2 NMP/ toluene IV: PTFQSH-90 a ) -70 b ) IV: PTFQS-90 III...

1
Polymer Percentage of DADSDB (mmol) Formula M n PDI (M W ) n η inh (dL/ C g) expected (found) Elemental analysis DS H expected (found) S expected (found) N expecte d (found) theo. NMR PTFQ 0 (C 59 H 36 F 12 N 6 O 4 ) m (1120.94) m - - - 63.16 (63.29) 3.21 (3.23) 0 7.49 (8.28) 0 0 PTFQSH-70 70 (C 35 H 24 N 6 O 8 S 2 ) 0.7 ( C 59 H 36 F 12 N 6 O 4 ) 0.3 (920.59) n 24500 2.96 1.52 55.01 (55.12) 3.00 (3.02) 4.87 (4.95) 9.13 (9.21) 1.40 1.40 PTFQSH-80 80 (C 35 H 24 N 6 O 8 S 2 ) 0.8 (C 59 H 36 F 12 N 6 O 4 ) 0.2 (891.96) n 19900 3.55 1.56 53.55 (53.61) 2.96 (2.98) 5.74 (5.82) 9.42 (9.55) 1.60 1.60 PTFQSH-90 90 (C 35 H 24 N 6 O 8 S 2 ) 0.9 (C 59 H 36 F 12 N 6 O 4 ) 0.1 (863.34) n 19300 4.33 1.63 51.98 (52.07) 2.92 (2.94) 6.67 (6.73) 9.73 (9.82) 1.80 1.74 PTFSH-100 100 (C 35 H 24 N 6 O 8 S 2 ) 1 (834.72) n 16300 4.52 1.72 50.32 (50.45) 2.88 (2.90) 7.67 (7.75) 10.06 (10.18) 2.00 2.00 Polymer T g ( o C) T d10% ( o C) Tensile Strength (Mpa) Elongation at Break (%) PTFQ 176 380 94.5 ± 1.9 PTFQSH-70 - 298 69.4 ± 1.6 58.2 ± 1.5 PTFQSH-80 - 290 66.1 ± 1.2 60.3 ± 1.2 PTFQSH-90 - 280 55.3 ± 1.6 49.2 ± 1.1 PTFSH-100 - 267 50.4 ± 1.2 42.7 ± 1.5 Synthesis of sulfonated polytriazole Synthetic route to obtain the sulfonated polytriazole Monomer synthesis Variation in the impedance behaviour of PTFQSH-XX membranes with composition Proton conductivity of PTFQSH-XX membranes as a function of WU & IECw Temperature dependence of proton conductivity for sulfonated polytriazole membranes at 100% RH XRD analysis of dry and wet state of PTAQ and PTAQSH-90 membranes TEM micrograph of lead-stained PTFQSH-XX copolymers Stress-strain plot of PTFQSH-XX copolymers (a) salt (Na) form (b) acid (H) form. TGA plots of PTFQSH-XX copolymers Conductivity, σ = l / (R × d × w) l = distance between the electrodes d = thickness of the films w = width of the films R = low intersect of the high-frequency semicircle on a complex impedance plane with the Real(Z) axis. IEC Theo = (1000/MW repeat unit ) × DS × 2 Where, DS = mol fraction of monomer unit which is sulfonated IEC Titr. = (C × V × 100) / W C = concentration of NaOH V = volume of NaOH W = weight of membrane Thermal Analysis Mechanical Properties Analysis of Microstructure Stretching frequency: C-H: 3265 cm -1 ; Azide : 2115 cm ; C=C : 1600 cm -1 ; asymmetric C-O-C: 1483, 1333 cm -1 ; C-F: 1241, 1131 cm -1 ; asymmetric sulfonate: 1080 cm -1 ; -1 symmetric sulfonate: 1017 cm -1 1 H-NMR and 19 F NMR spectra of PTFQSH-XX FT-IR spectra of monomers and polymers Solubility of PTFQSH-XX copolymers Membrane preparation and spectroscopic analysis Polymer d M (g/cm ) 3 IEC W (meq/g) IEC V (meq/g) WU(wt%) WU(vol%) λ [H 2 O/SO 3 ] dry Wet Theo. Titr. NMR 30 o C 80 o C 30 o C 80 o C 30 o C 80 o C 30 o C 80 o C PTFQSH-70 1.46 1.52 1.50 1.52 2.22 1.98 1.90 8 12 12 17 3.06 4.26 PTFQSH-80 1.38 1.79 1.76 1.79 2.48 2.13 2.04 12 16 16 21 3.59 4.79 PTFQSH-90 1.34 2.09 2.04 2.00 2.77 2.31 2.08 15 30 21 39 4.06 7.92 PTFSH-100 1.30 2.40 2.36 2.40 3.12 2.34 2.13 26 42 33 54 5.95 9.67 Composition and properties of PTFQSH-XX copolymers A series of new highly fluorinated sulfonated polytriazole copolymers successfully prepared by click polymerization. The presence of triazole moiety and rigid quadriphenyl moiety resulted in high thermal stability, good mechanical properties, excellent phase separated morphology, good hydrolytic and oxidative stability. The PTFQSH-XX copolymer membranes showed moderate proton conductivity (in the range of 27 to 136 mS/cm at 80 ºC). 1. Y. J. Huang, Y. S. Ye, Y. C. Yen, L. D. Tsai, B. J. Hwang and F. C. Chang, Int. J. Hydrogen Energy, 2011, 36, 15333. 2. A. Singh, R. Mukherjee, S. Banerjee, H. Komber and B. Voit, J. Membr. Sci., 2014, 469, 225. 3. A. Singh, S. Banerjee, H. Komber and B. Voit, RSC Adv., 2016, 6, 13478. WU (vol%) dependence of IECv (wet) values of PTFQSH-XX membranes IECv(dry) = (IEC W, Theo ) × d M IECv(wet) = IECv(dry)/(1+ 0.01WU) The fuel cell vehicle market share will grow to 50% by 2030 and 90% by 2050 H 2 /O 2 fuel cell operation PEMFCs: a reliable clean alternate energy source high power density high efficiency low operating temperatures solid non-corrosive electrolyte long life environment friendly ease of design and adaptable size Proton conduction mechanism Conversion of H-bonds to covalent bonds between water molecules and vice versa; only the charge of the proton is transported and not its mass. Hydrated proton (H 3 O + ) diffuses through the aqueous medium in response to the electrochemical difference. (H + (H 2 O) x ) in the result of the electro-osmotic drag carry the one or, more molecules of water through the membrane and itself are transferred with them. “Grotthus mechanism Vehicular mechanism Duponts Nafion ® is a standard PEM electrolyte used in PEMFC because of high proton conductivity up to 10 -2 -10 -1 S/cm good chemical and oxidative stability Commercially available PEM material Material Selection- Aromatic sulfonated polymers High thermal stability High mechanical properties Good film forming ability High chemical stability Why polytriazoles ? Sulfonated polyimides Sulfonated poly(arylene ether sulfone)s Sulfonated poly(ether ether ketone)s Sulfonated poly(benzimidazole)s Sulfonated polytriazoles Synthesis and characterization of highly fluorinated polytriazoles with controlled degree of sulfonation for proton exchange membrane application Asheesh Singh a , Susanta Banerjee a *, Hartmut Komber b and Brigitte Voit b a Materials Science Centre, Indian Institute of Technology Kharagpur 721302, India, b Leibniz-Institut für Polymerforschung Dresden e.V ., Hohe Strasse. 6, 01067 Dresden, Germany Introduction Anode : H 2 Cathode : 2H + +2e - 1/2 O 2 +2H + +2e - HO 2 WAXD Analysis Swelling ratio Proton conductivity, IEC and Water uptake XRD analysis of dry and wet state of PTFQ and PTFQSH-XX (XX= -80, -90) membranes Synthesis of TF and QAZ monomer Polymer Swelling ratio (%) Oxidative stability (h) σ (mS/cm) E a (kJ/mol) In plane Through plane 30 o C 80 o C 4 9 9 15 16 23 23 35 n.d. 30 o C 80 o C 30 o C 80 o C PTFQSH-70 n.d. n.d. > 24 9 27 20.90 PTFQSH-80 n.d. n.d. > 24 13 46 22.83 PTFQSH-90 n.d. n.d. 18 30 86 19.53 PTFSH-100 4.76 9.09 5 54 136 16.23 Nafion ® 117 n.d. 60 135 13.65 Swelling ratio, oxidative stability and proton conductivity Density, IEC, and water uptake Polymer NMP DMSO DMF DMAc PTFQ + + + + PTFQSH-70 + + + + PTFQSH-80 + + + + PTFQSH-90 + + + + PTFSH-100 + + + + THF CH 3 OH H 2 O DCM - - - - - - - - - - - - - - - - - - - - CF 3 CF 3 O O O O N 3 N 3 CuI/DMF 70 C for 24h H + / 1.5 M H 2 SO 4 n N 3 N 3 DADSDB BPEBPF QAZ n XX 0.7 0.8 0.9 1.0 70 80 90 100 m O N N N CF 3 CF 3 O N N N O O N N N O CF 3 CH 3 O N N N SO 3 Na NaO 3 S F 3 C CF 3 F 3 C CF 3 SO 3 Na NaO 3 S n m O N N N CF 3 CF 3 O N N N O O N N N O CF 3 CF 3 O N N N SO 3 H HO 3 S F 3 C CF 3 Polymer synthesis 1.93 ± 0.03 2.01 ± 0.02 2.06 ± 0.06 1.95 ± 0.01 1.95 ± 0.02 1.93 ± 0.01 1.81 ± 0.01 42.7 ± 1.5 Young Modulus (GPa) salt form acid form salt form acid form salt form acid form 2.38 ± 0.06 9.3 ± 1.1 44.4 ± 2.2 34.2 ± 0.8 5.32 ± 2.5 31.6 ± 0.3 20.2 ± 0.8 17.8 ± 1.4 16.7 ± 1.5 3.44 ± 1.1 11 n.d. 19 Solution casting 1800 1600 1400 1200 1000 800 1131 cm -1 1241 cm -1 1080 cm -1 Transmittance (a.u.) XX-70 XX-80 XX-90 Wavenumber (cm -1 ) XX-100 1017 cm -1 0 100 200 300 400 500 600 700 800 0 20 40 60 80 100 IV III V II I Weight % Temperature o C I: PTFQ II: PTFQSH-70 III: PTFQSH-80 IV: PTFQSH-90 V: PTFSH-100 0 10 20 30 40 50 0 20 40 60 80 100 V IV III II Stress (MPa) Strain (%) I: PTFQ II: PTFQS-70 III: PTFQS-80 IV: PTFQS-90 V: PTFS-100 I a) 0 5 10 15 20 25 30 35 40 45 50 55 60 0 10 20 30 40 50 60 70 I: PTFQSH-70 II: PTFQSH-80 III: PTFQSH-90 IV: PTFSH-100 IV III II I Stress (MPa) Strain (%) b) 5 10 15 20 25 30 35 40 45 Intensity (a.u.) I I IV III I 2 (degree) I: PTFQ (dry) II:PTFQSH-80 (dry) III: PTFQSH-90 (dry) IV: PTFQSH-90 (wet) II 2000 4000 6000 8000 10000 12000 -1000 0 1000 2000 3000 4000 5000 6000 7000 VII VI V IV III II Z'' (Ohm) Z' (Ohm) I: PTFQSH-70-30 o C II: PTFQSH-70-40 o C III: PTFQSH-70-50 o C IV: PTFQSH-70-60 o C V: PTFQSH-70-70 o C VI: PTFQSH-70-80 o C VII: PTFQSH-70-90 o C I a) 1.4 1.6 1.8 2.0 2.2 2.4 10 20 30 40 50 5 10 15 20 25 30 a) Proton conductivity (mS/cm) WU (wt %) IEC w 30 o C 1.8 1.9 2.0 2.1 2.2 2.3 2.4 10 20 30 40 50 60 -100 -100 -90 -90 -70 -70 -80 -80 I at 30 o C II at 80 o C I II WU(vol %) IEC v (wet) b) 2.7 2.8 2.9 3.0 3.1 3.2 3.3 1.8 2.4 3.0 3.6 4.2 4.8 5.4 IV III II I Ln ( mS/cm) 1000 K -1 /T I: PTFQSH-70 II: PTFQSH-80 III: PTFQSH-90 IV: PTFSH-100 Thermal and mechanical properties 0.7 0.8 0.9 1.0 0 5 10 15 20 25 30 35 II-80 o C I-30 o C II-70 % II-80 % II-90 % II-100 % I-100 % I-90 % I-80 % Swelling ratio (thickness) DS I-70 % Conclusion and References O O N 3 N 3 K 2 CO 3 / acetone rt, 24h NMP/ toluene K 2 CO 3 F 3 C CF 3 CF 3 CF 3 OH HO CF 3 CF 3 O O Br BPF TF F F F 3 C CF 3 HO NH 2 + O O NH 2 H 2 N F 3 C CF 3 QA QBF QAZ (i)-tBuONO (ii)-TMSN 3 (iii)-CH 3 CN, 0 o C

Transcript of 2 NMP/ toluene IV: PTFQSH-90 a ) -70 b ) IV: PTFQS-90 III...

Page 1: 2 NMP/ toluene IV: PTFQSH-90 a ) -70 b ) IV: PTFQS-90 III ...polyacs.net/Workshops/16Fluoropolymer/FP/images/Posters/pdf/000...to 50% by 2030 and 90% by 2050 H 2 /O 2 fuel cell operation

Polymer Percentage

of

DADSDB

(mmol)

Formula Mn PDI

(MW)n

ηinh

(dL/ C

g) expected

(found)

Elemental analysis DS

H

expected

(found)

S

expected

(found)

N

expecte

d

(found)

theo. NMR

PTFQ 0 (C59H36F12N6O4)m

(1120.94)m

- - - 63.16

(63.29)

3.21

(3.23)

0 7.49

(8.28)

0 0

PTFQSH-70 70 (C35H24N6O8S2)0.7

( C59H36F12N6O4)0.3

(920.59)n

24500 2.96 1.52 55.01

(55.12)

3.00

(3.02)

4.87

(4.95)

9.13

(9.21)1.40 1.40

PTFQSH-80 80 (C35H24N6O8S2)0.8

(C59H36F12N6O4)0.2

(891.96)n

19900 3.55 1.56 53.55

(53.61)

2.96

(2.98)

5.74

(5.82)

9.42

(9.55)1.60 1.60

PTFQSH-90 90 (C35H24N6O8S2)0.9

(C59H36F12N6O4)0.1

(863.34)n

19300 4.33 1.63 51.98

(52.07)

2.92

(2.94)

6.67

(6.73)

9.73

(9.82)1.80 1.74

PTFSH-100100

(C35H24N6O8S2)1

(834.72)n

16300 4.52 1.72 50.32

(50.45)

2.88

(2.90)

7.67

(7.75)

10.06

(10.18)2.00 2.00

Polymer Tg (oC) Td10% (oC) Tensile Strength (Mpa) Elongation at Break (%)

PTFQ 176 380 94.5 ± 1.9

PTFQSH-70 - 298 69.4 ± 1.6 58.2 ± 1.5

PTFQSH-80 - 290 66.1 ± 1.2 60.3 ± 1.2

PTFQSH-90 - 280 55.3 ± 1.6 49.2 ± 1.1

PTFSH-100 - 267 50.4 ± 1.2 42.7 ± 1.5

Synthesis of sulfonated polytriazole

Synthetic route to obtain the sulfonated polytriazole

Monomer synthesis

Variation in the impedance behaviour of PTFQSH-XX membranes with composition Proton conductivity of PTFQSH-XX membranes as a function of WU & IECw Temperature dependence of proton conductivity for sulfonated

polytriazole membranes at 100% RH

XRD analysis of dry and wet state of PTAQ and PTAQSH-90 membranes

TEM micrograph of lead-stained PTFQSH-XX copolymers

Stress-strain plot of PTFQSH-XX copolymers (a) salt (–Na) form (b) acid (–H) form.TGA plots of PTFQSH-XX copolymers

Conductivity, σ = l / (R × d × w)

l = distance between the electrodes

d = thickness of the films

w = width of the films

R = low intersect of the high-frequency

semicircle on a complex impedance plane

with the Real(Z) axis.

IECTheo = (1000/MWrepeat unit) × DS × 2

Where, DS = mol fraction of monomer

unit which is sulfonated

IEC Titr. = (C × V × 100) / W

C = concentration of NaOH

V = volume of NaOH

W = weight of membrane

Thermal Analysis Mechanical Properties

Analysis of Microstructure

Stretching frequency:

≡C-H: 3265 cm-1;

Azide : 2115 cm ;

C=C : 1600 cm-1;

asymmetric C-O-C: 1483, 1333 cm-1;

C-F: 1241, 1131 cm-1;

asymmetric sulfonate: 1080 cm-1;

-1

symmetric sulfonate: 1017 cm-1

1H-NMR and 19F NMR spectra of PT FQSH-XX

FT-IR spectra of monomers and polymers

Solubility of PTFQSH-XX copolymers

Membrane preparation and spectroscopic analysis

Polymer dM

(g/cm )3IECW

(meq/g)

IECV

(meq/g)

WU(wt%) WU(vol%) λ

[H2O/SO3]

dry Wet

Theo. Titr. NMR 30 oC 80 oC 30 oC 80 oC 30 oC 80 oC 30 oC 80 oC

PTFQSH-70 1.46 1.52 1.50 1.52 2.22 1.98 1.90 8 12 12 17 3.06 4.26

PTFQSH-80 1.38 1.79 1.76 1.79 2.48 2.13 2.04 12 16 16 21 3.59 4.79

PTFQSH-90 1.34 2.09 2.04 2.00 2.77 2.31 2.08 15 30 21 39 4.06 7.92

PTFSH-100 1.30 2.40 2.36 2.40 3.12 2.34 2.13 26 42 33 54 5.95 9.67

Composition and properties of PTFQSH-XX copolymers

A series of new highly fluorinated sulfonated polytriazole copolymers successfully prepared by click polymerization.

The presence of triazole moiety and rigid quadriphenyl moiety resulted in high thermal stability, good mechanical properties, excellent phase separated morphology, good hydrolytic and oxidative stability.

The PTFQSH-XX copolymer membranes showed moderate proton conductivity (in the range of 27 to 136 mS/cm at 80 ºC).

1. Y. J. Huang, Y. S. Ye, Y. C. Yen, L. D. Tsai, B. J. Hwang and F. C. Chang, Int. J. Hydrogen Energy, 2011, 36, 15333.

2. A. Singh, R. Mukherjee, S. Banerjee, H. Komber and B. Voit, J. Membr. Sci., 2014, 469, 225.

3. A. Singh, S. Banerjee, H. Komber and B. Voit, RSC Adv., 2016, 6, 13478.

WU (vol%) dependence of IECv (wet) values of PTFQSH-XX membranes

IECv(dry) = (IECW, Theo) × dM

IECv(wet) = IECv(dry)/(1+ 0.01WU)

The fuel cell vehicle market share will grow

to 50% by 2030 and 90% by 2050

H2/O2 fuel cell operation

PEMFCs: a reliable clean alternate energysource

high power density

high efficiency

low operating temperatures

solid non-corrosive electrolyte

long life

environment friendly

ease of design and adaptable size

Proton conduction mechanism

Conversion of H-bonds to covalent bonds between water molecules and vice

versa; only the charge of the proton is transported and not its mass.

Hydrated proton (H3O+) diffuses

through the aqueous medium in

response to the electrochemical

difference.

(H+ (H2O)x) in the result of the

electro-osmotic drag carry the one

or, more molecules of water

through the membrane and itself

are transferred with them.

“Grotthus mechanism”

“Vehicular mechanism”

Dupont’s Nafion® is a standard PEM electrolyte

used in PEMFC because of

high proton conductivity up to 10-2-10-1 S/cm

good chemical and oxidative stability

Commercially available PEM material

Material Selection- Aromatic sulfonated polymers

High thermal stability

High mechanical properties

Good film forming ability

High chemical stability

Why polytriazoles ?

Sulfonated polyimides

Sulfonated poly(arylene ether sulfone)s

Sulfonated poly(ether ether ketone)s

Sulfonated poly(benzimidazole)s

Sulfonated polytriazoles

Synthesis and characterization of highly fluorinated polytriazoles with controlled

degree of sulfonation for proton exchange membrane application

Asheesh Singha, Susanta Banerjeea*, Hartmut Komberb and Brigitte Voitb

aMaterials Science Centre, Indian Institute of Technology Kharagpur 721302, India,bLeibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse. 6, 01067 Dresden, Germany

Introduction

Anode :

H2

Cathode :

2 H+ + 2 e-

1/2 O2 + 2 H+ + 2 e-H O2

WAXD Analysis

Swelling ratio

Proton conductivity, IEC and Water uptake

XRD analysis of dry and wet state of PTFQ and PTFQSH-XX (XX= -80, -90) membranes

Synthesis of TF and QAZ monomer

Polymer Swelling ratio

(%)

Oxidative

stability

(h)

σ (mS/cm) Ea

(kJ/mol)

In plane Through plane

30 oC 80 oC

4 9

9 15

16 23

23 35

n.d.

30 oC 80 oC 30 oC 80 oC

PTFQSH-70 n.d. n.d. > 24 9 27 20.90

PTFQSH-80 n.d. n.d. > 24 13 46 22.83

PTFQSH-90 n.d. n.d. 18 30 86 19.53

PTFSH-100 4.76 9.09 5 54 136 16.23

Nafion® 117 n.d. 60 135 13.65

Swelling ratio, oxidative stability and proton conductivity

Density, IEC, and water uptake

Polymer NMP DMSO DMF DMAc

PTFQ + + + +

PTFQSH-70 + + + +

PTFQSH-80 + + + +

PTFQSH-90 + + + +

PTFSH-100 + + + +

THF CH3OH H2O DCM

- - - -

- - - -

- - - -

- - - -

- - - -

C F 3

C F 3

OOO O N 3N 3

C u I/D M F

7 0 C fo r 2 4 h

H + / 1 .5 M H 2 S O 4

n

N 3

N 3

D A D S D B

B P E B P F

Q A Z

n X X

0 .70 .80 .91 .0

7 08 09 01 0 0

m

ON

N N

C F 3

C F 3

O N N

N O O N

N N O

C F 3

C H 3

O N N

N

S O 3N a

N a O 3S

F 3C

C F 3

F 3C

C F 3

S O 3N a

N a O 3S

nm

ON

N N

C F 3

C F 3

O N N

N O O N

N N O

C F 3

C F 3

O N N

N

S O 3H

H O 3S

F 3C

C F 3

Polymer synthesis

1.93 ± 0.03 2.01 ± 0.02

2.06 ± 0.06 1.95 ± 0.01

1.95 ± 0.02 1.93 ± 0.01

1.81 ± 0.01 42.7 ± 1.5

Young Modulus (GPa)

salt form acid form salt form acid form salt form acid form

2.38 ± 0.06 9.3 ± 1.1

44.4 ± 2.2

34.2 ± 0.8 5.32 ± 2.5

31.6 ± 0.3 20.2 ± 0.8

17.8 ± 1.4 16.7 ± 1.5

3.44 ± 1.1

11 n.d. 19

Solution casting

1800 1600 1400 1200 1000 800

1131 cm-1

1241 cm-1

1080 cm-1

Tra

ns

mit

tan

ce

(a

.u.)

XX-70

XX-80

XX-90

Wavenumber (cm-1

)

XX-100 1017 cm

-1

0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

IV

III

VII

I

We

igh

t %

Temperature o

C

I: PTFQ

II: PTFQSH-70

III: PTFQSH-80

IV: PTFQSH-90

V: PTFSH-100

0 10 20 30 40 500

20

40

60

80

100

VIV

IIIII

Str

ess (

MP

a)

Strain (%)

I: PTFQ

II: PTFQS-70

III: PTFQS-80

IV: PTFQS-90

V: PTFS-100

I

a)

0 5 10 15 20 25 30 35 40 45 50 55 600

10

20

30

40

50

60

70

I: PTFQSH-70

II: PTFQSH-80

III: PTFQSH-90

IV: PTFSH-100

IV

III

III

Str

es

s (

MP

a)

Strain (%)

b)

5 10 15 20 25 30 35 40 45

Inte

ns

ity

(a

.u.)

II

IV

III

I

2 (degree)

I: PTFQ (dry)

II:PTFQSH-80 (dry)

III: PTFQSH-90 (dry)

IV: PTFQSH-90 (wet)

II

2000 4000 6000 8000 10000 12000

-1000

0

1000

2000

3000

4000

5000

6000

7000

VII VI V IV III II

Z''

(Oh

m)

Z' (Ohm)

I: PTFQSH-70-30 o

C

II: PTFQSH-70-40 o

C

III: PTFQSH-70-50 o

C

IV: PTFQSH-70-60 o

C

V: PTFQSH-70-70 o

C

VI: PTFQSH-70-80 o

C

VII: PTFQSH-70-90 o

C

I

a)

1.41.6

1.82.0

2.22.4

10

20

30

40

50

5

10

15

2025

30

a)

Pro

ton

co

nd

ucti

vit

y (

mS

/cm

)

WU

(w

t %

)

IECw

30 o

C

1.8 1.9 2.0 2.1 2.2 2.3 2.4

10

20

30

40

50

60

-100

-100

-90

-90

-70

-70

-80

-80

I at 30 o

C

II at 80 o

C

I

II

WU

(vo

l %

)

IECv (wet)

b)

2.7 2.8 2.9 3.0 3.1 3.2 3.31.8

2.4

3.0

3.6

4.2

4.8

5.4

IV

III

II

I

Ln

(m

S/c

m)

1000 K-1

/T

I: PTFQSH-70

II: PTFQSH-80

III: PTFQSH-90

IV: PTFSH-100 Thermal and mechanical properties

0.7

0.8

0.9

1.00

5

10

15

20

25

30

35

II-80 o

C

I-30 o

C

II-70 %

II-80 %

II-90 %

II-100 %

I-100 %

I-90 %

I-80 %

Sw

elli

ng r

ati

o (

thic

kn

ess)

DS

I-70 %

Conclusion and References

O O N3N3

K2CO3/ acetone

rt, 24h

NMP/ toluene

K2CO3

F3C

CF3

CF3

CF3

OHHO

CF3

CF3

OO

Br

BPF

TF

F F

F3C

CF3

HO NH2+

O O NH2H2N

F3C

CF3

QA

QBF

QAZ

(i)-tBuONO

(ii)-TMSN3

(iii)-CH3CN, 0 oC