EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall...

51
EE 330 Lecture 44 Digital Circuits Ring Oscillators Sequential Logic Array Logic Memory Arrays Review Session: Wednesday Dec 14 2:15 Room 1116 Sweeney Final: Friday Dec. 16 9:45-11:45

Transcript of EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall...

Page 1: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

EE 330

Lecture 44

Digital Circuits

• Ring Oscillators

• Sequential Logic

• Array Logic

• Memory Arrays

Review Session: Wednesday Dec 14 2:15 Room 1116 Sweeney

Final: Friday Dec. 16 9:45-11:45

Page 2: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Dynamic LogicVDD

F

φ

A PDNn

φBasic Dynamic Logic Gate

Any of the PDNs used in complex logic gates would work here !

• Have eliminate the PUN !

• Ideally will have a factor of 4 or more reduction in CIN

• Ideally will have a factor of 4 or more reduction in dynamic power

dissipation relative to that of equal rise/fall !

• Ideally will have a factor of 2 reduction in dynamic power dissipation

relative to that of minimum size!

Review from Last Time

Page 3: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Dynamic LogicVDD

F

φ

A PDNn

φ

Basic Dynamic Logic Gate

Advantages:

•Lower dynamic power dissipation (Ideally 4X)

• Improved speed (ideally 4X)Limitations:

• Output only valid during evaluate state

• Need to route a clock

(and this dissipates some power)

• Premature Discharge !

• More complicated

• Charge storage on internal nodes of PDN

• No Static hold if output H

Review from Last Time

Page 4: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Domino Logic

VDD

φ

A PDNn

Review from Last Time

Page 5: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Dynamic Logic

• p-channel logic gate will pre-charge low

• Phasing of PUN and PDN networks is reversed

• Some performance loss with p-channel logic devices

• Direct coupling between alternate type dynamic gates is possible

without causing a premature discharge problem

VDD

F

φ

A PDNn

VDD

F

A PUNn

φ

φ

φ

Review from Last Time

Page 6: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Zipper Logic

Acceptable Implementation in Zipper

Review from Last Time

Page 7: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Digital Circuit Design

• Hierarchical Design

• Basic Logic Gates

• Properties of Logic Families

• Characterization of CMOS

Inverter

• Static CMOS Logic Gates

– Ratio Logic

• Propagation Delay

– Simple analytical models• FI/OD

• Logical Effort

– Elmore Delay

• Sizing of Gates

• Propagation Delay with

Multiple Levels of Logic

• Optimal driving of Large

Capacitive Loads

• Power Dissipation in Logic

Circuits

• Other Logic Styles

– Dynamic Logic

– Array Logic

• Ring Oscillators

• Sequential Logic Circuits

• Memory Arrays

Page 8: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Ring Oscillators

Ring OscillatorXSIG

• Odd number of stages will oscillate (even number will not oscillate)

• Waveform nearly a square wave if n (number of stages) is large

• Output will slightly imbalance ring and device sizes can be compensated if

desired

• Usually use a prime number (e.g. 31)

• Number of stages usually less than 50 (follow by dividers)

• Frequency highly sensitive to process variations and temperature

XSIG

OSCPROP

1f

nt

• n is the number of stages

• tPROP is the propagation delay of a single stage (all assumed

identical)

Page 9: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Digital Building Blocks

• Combinational Logic

• Sequential Logic

– Shift Registers (stack)

• Array Logic

• Memory Arrays

Page 10: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Sequential Logic Circuits

• Flip Flops needed for sequential logic

circuit

• Only one type of flip flop is required

• Invariably require clocked edge-triggered

master-slave flop flops

• Flip flop circuits can be very simple

• Flip flops are part of Standard Cell

Libraries

Page 11: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Sequential Logic Elements

Latch

D Q

LKC

Latch

Pulsed Latch

D Q

LKC

Pulsed

Latch

Flip Flop

XQ

LKC

Flip

FlopQ

D is held on Q when CLK is low

may also be presentQ

D is held on Q when CLK is low

CLK is a pulse

may also be present

Special case of LatchQ

May have one or two inputs

Inputs transferred to output on CLK

Four basic types

J-K, S-R, D, T

Any type can be obtained from other

with simple combinational logic ckts

Often edge triggered and Master-Slave

Most widely used sequential logic element

All can have preset or clear input added

Page 12: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Latch Flip-Flop Terminology

• Transparent:– Input to Latch Appears on the Latch Output

immediately while in transparent state

• Opaque– Input to the Latch does not appear at the output while

in the opaque state

• Edge Triggered– Input to latch at a clock transition determines when

the input is transferred to the latch output

• Master-Slave– Two-stage cascaded structure where output from one

serves as input to the second stage

Page 13: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Latches

CX

DQ

C LOAD

CX

DQ

C

•Very simple

•When XC is high, in transparent state (tracks input)

•Negative edge triggered

Limitations:

• Q can get to only VDD-VT

• Leakage of charge will occur when XC is low

• Any loads placed on Q will further degrade held signal

Page 14: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Latches

• Buffering eliminates loading

• Provides rail-rail output

• Provides signal inversion

• Second inverter will eliminate signal inversion

• Output transparent when XC is high

DQ

C LOAD

CX

D Q

CX

• C is input capacitance to inverter

• Need not show load since buffered

• Charge will eventually leak off of C

Page 15: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Latches

• Becomes nonvolatile

• Provides complimentary output

• Output transparent when XC is high

• Contention on output when loading

- (must size devices so latch will load)

D Q

CX

Q

Page 16: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Latches

D Q

CX

CX

Q

• Becomes nonvolatile

• Provides complimentary output

• Output transparent when XC is high

• Contention on output removed

• 6-transistor Cell

• Actually the basic memory element used in many SRAM

arrays

Page 17: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Flip FlopsFour Basic Flip Flops

QS-R

Flip FlopQ

S

R

LKC

Q

LKC

Q

K

J

J-K

Flip Flop

Q

Q

D

Flip FlopD

LKC

Q

LKC

Q

T

Flip FlopD

Page 18: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Flip Flops

Implementation of the S-R Flip Flops

QS-R

Flip FlopQ

S

R

LKC

S

R Q

Q S

R Q

Q

• Many different flip flops exist

• Extremely high number of flip flops in a design warrants design

of a good structure

• Not clocked or Master Slave

8 transistor implementations

Page 19: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Flip Flops

Implementation of the S-R Flip Flops

S

R Q

Q

Clocked S-R flip flop

20 transistor implementation

Output transparent when clock is H

S

RQ

Q

φ

QS-R

Flip FlopQ

S

R

LKC

Page 20: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Flip Flops

Implementation of the S-R Flip Flops

Clocked S-R flip flop

Clocked Edge-Triggered S-R Master Slave Flip Flop

S

RQ

Q

φ

φφQ Q

QQ

RR

S S

SLAVE

FF

MASTER

FF

Page 21: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Flip FlopsImplementation of the S-R Flip Flops

Clocked Edge-Triggered S-R Master Slave Flip Flop

φφQ Q

QQ

RR

S S

SLAVE

FF

MASTER

FF

S

RQ

Q

φ

S

RQ

Q

φ

Master-Slave Edge-triggered Clocked S-R Flip Flop

Large Device Count : 40 transistors

Page 22: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Flip FlopsD Flip Flop

D

φ

Q

Q D

φ

φ

Q

Q

With static hold5 transistors

6 transistors

Output transparent when in clock is high

Page 23: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Flip FlopsMaster-Slave Edge-triggered D Flip Flop

Timing Diagram

QD

φ

φφ

φ

MASTER SLAVE

φ

φ

t

CLKTMaster SampleSlave Sample

Output Valid Output Valid

• 12 transistors (but will work with 10)

• Many other simple D Flip-flops exist as well

Page 24: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Shift Registers

PC PC

SR TR

D Q1Q

• Basic 1-bit dynamic shift register

• Data is stored on parasitic capacitor CP

• CP is generally input capacitance to inverter and omitted from diagram

SR TR

D Q1Q

Page 25: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Shift Registers

SR TR

D Q1Q

Dynamic Shift Register

• 6 transistor cell

• Must be clocked to retain data

SR

TR

CLKT

D

Q

1Q

Timing Diagram:

Page 26: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Shift Registers

SR TR

D Q1Q

Dynamic Shift Register

6 transistor cell

SR TR+H

D Q1Q

HDynamic Shift Register with Static Hold

Page 27: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Shift Registers

SR TR

D Q1Q

Dynamic Shift Register

SR

TR

D Q

Simple redrawing

Page 28: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Shift RegistersDynamic Shift Register SR

TR

D Q

SR

TR

SR

TR

SR

TR

QD

n=bit Dynamic Shift Register

• FIFO Operation

• Layout so stages can be simply abutted

Page 29: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Shift RegistersDynamic Shift Register SR

TR

D Q

Bi-directional Dynamic Shift Register

If TL and TR replaced with H•TL and H•TL , have static hold operation

SR

TR

D Q

TL

SL

Page 30: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Shift RegistersDynamic Shift Register

n-bit Parallel-Load, Parallel-Read Bidirectional Dynamic Shift Register

• Useful for Parallel to Serial and Serial to Parallel Conversion

• Can be put in static hold state if TL and TR replaced with HCTL and

HCTL

SR

TR

D RQ

TL

SL

LQ

SR

TR

TL

SL

SR

TR

TL

SL

SR

TR

TL

SL

1d 2d 3d nd

LX

SR

TR

D RQ

TL

SL

LQ

SR

TR

TL

SL

SR

TR

TL

SL

SR

TR

TL

SL

Page 31: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Digital Building Blocks

• Combinational Logic

• Sequential Logic

– Shift Registers (stack)

• Array Logic

• Memory Arrays

Page 32: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Array Logic

• Array logic is often used for sections of logic that may change later in the design or that will be changed for different variants of a product

• FPGA are a special case of array logic

• Can personalize array logic with only one layer of metal

– Very quick turn-around and low incremental costs (as few as one additional mask)

Page 33: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Array Logic

Will consider only two types

– Gate Array

– Sea of Gates

Variants of the following approach are possible depending upon

process but this will convey the basic concepts

Page 34: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Array LogicGate Array

• Can add M1 (blue), M2 (purple), contact (M1 to Poly), via (M1 to M2)

• Upper and lower metal shown actually lie above poly and are already

present

• Assume upper M1 is VDD and lower M1 is VSS

• Array can be very large

• Routing channels between segments of array

Page 35: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Array LogicSea of Gates

• Can add M1 (blue), M2 (purple), contact (M1 to Poly), via (M1 to M2)

• Upper and lower metal shown actually lie above poly and are already

present

• Assume upper M1 is VDD and lower M1 is VSS

• Array can be very large

• Routing channels between segments of array

Page 36: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Array LogicGate Array

Example: F

GA

B

Via (M1 to M2)

Contact (M1 to diff,Poly)

Page 37: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Array LogicGate Array

Example: F

GA

B

A

B

FG

VSS

VDD

Via (M1 to M2)

Contact (M1 to diff,Poly)

Page 38: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Array LogicGate Array

Example: F

GA

B

A

B

FG

VSS

VDD

Via (M1 to M2)

Contact (M1 to diff,Poly)

Page 39: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Array LogicSea of Gates

Example: F

GA

B

Via (M1 to M2)

Contact (M1 to diff,Poly)

VSS

VDD

Page 40: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Array LogicSea of Gates

Example: F

GA

B

Via (M1 to M2)

Contact (M1 to diff,Poly)

VSS

VDD

Diffusion Partition

Diffusion Partition

Page 41: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Array LogicSea of Gates

Example: F

GA

B

Via (M1 to M2)

Contact (M1 to diff,Poly)

A

B

F

G

VSS

VDD

Page 42: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Digital Building Blocks

• Combinational Logic

• Sequential Logic

– Shift Registers (stack)

• Array Logic

• Memory Arrays

Page 43: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Typical Memory Structure

MEM

Cell

Sense Amplifier

Column Decoder

Ro

w D

eco

de

r

Memory

Array

VDD

ADR

DATA

n n1

n2

n3

1 2n=n +n

Page 44: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Row Decoder Architectures

000

001

010

011

100

DDV

DDV

DDV

DDV

DDV

1A 2A 3A

k 1 2 3R = A A A

k 1 2 3R = A A A

Row decoder is Pseudo

n-MOS NOR Gate

Typically n/2 inputs where n is the

address length

Page 45: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Row Decoder Architectures

000

001

010

011

100

DDV

DDV

DDV

DDV

DDV

1A 2A 3A

Transistor sites typically reserved in the layout for efficient, compact layout

Page 46: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Mem Cells

Static RAM (SRAM)

• Uses PTL and cross-coupled inverters

• Sizing of “switches” must be strong enough to write to cell

• No static power dissipation in this PTL implementation

Page 47: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Mem Cells

Static ROM (Mask programmable ROM)

• Site reserved for possible transistor

• Actually programmed with contact to gate and

diffusion

• Can personalize with one or two masks

• Single transistor per bit

• Uses only one column line

Transistor

Present

Transistor

Absent

Page 48: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Mem CellsEPROM or EEPROM

Control

GateDrainSource

Bulk

n-channel MOSFET

Floating

Gate

Very Thin

Tunneling Oxide

Floating Gate Transistor

• Very thin floating gate

• Charge tunnels onto gate during programming to change VT a lot

• Conceptual diagram only

• Somewhat specialized processing for reliable floating gate devices

Page 49: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Mem Cells

EPROM or EEPROM

• Floating Gate Transistor

• Programmed by Changing the Threshold Voltage

• Nonvolatile Memory

• Can be electrically programmed with EEPROM

• Limited number of read/write cycles (but enough for

most

applications)

• Uses only one column line

Page 50: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

Mem Cells

DRAM

• Charge stored in small parasitic capacitor

• Very small cells

• Volatile and dynamic

• Special processes to make CP large in very small area

• CP is actually a part of the transistor

• Somewhat tedious architecture (details not shown) needed to

sense very small charge

CP

Page 51: EE 330 Lecture 44 - Iowa State Universityclass.ece.iastate.edu/ee330/lectures/EE 330 Lect 44 Fall 2016.pdfDynamic Logic V DD F φ A PDN n φ Basic Dynamic Logic Gate Any of the PDNs

End of Lecture 44