i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions...

17
6.2 (a) General: q q = N i i where q ¶q ¶ i i TPN N ji = a f , , and d dN Nd i i i i q q q = (1) However, we also have that d T dT V dV N dN VN TN i TVN i ji q ¶q ¶q ¶q = F H G I K J F H G I K J F H G I K J , , , , (2) Subtracting (2) from (1) yields 0 =- F H G I K J - F H G I K J - F H G I K J L N M M O Q P P ¶q ¶q q ¶q q T dT V dV N dN Nd VN TN i i TVN i i i ji , , , , At constant T and V 0 = - F H G I K J L N M M O Q P P q ¶q q i i TVN i i i N dN Nd ,, (general equation) For q = A , q i i A = and ¶q N A N G i TVN i TV N i ji ji F H G I K J = F H G I K J = , , , , . Thus, q ¶q i i TV N i i i N A G PV ji - F H G I K J = - =- , , and N dA P VdN i i TV i i T V = , , specific equation for q = A (b) Following the analysis above, we also get

Transcript of i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions...

Page 1: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6

dA dU TdS SdT TdS PdV G dN TdS SdTi i= − − = − + − −∑

or

dA SdT PdV G dNi i= − − + ∑ (4)

Comparing (3) and (4) yields

GA

Nii T V N j i

= FHG

IKJ

∂∂ , ,

6.2 (a) General: θ θ= ∑ Ni i where θ ∂θ ∂i i T P NNj i

=≠

a f , , and

d dN N di i i iθ θ θ= +∑ ∑ (1)

However, we also have that

dT

dTV

dVN

dNV N T N i T V N

i

j i

θ∂θ∂

∂θ∂

∂θ∂

= FHG

IKJ + F

HGIKJ + F

HGIKJ

∑, , , ,

(2)

Subtracting (2) from (1) yields

0 = −FHG

IKJ −

FHG

IKJ + −

FHG

IKJ

LNMM

OQPP +

∑ ∑∂θ∂

∂θ∂

θ∂θ∂

θT

dTV

dVN

dN N dV N T N

ii T V N

i i i

j i, , , ,

At constant T and V

0 = − FHG

IKJ

LNMM

OQPP +∑ ∑θ

∂θ∂

θii T V N

i i iNdN N d

, ,

(general equation)

For θ = A , θi iA= and ∂θ∂

∂∂N

A

NG

i T V N i T V Ni

j i j i

FHG

IKJ = F

HGIKJ =

≠ ≠, , , ,

. Thus,

θ∂θ∂i

i T V Ni i iN

A G PVj i

− FHG

IKJ = − = −

≠, ,

and

N dA P VdNi i T V i i T V∑ ∑=, ,

specific equation for θ = A

(b) Following the analysis above, we also get

Page 2: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e

0 = −FHG

IKJ −

FHG

IKJ + −

FHG

IKJ

LNMM

OQPP +

∑ ∑∂θ∂

∂θ∂

θ∂θ∂

θU

dUV

dVN

dN N dV N U N

ii U V N

i i i

j i, , , ,

and, at constant U and V

0 = − FHG

IKJ

LNMM

OQPP +

∑ ∑θ∂θ∂

θii U V N

i i iNdN N d

j i, ,

Now, choosing θ = S , and using that ∂∂

S

N

G

Ti U V N

i

j i

FHG

IKJ = −

≠, ,

, which is easily

derived, yields

− =∑ ∑T N dS H dNi i U V i i U V, ,

(c) Following a similar analysis to those above, we obtain

0 = −FHG

IKJ −

FHG

IKJ + −

FHG

IKJ

LNMM

OQPP +

∑ ∑∂θ∂

∂θ∂

θ∂θ∂

θS

dSV

dVN

dN N dV N S N

ii S V N

i i i

j i, , , ,

which, at constant V and S, reduces to

0 = −FHG

IKJ

LNMM

OQPP +

∑ ∑θ∂θ∂

θii S V N

i i iNdN N d

j i, ,

Finally, using θ = U , and ∂ ∂U N Gi S V N ij ia f , , ≠

= yields

N dU PV TS dNi i S V i i i S V∑ ∑= − +, ,l q

6.3 (a) At constant U and V, S = maximum at equilibrium

S S S N S N Si ii

C

i ii

C

= + = += =∑ ∑I II I I II II

1 1

but

dSS

UdU

S

VdV

S

NdN

S

UdU

S

VdV

S

NdN

V N U N i U V Ni

V N U N i U V Ni

j i

j i

= =FHG

IKJ +

FHG

IKJ +

FHG

IKJ

+FHG

IKJ +

FHG

IKJ +

FHG

IKJ

0∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

I

II

I

II

I

II

II

IIII

II

IIII

II

IIII

, , , ,

, , , ,

Since U U U= + =I II constant, dU dUII I= −

Page 3: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6

Since V V V= + =I II constant, dV dVII I= −and since N N Ni i i= + =I II constant, dN dNi i

II I= −Also,

∂∂

S

U TV N

FHG

IKJ =

,

1;

∂∂

S

V

P

TU N

FHG

IKJ =

,

and ∂∂

S

N

G

Ti U V N

i

j i

FHG

IKJ = −

≠, ,

(see previous problem)

Thus

dST T

dUP

T

P

TdV

G

T

G

TdN

T T P P G G

ii

i i

= = −FH IK + −FHG

IKJ − −

FHG

IKJ

⇒ = = =

∑01 1 1 1

I III

I

I

II

III

I

I

II

III

I II I II I IIand ; ;

for equilibrium in a closed system at constant U and V.(b) For a closed system at constant S and V, U has an extremum. Thus

dUU

SdS

U

VdV

U

NdN

U

SdS

U

VdV

U

NdN

V N S N i S V Ni

i

V N S N i U V N

ii

j i

j i

= =FHG

IKJ +

FHG

IKJ +

FHG

IKJ

+FHG

IKJ +

FHG

IKJ +

FHG

IKJ

0∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

I

II

I

II

I

II

II

IIII

II

IIII

II

IIII

, , , ,

, , , ,

but S, V and N j , j C= 1, ,L are constant. Thus

dU T T dS P P dV G G dN

T T P P G G

i i ii

i i

= = − + − + −

⇒ = = =

∑0 I II I I II I I II I

I II I II I II and

c h c h c h,

for equilibrium in a closed system at constant S and V.

6.4 (a) For a closed system at constant T and V, A is a minimum at equilibrium; thusdAV T, = 0 . From Eqn. (6.2-5)

dA PdV SdT G dNi i= − − + ∑ or dA G dNV T i i, = ∑

But, N N Xi i i= +, 0 ν . Thus dN dXi i= ν and

dA G dXV T i i, = =∑νb g 0 or ∂∂

νA

XG

V Ti i

i

FHG

IKJ = =∑

,

0 .

(b) For a closed system at constant U and V, S = maximum, or dS U V, = 0 . From

Eqn. (6.2-4) dST

dUP

TdV

TG dNi i= + − ∑1 1

; thus

Page 4: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e

dST

G dNU V i i, = − ∑1 or dS

TG dXU V i i, = − ∑1

νb g

and

∂∂

νS

X TG

U Vi i

i,

= − =∑1

0

6.5 Let mi = molecular weight of species i. Multiplying Eqn. (6.3-2a) by mi and

summing over all species i yields, for a closed system

m N m N X mi i i i i i∑ ∑ ∑= = +total mass in systemtotal mass in

system initially

,0 ν

However, since the total mass is a conserved quantity,

m N m N X mi i i i i i∑ ∑ ∑= ⇒ =,0 0ν , where X can take on any value.

Consequently, if this equation is to be satisfied for all values of X, thenνi im∑ = 0 !

Similarly, in the mu lti-reaction case, starting from N N Xi i ij jj

M

= +=

∑,01

ν , we get

m N m N m X m X X mi ii

C

i i oi

C

ii

C

ij jj

M

ii

C

ij jj

M

jj

M

ij ii

C

= = = = = = = =∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑= + ⇒ = =

1 1 1 1 1 1 1 1

0, ν ν ν

Since the X j ’s are not, in general, equal to zero, we have

νij ii

C

m=∑ =

1

0

In particular, for the reaction H O H 1 2 O2 2 2= + a f , or H 1 2 O H O 02 2 2+ − =a f , we

have

νij ii

m∑ = +( )( ) + FH IK ( ) + −( )( ) =1 21

232 1 18 0 .

6.6 From Eqns. (6.6-4) we have

V V V xV

x T P1 1 2

1

= + +∆∆

mixmix∂

∂a f

,

(1)

and

Page 5: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6

V V V xV

x T P2 2 1

1

= + +∆∆

mixmix∂

∂a f

,

(2)

Now since T, P and X, are the independent variables, we have that

d V d V d V d xV

x

V

x

V

x

x

xdx x

V

xdx

xV

xdx

x

x

T P T P T PT P

T P T P T P

T P

1 1 21

1 1

2

11 2

2

12 1

2

2

12 1

2

1

1

, , ,,

, , ,

,

= + + LNM OQP

= + +

= = −

∆∆

∆ ∆ ∆

mixmix

mix mix mix

mix since

a f a f

a f a f a f

a f

0 since pure component volume is a function of

T and P only

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

Similarly

dV xV

xdxT P

T P

2 1

2

12 1,

,

= −∂

∂∆ mixa f

Thus

x V x xV

xdx x x

V

xdxi i T P

T P T P

α∂

∂∂

∂∑ = − ≡,, ,

1 2

2

12 1 2 1

2

12 1 0

∆ ∆mix mixa f a f

Thus, V1 and V2 given by equations (1) and (2) identically satisfy the Gibbs-

Duhem equation x di i T Pθ∑ =

,0 .

A similar argument applies for the partial molar enthalpies of Eqn. (6.6-9).

6.7 (also available as a Mathcad worksheet)

The students can solve this problem by drawing tangent lines to the ∆V mix

curves. Polak and Lu smoothed their data using the Redhich-Kister equation (seeEqn. (6.6-5a)). That is, they fitted their data to

∆V x x C x x x x C xjj

j

n

jj

mix = − = − −( )−

=

−∑ ∑1 2 2 11

11 1

11 1 2a f a fNow

∂∂∆V

xx C x

x C x x x C j x

jj

jj

jj

mixa f a f a fa f a f a f

11 1

1

1 11

1 1 12

1 1 2

1 2 2 1 1 1 2

= − −

− − − − −( ) −

− −

∑ ∑

Thus V V V xV

xx A x B1 1 2

11

211 2− = − = − −∆

∆mix

mixa f a f a f k p∂∂

(1)

and

Page 6: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e

V V V xV

xx A x B2 2 1

112

22− = − = +∆∆

mixmixa f a f k p∂

∂(2)

where

A C xjj

j

n

= − −

=∑ 1 2 1

1

1

a f and B C j xjj

j

n

= −( ) − −

=∑ 1 1 2 1

2

1

a fTaking species 1 to be methyl formate, Polak and Lu found

C C C C1 2 3 4

033259 010154 00516 00264

081374 0 00786 00846 00448

methyl formate - Methanol

methyl formate - Ethanol

− − −−

. . . .

. . . .

[units are cc/mol; multiply by 10 3− to get m kmol3 ]

I have used the equations above and the constants given to find V V1 1− and

V V2 2− , since this leads to more accurate results than the graphical method.

The results are tabulated and plotted below.Methyl formate - Methanol

xMF 0 0.1 0.2 0.3 0.4 0.5

∆V mix cc mola f 0 –0.039 –0.065 –0.080 –0.085 –0.083

V V1 1− –0.459 –0.329 –0.225 –0.148 –0.093 –0.058

V V2 2− 0 –0.007 –0.025 –0.051 –0.080 –0.109

xMF 0.6 0.7 0.8 0.9 1.0

∆V mix cc mola f –0.075 –0.063 –0.047 –0.027 0

V V1 1− –0.035 –0.021 –0.011 –0.004 0

V V2 2− –0.136 –0.162 –0.192 –0.236 –0.309

ThusV V VMF = + −6278 1 1. b g cc/mol or 10 3− m kmol3 .

V V VM = + −4073 2 2. b g .

Methyl formate - EthanolxMF 0 0.1 0.2 0.3 0.4 0.5

∆V mix cc mola f 0 0.080 0.136 0.174 0.196 0.203

V V1 1− 0.935 0.682 0.507 0.381 0.285 0.205

V V2 2− 0 0.013 0.043 0.085 0.137 0.201

xMF 0.6 0.7 0.8 0.9 1.0

∆V mix cc mola f 0.196 0.174 0.134 0.077 0

V V1 1− 0.138 0.081 0.037 0.010 0

V V2 2− 0.284 0.390 0.522 0.680 0.861

Page 7: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6

ThusV V VMF = + −6278 1 1. b g cc/mol. Multiply by 10 3− for m kmol3 .

V V VE = + −5868 2 2. b g

6.8 This problem is similar to the last one, and will be treated in a similar fashion.Fenby and Ruenkrairergasa give their data in the form

∆H x x C xjj

j

n

mix J mola f a f a f= − − −

=∑2 2 2

1

1

1 1 2 (1)

where component 2 is the fluorobenzene. The constants given in theaforementioned reference and Fenby and Scott J. Phys. Chem 71, 4103 (1967) aregiven below

System C1 C2 C3 C4

C H C F Cl6 6 6 5− –2683 929 970 0

C H C F Br6 6 6 5− –3087 356 696 0

C H C F I6 6 6 5− –4322 –161 324 0

C H C F6 6 6 6− –1984 +1483 +1169 0

C H C F H6 6 6 5− 230 +578 +409 +168

Page 8: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e

If we replace x2 with 1 1− x in Eqn. (1), we regain the equation of the previous

illustration, except for a factor of −( ) −1 1j in the sum and the corresponding places

in the other equations.

xC H6 6∆H mix H H−b gC H6 6

H H−b gC F Cl6 5xC F Cl6 5

0 0 –2642 0 1.00.1 –252 –2171 –39.2 0.90.2 –463 –1790 –130 0.80.3 –609 –1466 –242 0.70.4 –679 –1175 –349 0.60.5 –671 –903 –439 0.50.6 –590 –646 –506 0.40.7 –453 –409 –555 0.30.8 –284 –205 –601 0.20.9 –119 –57.8 –666 0.11.0 0 0 –784 0

[Note: J/mol]

C H C F Br6 6 6 5− C H C F I6 6 6 5−

xC H6 6∆H mix H H−b g

C H6 6

H H−b gC F Br6 5

∆H mix H H−b gC H6 6

H H−b gC F I6 5

x xC F6 5

0 0 –2747 0 0 –3837 0 1.00.1 –263 –2248 –42.9 –359 –3119 –52.1 0.90.2 –488 –1829 –153 –657 –2489 –200 0.80.3 –654 –1469 –306 –883 –1937 –431 0.70.4 –751 –1149 –486 –1026 –1456 –740 0.60.5 –772 –861 –683 –1081 –1040 –1121 0.50.6 –717 –600 –893 –1042 –689 –1572 0.40.7 –595 –370 –1120 –910 –402 –2095 0.30.8 –420 –181 –1374 –688 –187 –2695 0.20.9 –212 –50.0 –1671 –382 –48.9 –3379 0.11.0 0 0 –2035 0 0 –4159 0

Page 9: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6

C H C F6 6 6 6− C H C F H6 6 6 5−

xC H6 6∆H mix H H−b g

C H6 6

H H−b gC F6 6

∆H mix H H−b gC H6 6

H H−b gC F H6 5

x xC F6 5

0 0 –2298 0 0 61.0 0 1.00.1 –218 –1899 –31.2 –2.2 36.2 –1.1 0.90.2 –392 –1590 –93.0 –3.9 –2.8 +6.8 0.80.3 –502 –1332 –146 13.5 –42.3 +37.4 0.70.4 –536 –1097 –162 31.4 –72.3 +100 0.60.5 –496 –867 –125 57.5 –87.0 +202 0.50.6 –394 –637 –28.9 86.9 –84.5 344 0.40.7 –253 –413 +121 110 –66.7 524 0.30.8 –108 –212 +308 116 –39.4 +737 0.20.9 –4.5 –60.9 +503 85.9 –12.6 +973 0.11.0 0 0 +688 0 0 1217 0

↑ ↑ ↑Note: Changes in sign in column

6.9 (a) Gibbs Phase Rule: F C M P= − − + 2P = 2 , C = 2 , M F= ⇒ = − − + =0 2 0 2 2 2 degrees of freedom

Thus can fix two variables, usually from among T, P, x and y.(b) P = 1 , C = 3 and M F= ⇒ = − − + =1 3 1 1 2 3 degrees of freedom

Thus, we can fix 3 variables, for example, T, P and xH 2.

(c) Formation reactionsC 2O CO

C O CO

2H H

C 4H CH

2H O H O

2

2

4

2

+ →+ →

→+ →

+ →

Use O CO C= − and H1

2H 2= to eliminate O and H from the set so that

C 2 CO C CO

C 4 1 2 H CH

2 1 2 H CO C H O

2CO CO C

C 2H CH

H CO H O C

2

2 4

2 2

2

2 4

2 2

+ −( ) →+ →+ −( ) →

⇒→ +

+ →+ → +

a fa f

Thus we have found a set (there is no unique set) of three independentreactions among the six species. Consequently, C = 6 , M = 3 , P = 2 (solidcarbon + gas phase).F C M P= − − + = − − + =2 6 3 2 2 3 degrees of freedom. As a check:

# of unknowns

Note:

S S V VCO CO H CH

H O CO CO H CH

2 2 4

2 2 2 4

=

= − − − −

8

1

T P T P x x x x

x x x x x

, , , , , , ,c h

Page 10: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e

Relations among the unknowns T TS V= , P PS V= , no phase equilibriumrelations, but 3 chemical equilibrium relations of the form νij iG∑ = 0 .

8 unknowns 5 eqns. unspecified unknowns or

3 degrees of freedom

− = 3

6.10 (a) In general, for a binary, two-phase mixture C M P= = =2, 0 2,a fF C M P= − − + = − − + =2 2 0 2 2 2 degrees of freedom.However, for an azeotrope there is the additional restriction x y1 1= , which

eliminates one degree of freedom. Thus, there is only 1 degree of freedom for abinary, azeotropic system.

(b) In osmotic equilibrium P PI II≠ , since the membrane is capable of supporting

a pressure difference, and G G2 2I II≠ , where 2 is the species which does not

pass through the membrane. Therefore, the independent unknowns are T I ,

PI , x1I , T II , PII and x1

II . [Note, x2I and x2

II are not independent unknowns

since x x2 11I I= − and x x2 11II II= − ]. There are two equilibrium relations

between these six unknowns: viz. T TI II= and G G1 1I II= . Consequently,

there are four degrees of freedom … that is, as we shall see in Sec. 8.7, if T, PI ,

PII and x1I are specified, x1

II will be fixed.

(c) Case I: M C P F= = = ⇒ = − − + =0 2, 2 2 0 2 2 2,Case II: M C P F= = = ⇒ = − − + =0 2, 3 2 0 3 2 1,

6.11 (a) Gibbs Phase Rule: F C M P= − − + 2C = 2 , M F P P= ⇒ = − − + = −0 2 0 2 4 degrees of freedom.Therefore, a maximum of 4 phases can exist at equilibrium (for example a solid,two liquids and a vapor, or two solids, a liquid and a vapor, etc.)

(b) Gibbs Phase Rule: F C M P= − − + 2C = 2 , M F P P= ⇒ = − − + = −1 2 1 2 3 degrees of freedom.Therefore, a maximum of e phases can exist at equilibrium (for example a twoliquids and a vapor, or a solid, a liquid and a vapor, etc.)

6.12 (a)dN

dtN Ni

i i= +& &,rxn

dU

dtN H Qi i= + −∑ & & W s

0−P

dV

dtdS

dtN S

Q

TS

TdSdt

T N S TS Q

i i

i i

= + +

− − =

&&

&

& & &

gen

gen

Page 11: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6

dU

dtN H T

dS

dtT N S TS P

dV

dtdU

dtP

dV

dtT

dS

dtN H TS TS

i i i i

i i i

= + − − −

+ − = − −

∑ ∑

& & &

& &

gen

genb gdU

dtP

dV

dtT

dS

dtN TS

dN

dt

dX

dtTSi i

ii i+ − = − = −FH IK −∑ ∑& & &µ ν µgen gen

General expressionNowSystem is only permeable to species 1dU

dtP

dV

dtT

dS

dt

dN

dt

dX

dtTS+ − − −FH IK = − ≤1

1 1 0ν µ &gen

When T and P constantd

dtU PV TS

d

dtN X+ −( ) − − ≤1 1 1 0ν µa f

d

dtG N X

G N X

− − ≤

⇒ − − =

1 1 1

1 1 1

0ν µ

ν µ

a fa f minimum at equilibrium

(b) When T and V are constantd

dtU TS

d

dtN X

A N X

−( ) − − ≤

⇒ − − =

1 1 1

1 1 1

0ν µ

ν µ

a fa f minimum at equilibrium

6.13 (a) 2N N

2O O

2N O N O N1

2O N O

2N 2O 2NO N O 2NO

2N 4O N O N 2O N O

2N 4O 2NO N 2O 2NO

2N 5O N O N5

2O N O

2

2

2 2 2 2

2 2

2 4 2 2 2 4

2 2 2 2

2 5 2 2 2 5

→→

+ → + →

+ → + →+ → + →+ → + →

+ → + →

⇒ 5 independent reactions(b) F C M P= − − + = − − + = − =2 7 5 1 2 9 6 3

F = 3 degrees of freedom(c) 1 degree of freedom used in O :N2 2 ratio ⇒ 2 degres of freedom

6.14 Mass balance: M M M f1 2+ = Molecular weight H O g mol2 = 1802.

Energy balance: M U M U M Uf f1 1 2 2$ $ $+ =

In each case the system is M1 kg of solution 1 + M2 kg of solution 2.

Since Q = 0 , Ws = 0 (adiabatic mixing)

For liquids $ $U H≡ . Thus we have

$$ $

HM H M H

M Mf =++

1 1 2 2

1 2

Page 12: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e

when M M1 2= ; $ $ $H H Hf = +1

2 1 2c h .

(a) Read from Figure 6.1-1$ .

$ .

H

H

13

23

69 10

61 10

= ×

= − ×

J kg

J kg

Thus $ . .H f = × = ×1

25410 10 2 705 104 4c h J kg

To find the composition, so a sulfuric acid balance

ρ ρ ρ ρ ρ ρ1 1 2 2 1 21

2M M Mf f f+ = ⇒ = +a f since M M1 2=

where ρi = weight percent of ith flow stream.

Thus ρf = +( ) =1

210 90 50 wt % sulfuric acid. From Figure 6.1-1

50 wt % H

2 705 101104

2 4SO

J kgC$ $ .

~H U

Tf= = ×⇒ °

(b) Here $ .H1369 10= × J kg ,

$ . $ . . .H H f25 3 53186 10

1

269 318 6 10 156 10= − × ⇒ = −( ) × = − × J kg J kg and

ρ1 10 wt %= , ρ ρ2 60 wt % 35= ⇒ =f wt % . Using

Figure 6.1-1, Tf ~ 22°C .

Notice that there is a balance between the energy released in mixing, ∆ $Hmix ,

and the energy absorbed in heating the mixture, C TP∆ . In case (a), ∆ $Hmix is

very large, and T Tf > 1 or T2 , while in case (b) ∆ $Hmix is smaller, so that

T Tf ~ 1 .

6.15 (a) MW H O g mol2 = 1802. ; MW H SO g mol2 4 = 9808 .

100 g H 555

100 g H 1022

2 4

O mol

SO mol

==

.

.

Note: When these are mixed, a solution containing5.44 mol H O2 /mol acid is formed. ∆Hs for such a solution is –58,390 J/mol

acid. Thus,

total heat released = × − = −102 58 390 59,558 J. , mol acid J mol acida f(Negative sign means that heat is released!)

(b) Adding another 100 grams of water produces a solution which contains 10.88mol H O2 /mol acid. From the graph ∆H s J mol acid= −64,850 . However, –

58,390 J/mol of acid were released in preparing the first solution, so that only –6,460 J/mol acid, or 6,590 J, are released on this further dilution.

Page 13: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6

(c) 60 wt % H SO moles H O moles acid2 4 2⇒ =40 1802

60 98083629

.

.. for which

∆H s J mol acid= −52,300 , and

∆Hs J mol acidd

98.08= − × = −52,300

60 mol aci31990 J,

Note: Enthalpy of 60 WT% solution is –31,990 J relative to pure componentsat the same temperature. Similarly25 1627 wt % H SO mol H O mol acid2 4 2⇒ . , ∆H s J mol acid~ ,−68830

and

∆Hs J mol acid98.08

= − ××

= −68 830 025 75

13160 J,.

,

Final solution =175 grams ; 78.75 grams acid = 0803. mol,

96.25 grams water = 5347. mol ⇒ 6 66 . mol H O mol acid2 . So that

H

Hs

s

J mol acid= −

= −

60 670

48 720 J

,

,

Thus, enthalpy change on mixing, ∆Hmix is

∆Hmix = − − − −( ) = −48 720 31990 13160 3570 J, , ,

Thus, 3570 J 357= kJ must be removed to keep solution isothermal!

(d) For 1 mole of solute: 1 12 22

1

+ = + + ⋅ FHG

IKJN H H N H H

N

Na f mix 1 2 s∆ (argument of

∆Hs ) and for N1 moles of solute and N2 moles of solvent.

N N H N H N H N HN

NH1 2 1 1 2 2 1

2

1

+ = + + FHG

IKJ =a f mix s mix∆

Now

HH

NH H

N

NN

H

N N

N N

NT P T P T P1

11

2

11

2 1

2 1

1

= FHG

IKJ = + F

HGIKJ + ⋅

∂∂

∂∂

∂∂

mixs

s

, , ,

∆∆a f

a fa f

or

H H HN

N

N

N

H N N

N N T P1 1

2

1

2

1

2 1

2 1

− = FHG

IKJ − L

NMOQP∆

∆s

s∂∂

a fa f ,

since ∂

∂N N

N

N

N2 1

1

2

12

a f= −

Similarly, starting from HH

N T P2

2

= FHG

IKJ

∂∂

mix

,

we obtain

H HH N N

N N T P2 2

2 1

2 1

− =∂

∂∆ sa fa f ,

(e) 50 wt % acid ⇒ =50 1802

50 98085443

.

.. mol H O mol acid2

∆H s J mol5443 58 370 . ,( ) = − and, from the accompanying graph

∂∂∆H N N

N N N N

s

at

J mol2 1

2 1 5 4432 1

91630 46 030

202,280

a fa f =

=−( ) − −( )

= −.

, ,

so that H H2 2 2,280 − = − J mol and

Page 14: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e

H H1 1 58 370 544 2,280 45 967− = −( ) − −( ) = −, . , J mol .

6.16 To get partial molar properties it is easiest to first convert all data in problem tomole fractions and properties per mole.

xCCl4

4 44

wt % CCl

wt % CCl wt % CCl=

+ −153 84

153 84 100 7811

.

. .a f a fwhere MWCCl4

= 15384. ; MWC H6 6= 7811. .

C C

C x x

P P

P CCl CCl

mole mixture grams mixt ure MW of mixture

4 4

( ) = ( ) × ( )

= × × + − ×153 84 1 7811. .c h

also, compute x Ci iP,∑ , where C iP, = heat capacity of pure species i and

∆C C x Ci iP mix P Pmixture, ,= ( ) − ∑ . Results are given below:

Wt % CCl4 xCCl4CP J mol K x Ci iP,∑ ∆CP mix, J mol Ka f

0 0 137.90 137.90 010 0.0534 133.91 137.17 –3.2620 0.1126 129.55 136.35 –6.8030 0.1787 124.45 135.44 –10.9940 0.2529 118.85 134.42 –15.6750 0.3368 113.98 133.72 –19.7460 0.4323 111.29 131.96 –20.6770 0.5423 110.48 130.44 –19.9680 0.6701 110.59 128.69 –18.1090 0.8205 114.44 126.62 –12.18100 1 124.15 124.15 0

Page 15: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e

���� �D� 7KH�*LEEV�'XKHP�HTXDWLRQ�LV��(TXDWLRQ�������E������

[+

[[

+

[7 3 7 3

��

��

�w

w

w

w� �

1RZ�w

w

w

w

+

[[ E

[

[E [

7 3

� ��

� �� ��

� ��DQG�w

w

+

[E [

7 3

� ���

� �VR�WKDW

[+

[[

+

[E E [ [

7 3 7 3

��

��

� � � �� �w

w

w

w� �

� � 0 5 �IRU�DOO� [� � E E E� �

�E� OLP[

L LL

D +o

� �

� �T T � DQG� D +� �

� ZKHUH� +�� DQG� +

�� DUH� WKH� SXUH

FRPSRQHQW�PRODU��HQWKDOSLHV���7KXV

+ + E[� � �� � �� + + E[� � �

� �

DQG

'

'

+ [ + + [ + + [ E[ [ E[

+ [ [ E[ [ E[ [

PL[

PL[

� � � �

� � � � � � � � �

�� �

� � � � � �

1 6 1 60 5

���� 1RWH�� �6RUU\� DERXW� �� VHW� RI� GDWD� EHLQJ� JLYHQ� LQ� DOFRKRO�ZW�� DQG� RWKHU� LQ�ZDWHU

PROH����EXW�WKLV�LV�WKH�ZD\�WKH�GDWD�DSSHDUHG�LQ�WKH�,QWHUQDWLRQDO�&ULWLFDO�7DEOHV�

�D� )LUVW�ZLOO�FRQYHUW�WKH�GDWD�WR�PROH�IUDFWLRQV�

ZW��$NJ�$ ���

NJ�$ NJ�:

u

��� [$

$

$ :

NJ�$ 0:

NJ�$ 0: NJ�: 0:

� � �� �

[$$ :

ZW��$

ZW��$ ZW��$ 0: 0:���

$OVR��9PL[ PL[0: U �ZKHUH� UPL[ �PL[WXUH�GHQVLW\�DQG� 0: �LV�WKH�PROH

IUDFWLRQ�DYHUDJHG�PROHFXODU�ZHLJKW�RI�PL[WXUH��L�H��� 0: 0: ¦ [L L �

$OVR��9$ $0: FRKRO � �U ����ZW��DO �DQG

9: :0: � �U ���DOFRKRO �

Page 16: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e

ZW�

DOFRKRO[$ 0: 9 [9

L LPL[�¦ '9

PL[��FF�PRO�

>PXOWLSO\�E\��� �� �IRU

P NPRO� @

� � �� ������¤������ �

� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

�� ������ ������ ������¤������ ¤�����

��� ��� ��� ������¤������ �

7KH� '9PL[

�GDWD�DUH�SORWWHG��DQG� WKH�JUDSKLFDO�SURFHGXUH�RI�6HF������XVHG� WR

ILQG� 9 9$ $�1 6 �DQG� 9 9: :

�1 6 ���5HVXOWV�DUH�JLYHQ�LQ�WKH�IROORZLQJ�WDEOH�

1H[W�QRWH�WKDW

Page 17: i T V N ,, 6.2 iqi HG AKJ F I duser.engineering.uiowa.edu/~cbe_103/Problems/hwk10.pdf · Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 6 Since V =I+ II constant,

Solutions to Chemical and Engineering Thermodynamics, 3e

'

'

+

+

PL[6LQFH KHDW LV

HYROYHG�LV QHJDWLYH�

SHU�PROH

PL[WXUH

+HDW�HYROYHG

SHU�PROH�HWKDQRO

0ROH�IUDFWLRQ

RI�HWKDQROPL[

���

��� u u �� ��

2QFH� '+PL[ �LV�FRPSXWHG��JUDSKLFDO�SURFHGXUH�LV�XVHG�WR�JHW� + +$ $�1 6 �DQG+ +: :�1 6 �� � 7DEOH� EHORZ� JLYHV� 9 9$ $�1 6 �� 9 9: :�1 6 �� + +$ $�1 6 � DQG+ +: :�1 6 �DV�D�IXQFWLRQ�RI�WKH�ZDWHU�PROH�IUDFWLRQ�

[: 9 9: :� 9 9$ $� '+PL[ + +: :� + +$ $�

FF�PRO N-�PRO

� ¤��� � �� ¤���� �

���� ¤������ ¤����� ������

��� ¤��� ¤���� ¤������ ¤���� ������

���� ¤�����

��� ¤���� ¤���� ¤����� ¤���� ������

���� ¤�����

��� ¤��� ¤���� ¤����� ¤���� ¤�����

���� ¤�����

��� ¤���� ¤���� ¤����� ¤���� ¤����

���� ¤�����

��� ¤���� ¤���� ¤����� ¤���� ������

���� ¤�����

��� ¤���� ¤���� ¤����� ¤���� ������

���� ¤�����

��� ¤���� ¤��� ¤����� ¤����� ������

���� ¤�����

��� ¤���� ¤���� ¤����� ¤���� ¤����

���� ¤����� ¤���� ¤����

��� ¤����� ¤���� ¤����� ¤���� ¤���

���� ¤�����

��� � ¤���� �� �� "

n n