 1 v wy 2 y y y y 2 y y

    = + + + = + + (3.2.6)

    2 2 2 2 2

    zz zzw 1 u v w w 1 v wz 2 z z z z 2 z z

    = + + + = + + (3.2.6)

    xyv u u u v v w wx y x y x y x y

    = + + + +

    xyv u v v w wx y x y x y

    = + + + (3.2.6)

    xzw u u u v v w wx z x z x z x z

    = + + + +

    xzw u v v w wx z x z x z

    = + + + (3.2.6)

    yzw v u u v v w wy z y z y z y z

    = + + + +

    yzw v v v w wy z y z y z

    = + + + (3.2.6) . (3.2.2), (3.2.4)

    ( ) ( )S 2P 2 2Sxx m x S x1u y zx 2 = + + + + (3.2.7) yy 0 = (3.2.7) zz 0 = (3.2.7)

    P SS S

    xy x zy y = +

    (3.2.7)

    P SS S

    xz x yz z = + +

    (3.2.7)

    yz 0 = (3.2.7) (3.2.5), (3.2.7) :

    ,

  • 3 :

    49

    , xx .

    xx .

    ( ) ( )22 2 x1 y z2 + , x Wagner (Wagner term) (Chen & Trahair, 1992).

    3.2.4

    . . , , Green 2 Piola Kirchhoff . (2.2.15). ( . (3.2.7))

    ( )( ) ( ) ( )xx xx yy zzES 11 1 2 = + + + ( )( )S 2P 2 2Sxx m x S x1S E u y zx 2 = + + + + (3.2.8)

    ( )( ) ( ) ( )yy yy xx zzES 1

    1 1 2 = + + +

    ( )( )S 2P 2 2Syy m x S x1S E u y zx 2 = + + + + (3.2.8) ( )( ) ( ) ( )zz zz xx yyES 11 1 2 = + + +

    ( )( )S 2P 2 2Szz m x S x1S E u y zx 2 = + + + + (3.2.8) P SS S

    xy xy xy xS G S G z Gy y = = +

    (3.2.8)

    P SS S

    xz xz xz xS G S G y Gz z = = + +

    (3.2.8)

    yz yz yzS G S 0= = (3.2.8) ( )

    ( )( )E 1

    E1 1 2

    = + , ( )( )EE

    1 1 2

    = +

  • 3 :

    50

    .

    Cauchy . , . (3.2.8), . (3.2.5)

    SP S

    xx m x SE u x = + +

    (3.2.9)

    SP S

    yy m x SE u x = + +

    (3.2.9)

    SP S

    zz m x SE u x = + +

    (3.2.9)

    P SS S

    xy xG z Gy y = +

    (3.2.9)

    P SS S

    xz xG y Gz z = + +

    (3.2.9)

    yz 0 = (3.2.9)

    Poisson ( 0 = ), E E = , E 0 = . . E ( E ), yyS , zzS yy , zz , . , 0 , , . (3.2.8, 3.2.8), ( , - ).

    (Green et al.,1967). , ( ). , ,

  • 3 :

    51

    (Davi, 1990). St. Venant (Ladevze & Simmonds, 1998), . , , (Parker, 1984). , .

    3.2.5 -

    , 4 , ( )mu x,t , ( )x x,t , ( )PS y,z ,

    ( )SS x, y,z,t 12 15 (6 - 6 - ). 4 ( - ). PS , SS (. 1.2.47)). , Lagrange (. . (1.2.47)). . (1.2.46) , ( )int xx xx xy xy xz xz yy yy zz zz yz yz

    VW S S S S S S dV = + + + + + (3.2.10)

    V () . 3 . (3.2.7, , ), ( )int xx xx xy xy xz xz

    VW S S S dV = + + (3.2.11)

    (1.2.47)

    int mass extW W W + = (3.2.12)

    ( )massV

    W u u v v w w dV = + + (3.2.13)

  • 3 :

    52

    ( )ext x y zF

    W t u t v t w dF = + + (3.2.13) F () , xt , yt , zt ( ), ( ) ( t ). . (3.2.12) ( 3.2.1). . (1.2.47) massW . (3.2.13) DAlembert (Bathe, 1996).

    , . (3.2.12) . (. (3.2.11))

    P PP S S

    1 xx x S x xy xzV V

    I S dV S S dVy z

    = + + (3.2.14) Washizu (1975), x

    ( ) ( ) ( )( )( )

    l lP P

    x xx S x xx Sx 0 x 0

    lP

    x xx Sx 0

    S d dx S d dxx

    S d

    = =

    =

    = +

    (3.2.15)

    y,z . (3.2.14),

    ( )

    P Pl lxy PS S xz

    x xy xz x Sx 0 x 0

    Px xy y xz z S

    S SS S d dx dy z y z

    S n S n ds dx

    = =

    + = + + + +

    (3.2.16)

    yn cos = , zn sin = ( , = y n ) (. 3.2.1). . (3.2.14),

  • 3 :

    53

    ( )

    lxy P Pxx xz

    1 x S x xy y xz z Sx 0

    lP

    x xx Sx 0

    SS SI d S n S n ds dxx y z

    S d

    =

    =

    = + + + + +

    (3.2.17)

    2 3I ,I

    massW , extW

    lP P

    2 x S x SV x 0

    I u dV u d dx

    =

    = = (3.2.18)

    0 l lat

    P P P P3 x x S x x S x x S x x S

    F FI t dF t d t d t dF

    = = + + (3.2.18)

    0 , l ( x 0,l= ) latF ( lat 0 lF F = ). PS , , , . (3.2.17), (3.2.18)

    xyxx xzSS S u 0x y z

    + + = , ( )x 0,l (3.2.19)

    xy y xz z xS n S n t+ = , ( )x 0,l (3.2.19) PS (3.2.19). PS ( )x 0,l x 0,l= . . (3.2.17), (3.2.18) -

    ( )l

    Pres x x xx S

    x 0

    I t S d

    =

    = (3.2.20) , ( ), PS . PS . (3.2.19) , . , , , x 0 = resI .

  • 3 :

    54

    SS , . (3.2.17), (3.2.18, )

    ( )

    lxy S Sxx xz

    1 S xy y xz z Sx 0

    lS

    xx Sx 0

    SS SI d S n S n ds dxx y z

    S d

    =

    =

    = + + + + +

    (3.2.21)

    lS S

    2 S SV x 0

    I u dV u d dx

    =

    = = (3.2.21)

    0 l lat

    S S S S3 x S x S x S x S

    F FI t dF t d t d t dF

    = = + + (3.2.21)

    SS , , . (3.2.21) SS PS , . (3.2.19). , - SS .

    , , , (. (3.2.19)) (. (3.2.19)). , u . ,

    yxxx zx u 0x y z

    + + = , ( )x 0,l (3.2.22) xy y xz z xn n t + = , ( )x 0,l (3.2.22)

    , 1 (. . (1.2.48), (1.2.49)), ( )x 0,l . , , x a priori. , x ( ) , . ,

  • 3 :

    55

    .

    ( y,z ) ( Poisson ). , (St. Venant, 1855) . , y,z ( ) , ( ).

    , . (3.2.19) (1.2.28), (1.2.24) 1 Piola-Kirchhoff 2 Piola-Kirchhoff. , 1 . , . .

    . (3.2.19)

    ( )( )

    2 SP 2 2 2 P 2 SS

    m x S x x x S S2

    P Sm x S S

    E u y z G Gx

    u 0

    + + + + + + + + =

    (3.2.23)

    P S P SS S S S

    x y x z xG z G n G y G n ty y z z + + + + =

    (3.2.23)

    2 2 2 2 2/ y / z = + Laplace. . , : ( SS ) - - x

    ( 2 S

    S2x

    ). .

    resI (. . (3.2.20)):

  • 3 :

    56

    SS , . (3.2.20). , .

    (3.2.23) . St. Venant , . , PS

    2 PS 0 = (3.2.24)

    PS

    y zzn ynn = (3.2.24)

    ( )n

    n . PS , . (3.2.8, 3.2.8, 3.2.9, 3.2.9). . (3.2.24) . (3.2.23) SS

    ( )2 S P 2 2S m m x x S x xE E Eu u y zG G G G G = + + (3.2.25) SS xtn G = (3.2.25)

    . (3.2.25) PS . , . (3.2.8, 3.2.8, 3.2.9, 3.2.9) .

    (3.2.19).

    PS (. (3.2.24)) SS

  • 3 :

    57

    2 S PS m m x x S

    E Eu uG G G G

    = + (3.2.26)

    SS xtn G = (3.2.26)

    , . (3.2.25) (3.2.26). ( mu 0 = ) (. (3.2.26)) Sapountzakis & Mokos (2003). , SS (. (3.2.26)) . (3.2.26) . xt 0= , . (3.2.26) . , xt 0 .

    PS , SS , .

    SSEx

    (. . (3.2.9)) . . (3.2.2), (3.2.4) , , Oxyz ( Ox ). , ( x x , y y , z z ). , (Armenakas, 2003), ( )

    ( )Y xx CM z z d = (3.2.27)

    ( )Z xx CM y y d = (3.2.27)

    Cy , Cz Oxyz .

  • 3 :

    58

    (3.2.9)

    SSEx

    P PY x O C OM E zd z d

    = (3.2.28)

    P PZ x O C OM E yd y d

    = (3.2.28)

    . ( Px O ),

    PS d 0

    = (3.2.29)

    PS yd 0

    = (3.2.29)

    PS zd 0

    = (3.2.29)

    S Oxyz , . (3.2.29) PO .

    xxN d = (3.2.30)

    (3.2.9),

    Pm x ON EA u E d

    = + (3.2.31)

    . (3.2.29). (3.2.29, 3.2.29) , . (3.2.29) (3.2.24) PS Neumann (, 1999) . . (3.2.29).

  • 3 :

    59

    Oy ,Oy Oz Oz . PS , PO . . (3.2.24)

    ( ) ( )P PS O S Sy,z y,z y z z y c = + + (3.2.32) Sy , Sz S Oxyz ( Sy y y= , Sz z z= ) c . . (3.2.29) . (3.2.32)

    y S z S wS y S z Ac A + = (3.2.33) yy S yz S y wzI y I z S c A + = (3.2.33) yz S zz M z wyI y I z S c A + = (3.2.33)

    A d

    = yS zd

    = zS yd

    = (3.2.34,,)

    yzI yzd

    = 2yyI z d

    = 2zzI y d

    = (3.2.34,,) P

    w OA d = Pwy OA yd

    = Pwz OA zd

    = (3.2.34,,)

    ,

    (. . (3.2.28))

    ( )Y xx CM S z z d

    = (3.2.35) ( )Z xx CM S y y d

    = (3.2.35)

    xxN S d

    = (3.2.35) 2 Piola-Kirchhoff , . (3.2.8) PS ,

    ( ) ( )2P 2 2m x O x1N EA u E d E y z d2 = + + + (3.2.36)

  • 3 :

    60

    ( ) ( )( )2P P 2 2Y x O C O x C1M E zd z d E z z y z d2 = + + (3.2.36)

    ( ) ( )( )2P P 2 2Z x O C O x C1M E yd y d E y y y z d2 = + (3.2.36)

    , . , , (. . (3.2.29)) . , . . (3.2.36) , ( ( )2x ) . , (Attard, 1986).

    . , S Sxyz ,

    SS d 0

    = (3.2.37)

    . (3.2.29). . (3.2.4)

    P Sm x S Sud u A d d

    = + + (3.2.38)

    m

    udu

    A

    =

    (3.2.39)

    . (3.2.29), (3.2.37).

  • 3 :

    61

    mu . (3.2.37). , . (3.2.39)

    mu . ( ).

    3.2.6 ( )mu x,t , ( )x x,t -

    ( )mu x,t , ( )x x,t

    ( (3.2.11)-(3.2.13)) ( 3.2.5). ,

    P PP P PS St xy xzM S z S y dy z

    = + + (3.2.40) P

    w xx SM S d

    = (3.2.40) PtM St. Venant (primary twisting moment, St. Venant twisting moment) (Sapountzakis & Mokos, 2003), P Pxy xzS ,S (primary shear stresses)

    . (3.2.8), (3.2.8) wM (warping moment). , 2 Piola-Kirchhoff Cauchy. . (3.2.35)

    ( )2Pm xI1N EA u 2 A = + (3.2.41)

    Pt t xM GI = (3.2.41) w S xM EC = (3.2.41)

    ( )2 2PI y z d

    = + (3.2.42)

  • 3 :

    62

    P P2 2 S S

    tI y z y z dz y = + + (3.2.42)

    ( )2PS SC d

    = (3.2.42) (polar moment of inertia), St. Venant (torsion constant, St. Venant torsion constant) (warping constant). . (3.2.41) .

    (3.2.8) (3.2.7) (3.2.2), (3.2.4) , mu , x . Euler-Lagrange

    ( )m NA u n x,tx = (3.2.43)

    ( )( ) ( )

    P 22t w

    P x S x PP x x P m x P m x2

    t w

    M M 3I C EI EI u EI ux 2x

    m x,t m x,tx

    = = +

    (3.2.43)

    PPI

    ( )22 2PPI y z d

    = + (3.2.44) ( )n x,t , ( )tm x,t , ( )wm x,t extW ( ) ( )xn x,t t x,t ds

    = (3.2.45)

    ( ) ( ) ( ) ( ) ( )t y x x z x xm x,t t x,t z cos y sin t x,t y cos z sin ds

    = + (3.2.45) ( ) ( ) Pw x Sm x,t t x,t ds

    = (3.2.45)

  • 3 :

    63

    . , . (1.2.24) 1 Piola-Kirchhoff. , . (3.2.43) xx xy xzS ,S ,S . .

    Euler-Lagrange ( )x 0,l .

    x 0,l= ( ) mN N u 0 = (3.2.46) ( ) ( )3Pw t PP x P m x t x1M M EI EI u M 02 + + + = (3.2.46) ( )w w xM M 0 + = (3.2.46)

    xN t d

    = (3.2.47) ( ) ( )t y x x z x xM t z cos y sin t y cos z sin d

    = + (3.2.47)

    Pw x SM t d

    = (3.2.47)

    extW . (3.2.46) ( x 0,l= ) massW .

    . (3.2.41), ( ( )x 0,l )

    ( )m m P x xA u EA u EI n x,t = (3.2.48) ( )

    ( ) ( )

    2P x S x t x S x PP x x P m x P m x

    t w

    3I C GI EC EI EI u EI u2

    m x,t m x,tx

    + = = +

    (3.2.48)

    ( . (3.2.46)) ( x 0,l= )

  • 3 :

    64

    1 2 m 3a N u + = (3.2.49) 1 t 2 x 3M + = 1 w 2 x 3M + = (3.2.49, )

    tM (twisting moment)

    ( )3t t x S x P m x PP x1M GI EC EI u EI2 = + + (3.2.50) N , wM (. (3.2.41, )) . . ia , i , i =( i 1,2,3 ) . (3.2.49) . . (3.2.49) () - . (3.2.41), (3.2.50) . , . . (3.2.48) . (3.2.48) . - (initial boundary value problem) , . (3.2.48). mu , x ( . (3.2.48) ) ( ( ) t 0, x 0,l= )

    ( ) ( )m m0u x,0 u x= ( ) ( )m m0u x,0 u x= (3.2.51, ) ( ) ( )x x0x,0 x = ( ) ( )x x0x,0 x = (3.2.51, )

    .

    , SS . ( ) .

    SS ( PS , SS

  • 3 :

    65

    3.2.5). SS massW ( 3.2.5), intW . SS intW ( S1I ) xy xzS ,S (

    SS SxyS G y

    = , S

    S SxzS G z

    = ) ( )S P S PS1 xy xy xz xz

    VI S S dV = + (3.2.52)

    P

    P Sxy x zy

    = ,

    PP Sxz x yz

    = + .

    , . (3.2.52)

    ( )Pl S 2 P S SS1 S S x S y z xx 0

    I G d zn yn ds dxn

    =

    = + (3.2.53) . (3.2.24)

    S1I 0= (3.2.54) (!).

    SS intW ( S 2I ) xxS (

    SS SxxS E x

    = )

    S PS 2 xx xx

    VI S dV= (3.2.55) ( )P P 2 2xx m x S x xu y z = + + + SxxS .

    ( )( )S P 2 2SS 2 m x S x xV

    I E u y z dVx = + + + (3.2.56)

    SS (. (3.2.25)) . S 2I

  • 3 :

    66

    x . , , S 2I . (

    SSx ) 3.2.5

    2 S

    S2 0x = .

    . SS : mu , x - (3.2.48) - (3.2.51), SS (3.2.25). , SS , . (3.2.7), (3.2.8), (3.2.4).

    , SSx

    ( ), .

    (. . Fatmi, 2007, Machado & Cortinez, 2007) (independent warping parameter). , . (3.2.4) ( ) ( ) ( ) ( )Pm x Su x, y,z,t u x,t x,t y,z = + (3.2.57)

    x x x = + x x x , .

    SS 0x

    . . (3.2.57) .

  • 3 :

    67

    St. Venant. x . Timoshenko . (

    SSx )

    .

    3.2.7

    - . (axial inertia) mA u . (3.2.48). , . . , P x xEI . (3.2.48). .

    . ( ( )n x,t 0= ) . (3.2.48)

    Pm x x

    IuA

    = (3.2.58) x

    ( )2Pm xI1 Nu 2 A EA = +

    , [ ]x 0,l (3.2.59) N - - . (axially immovable ends),

  • 3 :

    68

    ( )mu 0,t 0= ( )mu l,t 0= (3.2.60, ) N ,

    ( )l 2P x0

    EI1N x,t dx2 l

    = (3.2.61) ( )N l,t ,

    ( )mu 0,t 0= ( ) ( )N l,t N l ,t= (3.2.62, )

    ( )N N l,t= (3.2.63)

    . (3.2.58), (3.2.59) . (3.2.48)

    ( )( ) ( )

    2PP x S x t x S x n x x

    t w

    I 3I C GI N EC EIA 2

    m x,t m x,tx

    + + = = +

    (3.2.64)

    nI

    2P

    n PPII IA

    = (3.2.65) - , . (3.2.51, ), , . (3.2.49, ). (3.2.50)

    ( )3Pt t x S x n xI 1M GI N EC EIA 2 = + +

    (3.2.66) . (3.2.64), (3.2.66) :

    nI . (

  • 3 :

    69

    ) ( Taylor )

    , . (3.2.64) Rozmarynowski & Szymczak (1984) . N 0 .

    , . (3.2.64) . () ( ). , nI .

    , ,

    , . (3.2.24). ( mA u 0 , ( )n x,t 0= ) . (3.2.58) . (3.2.25), ( ( )SS red . )

    ( ) ( ) ( )2 S 2 2 PPS x x x x Sred . IE Ey z y,zG A G G = + (3.2.67) ( )SS red . 0n

    = (3.2.67)

    3.2.6 xt 0= ( ),

    xt 0 . ,

    ( )2 S PS li n x x SE y,zG G = (3.2.68)

    SS li n 0n

    = (3.2.68)

  • 3 :

    70

    3.2.8

    : 1. Oxyz

    (3.2.24) ( )PO y,z .

    2. 3 3 . (3.2.33), . (3.2.34) Oxyz . S Sy ,z Oxyz Sxyz . . .

    3. (3.2.24) ( )PS y,z ( Sxyz ) . (3.2.29).

    4. P t S PP nI ,I ,C ,I ,I . (3.2.42), (3.2.44), (3.2.65).

    5. - . (3.2.48) - (3.2.51) ( )mu x,t , ( )x x,t . 4 - - , - mu , x . 3.2.7, - . (3.2.64), (3.2.51, ), (3.2.49, ) ( )x x,t . ( )mu x,t x . (3.2.59). - . ( ) .

    6. ( )SS x, y,z,t ( y,z ) (3.2.25) . (3.2.29). 3.2.7,

  • 3 :

    71

    . (3.2.67). (3.2.26) . (3.2.68) 3.2.7.

    7. . (3.2.8).

    3.2.6, SSx

    . , . 8. . (3.2.7).

    3.2.6, SSx

    . 9. . (3.2.2), (3.2.4).

  • 4 :

    73

    4.1 ( )mu x,t , ( )x x,t

    3,

    ( )mu x,t , ( )x x,t - . (3.2.48) - (3.2.51). , . ( 0 x l ) ( 0 t < ). (MAE) (Analog Equation Method (AEM), Katsikadelis (2002)) () (Boundary Element Methods, BEM).

    ( ) ( )1 mu x,t u x,t= , ( ) ( )2 xu x,t x,t= . x 1u ,

    2u ,

    ( )2 1 12u q x,tx = ( )

    42

    24u q x,tx

    = (4.1.1, ) ( ),iq x t , ( )i 1,2= / (fictitious loads / fictitious load distributions). . (4.1.1) . . (4.1.1) (Sapountzakis & Katsikadelis, 2000)

    ( )x l*l

    * * 1 11 1 1 1 1

    0 x 0

    u duu x,t q u dx u ux dx

    =

    =

    = (4.1.2)

    ( )l3 * 2 2 * 3 *l

    * * 2 2 2 2 2 22 2 2 2 23 2 2 3

    0 0

    u du u d u u d uu x,t q u dx u udx xx x dx dx

    = + (4.1.2) *1u ,

    *2u (fundamental solutions)

    *1

    1u r2

    = 3 2

    * 32

    1 r ru l 2 312 l l

    = + (4.1.3, )

    r x = , x , . *1u , *2u (particular singular solutions)

  • 4 :

    74

    ( )2 *12d u xdx = ( )4 *

    24

    d u xdx

    = (4.1.4, ) ( )x ( ) Dirac (, 1999). . (4.1.3) (4.1.2)

    ( )ll

    11 1 2 2 1 1

    0 0

    u1 1u x,t q ( r ) l dx ( r ) l ( r )u2 2 x

    = + + + (4.1.5)

    ( )l3 2l 2 2 2

    2 2 4 4 3 2 1 23 200

    u u uu x,t q ( r )dx ( r ) ( r ) ( r ) ( r )uxx x

    = + + + (4.1.5) (kernels) , j ( r ) ( j 1,2,3,4 ) = (Sapountzakis, 2000)

    11 r( r ) sgn2 l

    = (4.1.6)

    21 r( r ) l 12 l

    = (4.1.6) 2

    31 r r r( r ) l 2 sgn4 l l l

    = (4.1.6) 3 2

    34

    1 r r( r ) l 2 312 l l

    = + (4.1.6)

    . (4.1.5) r x = , x , ( )0,l , r x = , ( )x 0,l , 0,l = . 1 2u ,u -

    ( ),iq x t . , x . (4.1.5) iu

    ( ) x ll1 11 1 10

    x 0

    u x,t uq ( r )dx ( r )x x

    =

    = = (4.1.7)

    ( ) ( )2 1 12u x,t q x,tx = (4.1.7)

    ( ) l3 2l2 2 2 22 3 3 2 13 20

    0

    u x,t u u uq ( r )dx ( r ) ( r ) ( r )x xx x

    = + + (4.1.7)

  • 4 :

    75

    ( ) l2 3 2l2 2 22 2 2 12 3 20

    0

    u x,t u uq ( r )dx ( r ) ( r )x x x

    = + (4.1.7)

    ( ) l3 3l2 22 1 13 30

    0

    u x,t uq ( r )dx ( r )x x

    = (4.1.7) ( ) ( )4 2 24u x,t q x,tx

    = (4.1.7)

    , . ( )0,l L ( ) iq - x - ( , , , ) (. . (4.1.1)). , iq (nodal point) . .

    4.1.1 l .

    / . (4.1.5), (4.1.7) , ,

    ( ) ( ){ }Ti i i u 0,t u l ,t=u , ( )i 1,2= (4.1.8) ( ) ( ) Ti i

    i xu 0,t u l ,t ,

    x x =

    u , ( )i 1,2= (4.1.8) ( ) ( ) T2 22 2

    2 xx 2 2u 0,t u l ,t ,

    x x

    = u (4.1.8)

  • 4 :

    76

    ( ) ( ) T3 32 22 xxx 3 3

    u 0,t u l ,t ,x x

    = u (4.1.8)

    { }Ti i ii 1 2 Lq q ... q=q (4.1.8) , ,

    { }T1 1 1 1 x ,=d q u u (4.1.9) { }T2 2 2 2 x 2 xx 2 xxx , , ,=d q u u u u (4.1.9)

    2L 12+ - 1d ( L 4+ ) 2d ( L 8+ ).

    ( )iu ,t , ( )i xu , ,t , ( )2 xxu , ,t ( )2 xxxu , ,t ( 0,l = )

    iq , (4.1.5, ), (4.1.7) x 0,l= , (. . (3.2.49)) 0,l .

    1

    1 12 13 1nl2122 23 1 x

    3 35 36 37 38 2

    4 46 47 48 2nl nl55 56 58 2 x 52 53

    66 67 2 xx

    2 xxx

    ,

    , , ,

    +

    q0 0 0F E E 0 0 0 0 0 u

    0 0D0 D D 0 0 0 0 0 u0 0 0 F E E E E q 0 0 00 0 0 F 0 E E E u 0 0 00 0 0 0 D D 0 D u 0 D D0 0 0 0 0 D D 0 u 0 0 0

    u

    2 32

    32

    1 23

    3

    =

    0u0

    u0

    u u

    (4.1.10) 22D , 23D , 55D , 56D , 58D , 66D , 67D ,

    nl21D ,

    nl52D ,

    nl53D 2 2

    j j ja , , ( j 1,2= ) , 3 , 3 , 3 2 1 , , 3 3 3a , 12E , 13E , 35E ,

    36E , 37E , 38E , 46E , 47E , 48E 2 2 j ( r ) ( j 1,2,3,4 )= , , 1 3 4F F F 2 L . ,

  • 4 :

    77

    , j ( r ) ( j 1,2,3,4 ) = (, 2007) . j j ja , , ( j 1,2,3= ) , , . (4.1.10) . , . (4.1.10)

    ( ) ( ) T2 2

    2 222

    u 0,t u l ,t

    x x

    = u (4.1.11)

    ( ) ( ) T3 3

    2 232

    u 0,t u l ,t

    x x

    = u (4.1.11)

    ( ) ( ) ( ) ( ) T

    1 2 1 21 2

    u 0,t u 0,t u l ,t u l ,t x x x x

    = u u (4.1.11)

    . (4.1.5), (4.1.7) (3.2.48) . ,

    01 1 1 0 1 1 1 x ,= + +u A q C u C u (4.1.12)

    11 x 1 1 0 1 x, ,= +u A q C u (4.1.12) 1 xx 1, =u q (4.1.12)

    02 2 2 0 2 1 2 x 2 2 xx 3 2 xxx , , ,= + + + +u A q C u C u C u C u (4.1.12)

    12 x 2 2 0 2 x 1 2 xx 2 2 xxx , , , ,= + + +u A q C u C u C u (4.1.12)

    22 xx 2 2 0 2 xx 1 2 xxx , , ,= + +u A q C u C u (4.1.12)

    32 xxx 2 2 0 2 xxx, ,= +u A q C u (4.1.12) 2 xxxx 2, =u q (4.1.12)

    , ji1 2A A ( i 0, 1)= , ( j 0, 1, 2, 3 )= L L ; 0C , 1C , 1C ,

    2C , 3C L 2 iu , i x,u , i xx,u , i xxx,u , i xxxx,u ( )iu x,t L . . (4.1.12)

    01 1 1=u H d (4.1.13)

  • 4 :

    78

    11 x 1 1, =u H d (4.1.13)

    02 2 2=u H d (4.1.13)

    12 x 2 2, =u H d (4.1.13)

    22 xx 2 2, =u H d (4.1.13)

    32 xxx 2 2, =u H d (4.1.13)

    , ji1 2H H ( i 0, 1)= , ( j 0, 1, 2, 3 )= ( )L L 4 + ( )L L 8 + i1A ,

    j2A , 0C , 1C , 1C , 2C , 3C .

    (3.2.48) - L ( ) . (4.1.13) 2L (semidiscretized equations of motion)

    ( ), , , = 1 jnl i1 1 1 2222

    + + dd

    M K k H H d d fdd

    (4.1.14)

    nlk , , M K f ,

    01

    0 2P 2 S 2

    A

    I C

    = H 0

    M0 H H

    (4.1.15)

    2t 2 S

    EA

    GI EC

    = + I0 0

    K0 H I0

    (4.1.15)

    { } { }( ) { }( )nl 1 2P 2 2 2 2i i iEI= k H d H d (4.1.15) { } { } { }( ) { }( ) { }( )

    { } { }( ) 2

    nl 1 2 1 2PP 2 2 2 2 P 1 1 2 2L i i i i i

    1P 1 2 2i i

    3 EI EI2

    EI

    + =

    k H d H d H d H d

    d H d (4.1.15)

    = + t wn

    fm m

    (4.1.15)

    , {}i () i

    ... ( i 1, 2, , L )= , I0 ( )L L 8 + [ ]=I0 I 0 I 0 L L L 8 . , , t wn m m L (collocation points), .

  • 4 :

    79

    wm ( )wm x,tx

    ( )wm x,t (Sapountzakis & Mokos, 2004). .

    , (4.1.13) (3.2.51, ) 2L 1d , 2d t 0=

    ( )01 1 0 = m0H d u ( )02 2 0 = 0H d (4.1.16, )

    , (4.1.10) t 0= , 2L 12+ ( ) ( )1 0d , ( )2 0d . , (4.1.13) . (3.2.51, ) - - 2L 1d , 2d t 0=

    ( )01 1 0 = m0H d u ( )02 2 0 = 0H d (4.1.17, ) , ( t 0= ) t . (4.1.10), 2L 12+ ( ) ( )1 0d , ( )2 0d . ( )1 0d , ( )2 0d ( )1 0d , ( )2 0d . (4.1.16) . (4.1.17).

    ( )1 0d , ( )2 0d , ( )1 0d , ( )2 0d (4.1.14) . Petzold - Gear (Brenan et al., 1989) . 2L 12+ ( ) (Bazant & Cedolin, 1991). . (4.1.10) , (Brenan et al., 1989). - . (3.2.49, ), (3.2.51, ), (3.2.64)

  • 4 :

    80

    . , .

    4.2.1 PS

    3, PS . (3.2.24). . ( (1999), Sapountzakis (2000), (2007), (2007)), (, 1999). ( ) (. 4.2.1). - - PS .

    j

    y

    z

    S ()

    s

    2

    j

    1

    j

    K

    4.2.1. .

    4.2.2 SS

    3, SS

  • 4 :

    81

    . (3.2.25) ( xt 0= )

    ( )2 S P 2 2S m m x x S x xE E Eu u y zG G G G G = + + (4.2.1) SS 0n = (4.2.1)

    . (4.2.1) Poisson . (, 1999)

    S S SS S p S L = + (4.2.2)

    SS p Poisson (4.2.1)

    SS p m m 1 x x p x x 1

    E E Eu u F B HG G G G G

    = + (4.2.3)

    SS L ()

    2 SS L 0 = (4.2.4)

    SSS pS L

    n n = (4.2.4)

    1 1F ,H . (4.2.3)

    2 2

    1y zF

    4+=

    4 4

    1y zH

    12+= (4.2.5, )

    pB

    2 Pp SB = (4.2.6)

    pB 0n

    = (4.2.6) . SS . (4.2.2)

  • 4 :

    82

    (4.2.1). . (4.2.3), . (4.2.4)

    SS L 1 1

    m m x xF HE Eu u

    n G G n G n = + (4.2.7)

    pB Poisson (4.2.6) , . (4.2.6) . (4.2.7). , , . (4.2.6) SC

    SS .

    . (4.2.6) (Sapountzakis & Mokos, 2003, , 2007) .

    SS () (4.2.4) . - - Sapountzakis (2000). PS

    [ ]{ } [ ] SS S LS LH G n = (4.2.8)

    { } ( ) ( ) ( ){ }TS S S SS L S L S L S L1 2 N... = (4.2.9) TS S S S

    S L S L S L S L

    1 2 N

    ...n n n n

    = (4.2.9)

    SS L

    SS Ln

    (. . (4.2.7))

    ( N ), . , . (4.2.8) [ ]H [ ]G N N . (4.2.27) Neumann (, 1999), . , Lutz et. al. (1998) (Aimi & Diligenti, 2008).

  • 4 :

    83

    , (, 1999, Strese, 1984) . (3.2.24) , , Lutz et. al. (1998) . (Lutz et. al., 1998, Aimi & Diligenti, 2008), ( Poisson) Laplace. (4.2.6), Laplace PS . , Poisson . (4.2.6) (, 1999) . , SS .

    SS (. . (4.2.2)) . (3.2.37)

    SS d 0

    = (4.2.10)

    (. . (4.2.2)) SS L

    S SS L S pdA dA

    = (4.2.11)

    SS L SS L (4.2.8), SS L

    ,

    S SS L S L c = +

    (4.2.12)

    c . . (4.2.11), c

    S SS p S L

    1c dA dAA

    = +

    (4.2.13)

    . (4.2.3), . (4.2.13)

  • 4 :

    84

    SS p m m 1 x x 1

    E EdA u u F dA H dAG G G

    = + (4.2.14)

    pB dA 0

    = (4.2.15) . (4.2.6) Neumann (4.2.14). , pB SC . , . (4.2.14)

    ( )3 31 P y z1 1F dA I y n z n ds4 12 = = + (4.2.16) ( ) ( )3 2 2 3 5 51 PP y z y z1 1 1H dA I y z n y z n ds y n z n ds12 36 60 = + = + (4.2.16)

    Green (, 1999), . (4.2.13) ( ) ( ) S S S 2 2 S 2 SS L S L S L 1 1 S L 1 S LdA 1dA F F dA F dA = = + =

    SS S L1

    S L 1F ds F dsn n

    =

    (4.2.17)

    , . (4.2.7)

    S S 1 1 1

    S L S L 1 m m x xF F HE EdA ds F u u dsn G G n G n

    = + (4.2.18)

    c . . . (4.2.12) (4.2.2). . (3.2.67) (3.2.26) (3.2.68) .

  • 4 :

    85

    4.2.3 , , , , , , , , , , , , , P PP n t S y z yy zz yz w wy wzA I I I I C S S I I I A A A

    3,

    . , , , , , , , , P PP t y z yy zz yzA I I I S S I I I Gauss (Gauss divergence theorem) (, 1999) :

    ( )y z1 y z 1A d d yn zn ds2 y z 2 = = + = + (4.2.19)

    ( ) ( ) ( ) ( )3 32 2 3 3P y zy z1 1I y z d d y n z n ds3 y z 3 = + = + = +

    (4.2.19)

    ( ) ( )( ) ( ) ( ) ( )

    22 2 4 4 2 2PP

    5 5 3 2 2 3

    5 3 2 5 2 3y z

    I y z d y z 2y z d

    y z y z y z1 1d d5 y z 3 y z

    1 1 1 1y y z n z y z n ds5 3 5 3

    = + = + + =

    = + + + = = + + +

    3 2 2 3 2 2PP y z

    1 1 1 1I y y z n z z y n ds5 3 5 3

    = + + + (4.2.19)

    ( ) ( )2 P 2 PP P S S2 2 S St

    yz z y z yI y z y z d d

    z y y z

    + = + + = +

    ( ) ( )2 P 2 Pt S y S zI yz z n y z y n ds

    = + + (4.2.19) ( )2 2

    y z

    z1 1S zd d z n ds2 z 2

    = = = (4.2.19) ( )2 2

    z y

    y1 1S yd d y n ds2 y 2

    = = = (4.2.19) ( )32 3

    yy zz1 1I z d d z n ds

    3 z 3 = = = (4.2.19)

    ( )32 3zz y

    y1 1I y d d y n ds3 y 3

    = = = (4.2.19)

  • 4 :

    86

    ( ) ( ) ( )2 2 2 2yz y zy z yz1 1I yzd d y zn yz n ds4 y z 4 = = + = +

    (4.2.19) nI . (3.2.65)

    , , , S w wy wzC A A A Green (, 1999) :

    ( ) ( ) P2P P 2 2 P SS S S p p S pC d B B d B dsn = = = (4.2.20) ( )P P P 2 2 Pw S S S 1 1 SA d 1d F F d = = =

    PP S1

    w S 1FA F dsn n

    = (4.2.20)

    ( ) PyP P 2 2 P P Swy S S y y S S yGA yd G G d G dsn n = = = (4.2.20)

    ( ) PP P 2 2 P P Szwz S S z z S S zGA zd G G d G dsn n = = = (4.2.20)

    y 11G zF2

    = , z 11G yF2= . , .

  • 5 : -

    88

    5.1

    , / FORTRAN 90/95, .

    ( ) . ( ( )mu x,t , ( )x x,t ) , . , , . () .

    . ( ) , . . 3 (2003), .

    5.2

    5.2.1 1

    l 40,0m= ( 6 2E 3,23184 10 kN / m= , 6 2G 1,3466 10 kN / m= ,

    2 42,5484kN sec / m = ) ,

  • 5 : -

    89

    ( )N l,t 100000kN= ( ). 41 700 . 5.2.1 5.2.1, . - (. 3.2.7) x ( , . 3.2.7). (. 5.2.2) Sapountzakis & Mokos (2006). () ( )x0 l / 2 1,3rad =

    ( )x0 x . () .

    0.3m

    y

    z

    3.7m 3.0m

    1.0m

    ()

    l 40m=

    00

    = =w

    0M 0 =

    =

    N 100000kN=mu 0=

    ()

    5.2.1 () () 5.2.1.

    5.2.1 5.2.1. ( )2A m 2,800

    ( )4PI m 3,848 ( )6PPI m 8,496 ( )6nI m 3,209 ( )4tI m 0,977 ( )6SC m 0,200

  • 5 : -

    90

    0 5 10 15 20 25 30 35 40x(m)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    x(r

    ad)

    5.2.2 x

    5.2.1.

    5.2.3 ( & ) ( )SS red . ( (3.2.67))

    SS lin (

    (3.2.68)), ( )0,0 x 38,05 m t 0,1353 sec= . ( )x l / 2,t ( )0,0 t 0,15 sec ( ( )xmax l / 2,t 1,305rad = ,

    ( )0,0 t 0,15 sec ). ( t 0,1353 sec= ), 5.2.4 ( ) ( ) ( )S S Sxn xy y xz zred . red . red .S S n S n= + ( ( )SS red . ) , S S Sxnlin xylin y xzlin zS S n S n= + ( SS lin ), ( )0,0 x 38,05 m . ( )38,05 x 40,0 m , , 5.2.2. 5.2.3, 5.2.4 ( )SS red . , SS lin , ( )Sxn red .S , SxnlinS . , 5.2.2 ,

  • 5 : -

    91

    . (3.2.67) ( )x l ,t 0 = . , 5.2.3 5.2.2 S SS Smin max = ( ) SS lin ( )SS red . .

    0 5 10 15 20 25 30 35 40x(m)

    -0.002

    -0.0015

    -0.001

    -0.0005

    0

    0.0005

    0.001

    0.0015

    0.002

    (m)

    Max Max Min Min

    5.2.3 ( )SS red . , SS lin , ( ( )0,0 x 38,05 m ) 5.2.1.

  • 5 : -

    92

    0 5 10 15 20 25 30 35 40x(m)

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    80000

    90000S x

    nS(k

    Pa)

    Max Max

    5.2.4 ( )Sxn red .S ( ( )SS red . )

    , SxnlinS ( SS lin ),

    ( ( )0,0 x 38,05 m ) 5.2.1. 5.2.2 ( )SS red . , SS lin ( )Sxn red .S , SxnlinS

    5.2.1. ( )x m 38,5 39,5 40,0

    ( ) ( )red.

    max mSS -37,55510 -23,27310 -25,39810 ( )linmax mSS -37,54810 -23,30110 -25,39810 ( ) ( )

    red.min mSS -3-8,14610 -2-3,44110 -2-5,39810

    ( )linmin mSS -3-7,54810 -2-3,30110 -2-5,39810 ( ) ( )S 2xn red.max S kN/m 53,89310 61,65810 62,57610 ( )S 2xnlinmaxS kN/m 53,60310 61,57510 62,57610

  • 5 : -

    93

    , 5.2.5, 5.2.6 ( )SS red . , SS lin ( )Sxn red .S , SxnlinS , ( x 34,6 m= ) ( t 0,1353 sec= ). , , S ( ) SS lin ,

    SxnlinS y zS ,S . ,

    5.2.7 ( )Sxn red .S , SxnlinS . . 5.2.3 5.2.5 - 5.2.7 ( - ). ( ) , Vlasov (Vlasov, 1963) .

    -0.00035-0.0003-0.00025-0.0002-0.00015-0.0001-5E-00505E-0050.00010.000150.00020.000250.00030.000350.00040.00045

    ()

    -0.00014-0.00012-0.0001-8E-005-6E-005-4E-005-2E-00502E-0054E-0056E-0058E-0050.00010.000120.00014

    () 5.2.5 ( )SS red . (a)

    , SS lin (), x 34,6 m= ( t 0,1353 sec= ) 5.2.1.

  • 5 : -

    94

    0100020003000400050006000700080009000100001100012000

    ()

    0500100015002000250030003500400045005000550060006500

    () 5.2.6 ( )Sxn red .S (a) SxnlinS () x 34,6 m= ( t 0,1353 sec= )

    5.2.1.

    (a) (b) 5.2.7 ( )Sxn red .S

    (a) SxnlinS () x 34,6 m= ( t 0,1353 sec= ) 5.2.1.

  • 5 : -

    95

    5.2.3 x 34,6 m= ,

    t 0,1353 sec= 5.2.1 ( - ).

    ( )-1x radm -2-9,53210 ( )-2x radm -3-2,41110 ( )-3x radm -45,25410

    ( )-1 -2x radm sec 40,996

    5.2.2 2

    l 4,0m= 5.2.8 ( f wt t 0,01m= = , h b 0,20m= = ).

    8 2E 2,1 10 kN / m= , 7 2G 8,1 10 kN / m= , 2 48,002kN sec / m = 21 ( ) 600 ( ). 5.2.4. ( ) ( )N l,t 3000kN= ( ) ( , . 3.2.7). , ( ( )x0 x 0 = , ( )m0u x 0= ) ( ( )x0 x 50rad / sec = ) ( ) ( ) ( )m0u x N l,0 / EA x = - . - (. 3.2.6, 3.2.7) ( ) .

  • 5 : -

    96

    5.2.8 5.2.2, 5.2.3. 5.2.4 5.2.2,

    5.2.3. ( )2A m -35,80010 ( )4PI m -55,43410 ( )6PPI m -76,72210 ( )6nI m -71,63110 ( )4tI m -72,08010 ( )6SC m -71,20010

    5.2.9, 5.2.10 ( )x l / 2,t ( )mu l ,t ,

    ( )0,0 t 0,20 sec , ( )0,0 t 0,04 sec , , . ( , , ) ( mA u - ) .

    tf=0.01m

    tw=0.01m

    b=0.20m

    tf=0.01m

    h=0.20m

    z

    yS

  • 5 : -

    97

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2t(sec)

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    x(r

    ad)

    x x=l/2 - -

    5.2.9 ( )x l / 2,t

    5.2.2 ( )0,0 t 0,20 sec .

    -0.013

    -0.0125

    -0.012

    -0.0115

    -0.011

    -0.0105

    -0.01

    -0.0095

    um(m

    )

    0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04t(sec)

    um x=l - -

    5.2.10 ( )mu l ,t

    5.2.2 ( )0,0 t 0,04 sec .

  • 5 : -

    98

    , 5.2.11, 5.2.12 SS ( () (3.2.25)), ( )SS red . ( () (3.2.67)) SxnS , ( )Sxn red .S , ( x 1,05m= ) ( ( )0,019 t 0,020 sec ). . ( , ).

    0.019 0.0192 0.0194 0.0196 0.0198 0.02Time (sec)

    -5E-005

    -4E-005

    -3E-005

    -2E-005

    -1E-005

    0

    1E-005

    2E-005

    3E-005

    4E-005

    (m)

    Max - Max - Min - Min -

    5.2.11 SS ( )SS red . x 1,05m= 5.2.2

  • 5 : -

    99

    0.019 0.0192 0.0194 0.0196 0.0198 0.02Time (sec)

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    40000

    45000

    50000

    55000

    60000S x

    nS(k

    Pa)

    Max . . - Max . . -

    5.2.12

    SxnS , ( )Sxn red .S x 1,05m= 5.2.2

    5.2.3 3

    l 4,0m= 5.2.8 (

    f wt t 0,01m= = , h b 0,20m= = ). 8 2E 2,1 10 kN / m= , 7 2G 8,1 10 kN / m= ,

    2 48,002kN sec / m = 21 ( ) 600 ( ). 5.2.4. ( )

  • 5 : -

    100

    ( )N l,t 2500kN= ( ) ( , . 3.2.7). tM 20,0kNm= 40m / sec = . t 0= , ( )0,0 t 0,10 sec

    ( )t 0,10 sec> . ( ) ( ) ( )m0u x N l,0 / EA x = - . - (. 3.2.6, 3.2.7) .

    5.2.13, 5.2.14 ( )x l / 2,t ( )mu l ,t , ( )0,0 t 0,15 sec , , . .

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

    t(sec)

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    x(ra

    d)

    x x=l/2 - -

    5.2.13 ( )x l / 2,t

    5.2.3 ( )0,0 t 0,15 sec .

  • 5 : -

    101

    -0.02

    -0.0175

    -0.015

    -0.0125

    -0.01

    -0.0075um

    (m)

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14t(sec)

    um x=l - -

    5.2.14 ( )mu l ,t

    5.2.2 ( )0,0 t 0,15 sec .

    - ,

    5.2.5 ( x 1,9m= ) t 0,0588 sec= ( )x l / 2,t ( ( )xmax l / 2,t 1,181rad = ) ( )0,0 t 0,15 sec . 5.2.5, (3.2.25) (3.2.26) SS ( SS lin ) 5.2.15. S SS lin ( yS ).

    SS SS lin . 5.2.16 SxnS ,

    SxnlinS ( x 1,9m= , t 0,0588 sec= )

    .

  • 5 : -

    102

    - . 5.2.17 SxnS ,

    SxnlinS ( x 1,9m= , t 0,0588 sec= )

    SxnS

    ( SxnlinS ). 5.2.5 x 1,9m= ,

    t 0,0588 sec= 5.2.3 ( - ). ( )-1mu m -31,19910

    ( )-2mu msec 4-1,53010 ( )-1x radm 0,237 ( )-2x radm -0,803 ( )-3x radm -0,842

    ( )-1 -2x radm sec 6-1,58510

    -8E-005

    -6E-005

    -4E-005

    -2E-005

    0

    2E-005

    4E-005

    6E-005

    8E-005

    ()

    -7E-005-6E-005-5E-005-4E-005-3E-005-2E-005-1E-00501E-0052E-0053E-0054E-0055E-0056E-0057E-005

    ()

    5.2.15 SS (a) , SS lin (), x 1,9m= ( t 0,0588 sec= ) 5.2.3.

  • 5 : -

    103

    () ()

    5.2.16 SxnS (a)

    SxnlinS () x 1,9m= ( t 0,0588 sec= ) 5.2.3.

    0100002000030000400005000060000700008000090000100000

    ()

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    80000

    () 5.2.17 SxnS

    (a) SxnlinS () x 1,9m= ( t 0,0588 sec= ) 5.2.3.

    ,

    ( ) , 5.2.6 ( x 1,9m= , t 0,0588 sec= ).

  • 5 : -

    104

    . , ( ) . 5.2.6

    ( x 1,9m= , t 0,0588 sec= ) 5.2.3. ( )Px Smax m -32,34410 ( )Px Smin m -3-2,34410 ( )SSmax m -55,33010 ( )SSmin m -5-7,33810 ( )SS linmax m -56,82310 ( )SS linmin m -5-6,82310

    ( )SxnmaxS MPa 96,971 ( )SxnlinmaxS MPa 81,106 ( )PxnmaxS MPa 191,346 ( )xnmaxS MPa 244,468

    5.3

    : 1.

    / , , .

    2. ( ) .

    3. .

    4. , .

    5. , .

  • 5 : -

    105

    6. .

    7. .

  • 107

    : 1. .. (1999),

    - & , , . 2. , . . (2007),

    , , ..., .

    3. , . (1998), , ..., .

    4. . (2007), , , ..., .

    : 5. Aimi A., Diligenti M. (2008), Numerical integration schemes for Petrov-

    Galerkin infinite BEM, Applied Numerical Mathematics, 58, 1084-1102. 6. Armenakas A.E. (2006), Advanced Mechanics of Materials and Applied

    Elasticity, CRC Press, Florence. 7. Attard M.M. (1986), Nonlinear theory of non-uniform torsion of thin-walled

    open beams, Thin-walled structures, 4, 101-134. 8. Attard M.M. (1986), Nonlinear shortening and bending effect under pure

    torque of thin-walled open beams, Thin-walled structures, 4, 165-177. 9. Baba S., Kajita T. (1982), Plastic analysis of torsion of a prismatic beam,

    International Journal of Numerical Methods in Engineering, 18, 927-944. 10. Bathe K.-J. (1996), Finite element procedures, Prentice Hall. 11. Bazant Z.P., Cedolin L. (1991), Stability of Structures: Elastic, Inelastic,

    Fracture and Damage Theories, Oxford University Press, New York. 12. Benscoter S. (1954), A theory of torsion bending for multicell beams, Journal

    of Applied Mechanics, 21(1), 2534. 13. Brenan K.E., Campbell S.L., Petzold L.R. (1989), Numerical Solution of

    Initial-value Problems in Differential-Algebraic Equations, North-Holland, Amsterdam.

    14. Chen G., Trahair N. S. (1992), Inelastic nonuniform torsion of steel I-beams, Journal of Constructional Steel Research, 23, 189-207.

    15. Coulomb C.A. (1784), Recherches theoriques et experimentales sur la force de torsion, et sur lelasticite des files de mtal, Mmoires de 1Academie Royal des Sciences, 229-269.

    16. Cullimore M. S. G. (1949), The shortening effect: a nonlinear feature of pure torsion, Research, Engineering Structures Supplement, 153.

    17. Dav F. (1992), The theory of Kirchhoff rods as an exact consequence of three-dimensional elasticity, Journal of Elasticity, 29(3), 243-262.

    18. European Committee for Standardisation (CEN) (2003) Eurocode 3: Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings.

  • 108

    19. Fatmi R. El (2007), Non-uniform warping including the effects of torsion and shear forces. Part I: A general beam theory, International Journal of Solids and Structures, 44, 59125929.

    20. Gere J.M. (1954), Torsional vibrations of beams of thin-walled open section, Journal of Applied Mechanics, 21, 381-387.

    21. Green A.E., Laws N., Naghdi P.M. (1967), A linear theory of straight elastic rods, Archive for Rational Mechanics and Analysis, 25 (4), 285-298.

    22. Pedersen P.T. (1991), Beam theories for torsional-bending response of ship hulls, Journal of Ship Research, 35(3), 254-265.

    23. Kappus R. (1937), Drillknicken zentrisch gedrckter Stbe mit offenem Profil im elastischen Bereich, Luftfahrtforschung, 14, 444457.

    24. Katsikadelis J.T. (2002), The analog equation method. A boundary-only integral equation method for nonlinear static and dynamic problems in general bodies, Theoretical and Applied Mechanics, 27, 13-38.

    25. Ladevze P., Simmonds J. (1998), New concepts for linear beam theory with arbitrary geometry and loading, European Journal of Mechanics, A/Solids, 17(3), 377-402.

    26. Lutz E., Wenjing Y., Mukherjee S. (1998), Elimination of rigid body modes from discretized boundary integral equations, International Journal of Solids and Structures, 35, 4427-4436.

    27. Machado S.P., Cortinez V.H. (2007), Free vibration of thin-walled composite beams with static initial stresses and deformations, Engineering Structures, 29, 372-382.

    28. Marguerre K. (1940), Torsion von Voll und Hohlquerschnitten, Der Bauingenieu, 21(41/42), 317322.

    29. Novozhilov V.V (1953), Foundations of the Nonlinear Theory of Elasticity, NY. Graylock Press, Rochester.

    30. Pai P.F., Nayfeh A.H. (1994), A fully nonlinear theory of curved and twisted composite rotor blades accounting for warpings and three-dimensional stress effects, International Journal of Solids and Structures, 31, 1309-1340.

    31. Parker D.F. (1984), On the derivation of nonlinear rod theories from three-dimensional elasticity, ZAMP Zeitschrift fur angewandte Mathematik und Physik, 35(6), 833-847.

    32. Rozmarynowski B., Szymczak C. (1984), Non-linear free torsional vibrations of thin-walled beams with bisymmetric cross-section, Journal of Sound and Vibration, 97, 45-152.

    33. SaintVenant, B. (1855), Memoire sur la torsion des prismes, Memoires des Savants Etrangers, 14, 233-560.

    34. Sapountzakis E.J. (2000), Solution of Nonuniform Torsion of Bars by an Integral Equation Method, International Journal Computers and Structures, 77, 659-667.

    35. Sapountzakis E.J. (2005), Torsional vibrations of composite bars by BEM, Computers and Structures, 70, 229-239.

    36. Sapountzakis E.J. and Katsikadelis J.T. (2000), Analysis of Plates Reinforced with Beams, Computational Mechanics, 26, 66-74.

    37. Sapountzakis E.J., Mokos V.G. (2003), Warping Shear Stresses in Nonuniform Torsion by BEM, Computational Mechanics, 30(2), 131-142.

  • 109

    38. Sapountzakis E.