Finite element methods for elliptic PDEs on surfacesFinite element methods for elliptic PDEs on...

Post on 22-Jul-2020

1 views 0 download

Transcript of Finite element methods for elliptic PDEs on surfacesFinite element methods for elliptic PDEs on...

Finite element methods for elliptic PDEs onsurfaces

Klaus Deckelnick, Otto–von–Guericke–Universitat Magdeburg

3rd Workshop Analysis, Geometry and Probability

Universitat Ulm

Klaus Deckelnick FEM for elliptic surface PDEs

Motivation

Two-phase flow with insoluble surfactant

ρut + ρ(u · ∇)u −∇ · T (u, p) = ρf

∇ · u = 0

in Ω±(t)

[u]

= 0[T (u, p)ν

]= σ(c)Hν −∇Γ(σ(c))

v · ν = u · ν

∂•t c −∇Γ · (D∇Γc) + c∇Γ · u = 0

on Γ(t)

James & Lowengrub (2004), Ganesan & Tobiska (2009), Barrett, Garcke & Nurnberg (2015)

Klaus Deckelnick FEM for elliptic surface PDEs

A model problem

given smooth, compact hypersurface Γ ⊂ Rn+1, ∂Γ = ∅, f : Γ→ R;

find u : Γ→ R such that

−∆Γu + u = f on Γ. (1)

Aim Development and analysis of numerical methods for (1)

Difficulties Simultaneous approximation of the PDE and thegeometry

G. Dziuk, C.M. Elliott: Finite element methods for surface PDEs, Acta Numerica 22, 289-396 (2013)

Klaus Deckelnick FEM for elliptic surface PDEs

A model problem

given smooth, compact hypersurface Γ ⊂ Rn+1, ∂Γ = ∅, f : Γ→ R;

find u : Γ→ R such that

−∆Γu + u = f on Γ. (1)

Aim Development and analysis of numerical methods for (1)

Difficulties Simultaneous approximation of the PDE and thegeometry

G. Dziuk, C.M. Elliott: Finite element methods for surface PDEs, Acta Numerica 22, 289-396 (2013)

Klaus Deckelnick FEM for elliptic surface PDEs

A model problem

given smooth, compact hypersurface Γ ⊂ Rn+1, ∂Γ = ∅, f : Γ→ R;

find u : Γ→ R such that

−∆Γu + u = f on Γ. (1)

Aim Development and analysis of numerical methods for (1)

Difficulties Simultaneous approximation of the PDE and thegeometry

G. Dziuk, C.M. Elliott: Finite element methods for surface PDEs, Acta Numerica 22, 289-396 (2013)

Klaus Deckelnick FEM for elliptic surface PDEs

Basics on hypersurfaces

Local description of Γ

U∩Γ =

F (Ω), F : Ω→ Rn+1, rankDF (ω) = n,

x ∈ U |φ(x) = 0, φ : U → R, ∇φ(x) 6= 0.

Tangent space

TxΓ =

span ∂F∂ω1(ω), . . . , ∂F∂ωn

(ω), x = F (ω);(span∇φ(x)

)⊥, φ(x) = 0.

Unit normal ν ∈ C 0(Γ,Rn+1), ν(x) ⊥ TxΓ, |ν(x)| = 1.

Klaus Deckelnick FEM for elliptic surface PDEs

Basics on hypersurfaces

Local description of Γ

U∩Γ =

F (Ω), F : Ω→ Rn+1, rankDF (ω) = n,

x ∈ U |φ(x) = 0, φ : U → R, ∇φ(x) 6= 0.

Tangent space

TxΓ =

span ∂F∂ω1(ω), . . . , ∂F∂ωn

(ω), x = F (ω);(span∇φ(x)

)⊥, φ(x) = 0.

Unit normal ν ∈ C 0(Γ,Rn+1), ν(x) ⊥ TxΓ, |ν(x)| = 1.

Klaus Deckelnick FEM for elliptic surface PDEs

Basics on hypersurfaces

Local description of Γ

U∩Γ =

F (Ω), F : Ω→ Rn+1, rankDF (ω) = n,

x ∈ U |φ(x) = 0, φ : U → R, ∇φ(x) 6= 0.

Tangent space

TxΓ =

span ∂F∂ω1(ω), . . . , ∂F∂ωn

(ω), x = F (ω);(span∇φ(x)

)⊥, φ(x) = 0.

Unit normal ν ∈ C 0(Γ,Rn+1), ν(x) ⊥ TxΓ, |ν(x)| = 1.

Klaus Deckelnick FEM for elliptic surface PDEs

Differentiation on hypersurfaces

Definition A function f : Γ→ R is called differentiable on Γ if f Fis differentiable for every local parametrisation F of Γ.

Tangential gradient

∇Γf (x) =

∑ni ,j=1 g

ij(ω)∂j(f F

)(ω)∂iF (ω), x = F (ω)

(In+1 − ν(x)⊗ ν(x))∇f e(x), f e = f on Γ.

Laplace–Beltrami operator: ∆Γf = divΓ∇Γf

Mean curvature: H = −divΓν

Example: Γ = ∂BR(0) ⊂ Rn+1, ν(x) = xR ,H = − n

R , x ∈ Γ

Klaus Deckelnick FEM for elliptic surface PDEs

Differentiation on hypersurfaces

Definition A function f : Γ→ R is called differentiable on Γ if f Fis differentiable for every local parametrisation F of Γ.

Tangential gradient

∇Γf (x) =

∑ni ,j=1 g

ij(ω)∂j(f F

)(ω)∂iF (ω), x = F (ω)

(In+1 − ν(x)⊗ ν(x))∇f e(x), f e = f on Γ.

Laplace–Beltrami operator: ∆Γf = divΓ∇Γf

Mean curvature: H = −divΓν

Example: Γ = ∂BR(0) ⊂ Rn+1, ν(x) = xR ,H = − n

R , x ∈ Γ

Klaus Deckelnick FEM for elliptic surface PDEs

Differentiation on hypersurfaces

Definition A function f : Γ→ R is called differentiable on Γ if f Fis differentiable for every local parametrisation F of Γ.

Tangential gradient

∇Γf (x) =

∑ni ,j=1 g

ij(ω)∂j(f F

)(ω)∂iF (ω), x = F (ω)

(In+1 − ν(x)⊗ ν(x))∇f e(x), f e = f on Γ.

Laplace–Beltrami operator: ∆Γf = divΓ∇Γf

Mean curvature: H = −divΓν

Example: Γ = ∂BR(0) ⊂ Rn+1, ν(x) = xR ,H = − n

R , x ∈ Γ

Klaus Deckelnick FEM for elliptic surface PDEs

Integration by parts ∫Γ∇Γf dσ =

∫Γf H ν dσ.

Function spaces

C 1(Γ) := f : Γ→ R | f is continuously differentiable on Γ;

H1(Γ) := Completion of C 1(Γ) under the norm

‖f ‖H1(Γ) =(∫

Γ|f |2dσ +

∫Γ|∇Γf |2dσ

)1/2.

Klaus Deckelnick FEM for elliptic surface PDEs

Integration by parts ∫Γ∇Γf dσ =

∫Γf H ν dσ.

Function spaces

C 1(Γ) := f : Γ→ R | f is continuously differentiable on Γ;

H1(Γ) := Completion of C 1(Γ) under the norm

‖f ‖H1(Γ) =(∫

Γ|f |2dσ +

∫Γ|∇Γf |2dσ

)1/2.

Klaus Deckelnick FEM for elliptic surface PDEs

Weak solutionsSuppose that u : Γ→ R satisfies −∆Γu + u = f on Γ.

Multiply by v and integrate over Γ:

−∫

Γ∆Γu v dσ = −

∫Γ∇Γ ·

(v∇Γu

)dσ +

∫Γ∇Γu · ∇Γvdσ

= −∫

ΓHv ∇Γu · ν︸ ︷︷ ︸

=0

dσ +

∫Γ∇Γu · ∇Γvdσ.

Definition A function u ∈ H1(Γ) is called a weak solution of

−∆Γu + u = f on Γ if∫Γ∇Γu · ∇Γv dσ +

∫Γu v dσ︸ ︷︷ ︸

=a(u,v)

=

∫Γf v dσ︸ ︷︷ ︸

=l(v)

∀v ∈ H1(Γ).

Klaus Deckelnick FEM for elliptic surface PDEs

Weak solutionsSuppose that u : Γ→ R satisfies −∆Γu + u = f on Γ.

Multiply by v and integrate over Γ:

−∫

Γ∆Γu v dσ = −

∫Γ∇Γ ·

(v∇Γu

)dσ +

∫Γ∇Γu · ∇Γvdσ

= −∫

ΓHv ∇Γu · ν︸ ︷︷ ︸

=0

dσ +

∫Γ∇Γu · ∇Γvdσ.

Definition A function u ∈ H1(Γ) is called a weak solution of

−∆Γu + u = f on Γ if∫Γ∇Γu · ∇Γv dσ +

∫Γu v dσ︸ ︷︷ ︸

=a(u,v)

=

∫Γf v dσ︸ ︷︷ ︸

=l(v)

∀v ∈ H1(Γ).

Klaus Deckelnick FEM for elliptic surface PDEs

Theorem For every f ∈ L2(Γ) the PDE

−∆Γu + u = f on Γ

has a unique weak solution u ∈ H1(Γ). Furthermore, u ∈ H2(Γ)and there exists c > 0 such that

‖u‖H2(Γ) ≤ c‖f ‖L2(Γ).

Idea of proof:

I Existence and uniqueness: Lax–Milgram theorem

I Regularity: u := u F (F : Ω→ Rn+1 local parametrisation)is a weak solution of

−n∑

i ,j=1

∂j(g ij√g∂i u

)+√gu =

√g f F in Ω.

Klaus Deckelnick FEM for elliptic surface PDEs

Theorem For every f ∈ L2(Γ) the PDE

−∆Γu + u = f on Γ

has a unique weak solution u ∈ H1(Γ). Furthermore, u ∈ H2(Γ)and there exists c > 0 such that

‖u‖H2(Γ) ≤ c‖f ‖L2(Γ).

Idea of proof:

I Existence and uniqueness: Lax–Milgram theorem

I Regularity: u := u F (F : Ω→ Rn+1 local parametrisation)is a weak solution of

−n∑

i ,j=1

∂j(g ij√g∂i u

)+√gu =

√g f F in Ω.

Klaus Deckelnick FEM for elliptic surface PDEs

Oriented distance function

Suppose that Γ = ∂Ω ∈ C 2 for some bounded domain Ω ⊂ Rn+1.Let

d(x) :=

infy∈Γ |x − y | x ∈ Rn+1 \ Ω

0 x ∈ Γ− infy∈Γ |x − y | x ∈ Ω.

Lemma

(a) There exists δ > 0 such that d ∈ C 2(Γδ), whereΓδ = x ∈ Rn+1 | |d(x)| < δ;

(b) (Fermi coordinates) For every x ∈ Γδ there exists a uniquep(x) ∈ Γ such that

x = p(x) + d(x)ν(p(x)).

see: D. Gilbarg, N.S. Trudinger: Elliptic Partial Differential Equations of 2nd Order, Springer

Klaus Deckelnick FEM for elliptic surface PDEs

Oriented distance function

Suppose that Γ = ∂Ω ∈ C 2 for some bounded domain Ω ⊂ Rn+1.Let

d(x) :=

infy∈Γ |x − y | x ∈ Rn+1 \ Ω

0 x ∈ Γ− infy∈Γ |x − y | x ∈ Ω.

Lemma

(a) There exists δ > 0 such that d ∈ C 2(Γδ), whereΓδ = x ∈ Rn+1 | |d(x)| < δ;

(b) (Fermi coordinates) For every x ∈ Γδ there exists a uniquep(x) ∈ Γ such that

x = p(x) + d(x)ν(p(x)).

see: D. Gilbarg, N.S. Trudinger: Elliptic Partial Differential Equations of 2nd Order, Springer

Klaus Deckelnick FEM for elliptic surface PDEs

Approach I: FEM on triangulated surface

Idea Approximate Γ ⊂ Rn+1 by Γh =⋃

T∈Th

T , 0 < h ≤ h0, where

I Th consists of n–simplices with vertices a1, . . . , aN ∈ Γ;

I Th is admissible and regular; h := maxT∈Th diamT ;

I The mapping p : Γh → Γ is bijective.

Let Sh := vh ∈ C 0(Γh) | vh|T ∈ P1(T ),T ∈ Th.

Every uh ∈ Sh can be uniquely written as

uh(x) =N∑j=1

ujφj(x), x ∈ Γh,

where φi ∈ Sh, 1 ≤ j ≤ N satisfies φj(aj) = 1, φj(ak) = 0, k 6= j .

Klaus Deckelnick FEM for elliptic surface PDEs

Approach I: FEM on triangulated surface

Idea Approximate Γ ⊂ Rn+1 by Γh =⋃

T∈Th

T , 0 < h ≤ h0, where

I Th consists of n–simplices with vertices a1, . . . , aN ∈ Γ;

I Th is admissible and regular; h := maxT∈Th diamT ;

I The mapping p : Γh → Γ is bijective.

Let Sh := vh ∈ C 0(Γh) | vh|T ∈ P1(T ),T ∈ Th.

Every uh ∈ Sh can be uniquely written as

uh(x) =N∑j=1

ujφj(x), x ∈ Γh,

where φi ∈ Sh, 1 ≤ j ≤ N satisfies φj(aj) = 1, φj(ak) = 0, k 6= j .

Klaus Deckelnick FEM for elliptic surface PDEs

Figure : Triangulation of the sphere: after 6 refinement steps thetriangulation consists of 512 triangles and 258 vertices.

(G. Dziuk, C.M. Elliott: Finite element methods for surface PDEs, Acta Numerica 22, 289-396 (2013))

Klaus Deckelnick FEM for elliptic surface PDEs

Surface FEM (Dziuk, 1988)

Find uh =∑N

j=1 ujφj(x) ∈ Sh such that∫Γh

(∇Γh

uh · ∇Γhvh + uh vh

)dσh =

∫Γh

fh vh dσh ∀vh ∈ Sh

⇐⇒N∑j=1

uj

∫Γh

(∇Γh

φj · ∇Γhφi + φj φi

)dσh︸ ︷︷ ︸

=:Aij

=

∫Γh

fhφi dσh︸ ︷︷ ︸=:Fi

1 ≤ i ≤ N.

Theorem The discrete problem has a unique solution uh ∈ Sh and

‖u − ulh‖L2(Γ) + h‖∇Γ(u − ulh)‖L2(Γ) ≤ ch2‖u‖H2(Γ),

provided ‖f − f lh‖L2(Γ) ≤ ch2. Here, ulh(y) := uh(p−1(y)), y ∈ Γ.

Klaus Deckelnick FEM for elliptic surface PDEs

Surface FEM (Dziuk, 1988)

Find uh =∑N

j=1 ujφj(x) ∈ Sh such that∫Γh

(∇Γh

uh · ∇Γhvh + uh vh

)dσh =

∫Γh

fh vh dσh ∀vh ∈ Sh

⇐⇒N∑j=1

uj

∫Γh

(∇Γh

φj · ∇Γhφi + φj φi

)dσh︸ ︷︷ ︸

=:Aij

=

∫Γh

fhφi dσh︸ ︷︷ ︸=:Fi

1 ≤ i ≤ N.

Theorem The discrete problem has a unique solution uh ∈ Sh and

‖u − ulh‖L2(Γ) + h‖∇Γ(u − ulh)‖L2(Γ) ≤ ch2‖u‖H2(Γ),

provided ‖f − f lh‖L2(Γ) ≤ ch2. Here, ulh(y) := uh(p−1(y)), y ∈ Γ.

Klaus Deckelnick FEM for elliptic surface PDEs

Surface FEM (Dziuk, 1988)

Find uh =∑N

j=1 ujφj(x) ∈ Sh such that∫Γh

(∇Γh

uh · ∇Γhvh + uh vh

)dσh =

∫Γh

fh vh dσh ∀vh ∈ Sh

⇐⇒N∑j=1

uj

∫Γh

(∇Γh

φj · ∇Γhφi + φj φi

)dσh︸ ︷︷ ︸

=:Aij

=

∫Γh

fhφi dσh︸ ︷︷ ︸=:Fi

1 ≤ i ≤ N.

Theorem The discrete problem has a unique solution uh ∈ Sh and

‖u − ulh‖L2(Γ) + h‖∇Γ(u − ulh)‖L2(Γ) ≤ ch2‖u‖H2(Γ),

provided ‖f − f lh‖L2(Γ) ≤ ch2. Here, ulh(y) := uh(p−1(y)), y ∈ Γ.

Klaus Deckelnick FEM for elliptic surface PDEs

Approach II: FEM on bulk triangulation

Idea

I Extend the surface PDE to a neighbourhood U of Γ

I Solve the extended PDE using a FEM method on U

For φ : U → R with ∇φ(x) 6= 0, x ∈ U we let

Γr := x ∈ U |φ(x) = r and suppose that Γ = Γ0.

Observe that for f : U → R

∇Γr f|Γr= [Pφ∇f ]|Γr

, where Pφ := In+1 −∇φ|∇φ|

⊗ ∇φ|∇φ|

,

∆Γr f|Γr=

[1

|∇φ|∇ ·(Pφ∇f |∇φ|

)]|Γr

.

Klaus Deckelnick FEM for elliptic surface PDEs

Approach II: FEM on bulk triangulation

Idea

I Extend the surface PDE to a neighbourhood U of Γ

I Solve the extended PDE using a FEM method on U

For φ : U → R with ∇φ(x) 6= 0, x ∈ U we let

Γr := x ∈ U |φ(x) = r and suppose that Γ = Γ0.

Observe that for f : U → R

∇Γr f|Γr= [Pφ∇f ]|Γr

, where Pφ := In+1 −∇φ|∇φ|

⊗ ∇φ|∇φ|

,

∆Γr f|Γr=

[1

|∇φ|∇ ·(Pφ∇f |∇φ|

)]|Γr

.

Klaus Deckelnick FEM for elliptic surface PDEs

Approach II: FEM on bulk triangulation

Idea

I Extend the surface PDE to a neighbourhood U of Γ

I Solve the extended PDE using a FEM method on U

For φ : U → R with ∇φ(x) 6= 0, x ∈ U we let

Γr := x ∈ U |φ(x) = r and suppose that Γ = Γ0.

Observe that for f : U → R

∇Γr f|Γr= [Pφ∇f ]|Γr

, where Pφ := In+1 −∇φ|∇φ|

⊗ ∇φ|∇φ|

,

∆Γr f|Γr=

[1

|∇φ|∇ ·(Pφ∇f |∇φ|

)]|Γr

.

Klaus Deckelnick FEM for elliptic surface PDEs

Variant 1: Burger (2009)

− 1

|∇φ|∇ ·(Pφ∇u|∇φ|

)+ u = f in

⋃−δ<r<δ

Γr . (2)

Properties

I u solves (2) =⇒ u|Γrsolves

−∆Γr v + v = f|Γrfor − δ < r < δ

I (2) is only degenerate elliptic because Pφ∇φ = 0

I Existence: Burger (2009)

I Regularity: D., Dziuk, Elliott & Heine (2010).

Klaus Deckelnick FEM for elliptic surface PDEs

Variant 1: Burger (2009)

− 1

|∇φ|∇ ·(Pφ∇u|∇φ|

)+ u = f in

⋃−δ<r<δ

Γr . (2)

Properties

I u solves (2) =⇒ u|Γrsolves

−∆Γr v + v = f|Γrfor − δ < r < δ

I (2) is only degenerate elliptic because Pφ∇φ = 0

I Existence: Burger (2009)

I Regularity: D., Dziuk, Elliott & Heine (2010).

Klaus Deckelnick FEM for elliptic surface PDEs

Narrow band around Γ

Let (Th)0<h≤h0 be a family of triangulations of U and set

Γh := x ∈ U ; Ihφ(x) = 0,

Dh := x ∈ U ; |Ihφ(x)| < h

T Γh := T ∈ Th ; |T ∩ Dh| > 0.

Klaus Deckelnick FEM for elliptic surface PDEs

Narrow band around Γ

Let (Th)0<h≤h0 be a family of triangulations of U and set

Γh := x ∈ U ; Ihφ(x) = 0,

Dh := x ∈ U ; |Ihφ(x)| < h

T Γh := T ∈ Th ; |T ∩ Dh| > 0.

Klaus Deckelnick FEM for elliptic surface PDEs

Figure : Narrow bands around a torus

(T. Ranner: Computational surface partial differential equations, PhD Thesis, University of Warwick (2013))

Klaus Deckelnick FEM for elliptic surface PDEs

Let Vh := spanϕj ; aj ∈ T ∈ T Γh

Find uh ∈ Vh such that for all vh ∈ Vh∫Dh

(Ph∇uh · ∇vh + uh vh

)|∇Ihφ| dx =

∫Dh

f vh|∇Ihφ|dx

where

Ph = In+1 −∇Ihφ|∇Ihφ|

⊗ ∇Ihφ|∇Ihφ|

.

Theorem (D., Dziuk, Elliott & Heine, 2010)

Suppose that the solution u of (2) belongs to W 2,∞(U) and thatf ∈W 1,∞(U). Then( 1

2h

∫Dh

(|Ph∇(u − uh)|2 + |u − uh|2

)dx) 1

2 ≤ ch

Klaus Deckelnick FEM for elliptic surface PDEs

Let Vh := spanϕj ; aj ∈ T ∈ T Γh

Find uh ∈ Vh such that for all vh ∈ Vh∫Dh

(Ph∇uh · ∇vh + uh vh

)|∇Ihφ| dx =

∫Dh

f vh|∇Ihφ|dx

where

Ph = In+1 −∇Ihφ|∇Ihφ|

⊗ ∇Ihφ|∇Ihφ|

.

Theorem (D., Dziuk, Elliott & Heine, 2010)

Suppose that the solution u of (2) belongs to W 2,∞(U) and thatf ∈W 1,∞(U). Then( 1

2h

∫Dh

(|Ph∇(u − uh)|2 + |u − uh|2

)dx) 1

2 ≤ ch

Klaus Deckelnick FEM for elliptic surface PDEs

Γ = x = (x1, x2, x3) ∈ R3 |3∑

i=1

[(x2i +x2

i+1−4)2 +(x2i+2−1)2] = 3

Figure : Computed solution for

f (x) = 100∑4

j=1 exp(−|x − x (j)|2), x (1), . . . , x (4) given (left)

f (x) = 10000 sin(5(x1 + x2 + x3) + 2.5) (right)

Klaus Deckelnick FEM for elliptic surface PDEs

Variant 2: D., Elliott & Ranner (2014)

For a given u : Γ→ R we define an extension ue : U → R by

ue(x) := u(p(x)), where x = p(x) + d(x)ν(p(x)).

Properties of ue :

a) ∇ue · ν = 0 =⇒ P∇ue = ∇ue ;

b) If −∆Γu + u = f on Γ, then ue satisfies

−∆ue + ue = f e + d(x) g(x , (∇Γu) p, (D2

Γu) p)

in U.

Klaus Deckelnick FEM for elliptic surface PDEs

Variant 2: D., Elliott & Ranner (2014)

For a given u : Γ→ R we define an extension ue : U → R by

ue(x) := u(p(x)), where x = p(x) + d(x)ν(p(x)).

Properties of ue :

a) ∇ue · ν = 0 =⇒ P∇ue = ∇ue ;

b) If −∆Γu + u = f on Γ, then ue satisfies

−∆ue + ue = f e + d(x) g(x , (∇Γu) p, (D2

Γu) p)

in U.

Klaus Deckelnick FEM for elliptic surface PDEs

Let Vh := spanϕj ; aj ∈ T ∈ T Γh

Find uh ∈ Vh such that for all vh ∈ Vh∫Dh

(∇uh · ∇vh + uh vh

)|∇Ihd |dx =

∫Dh

f e vh|∇Ihd |dx .

Theorem The discrete problem has a unique solution uh ∈ Vh and(1

2h

∫Dh

|∇(ue − uh)|2|∇Ihd |dx) 1

2

≤ ch‖f ‖L2(Γ)

‖ue − uh‖L2(Γh) ≤ ch2‖f ‖L2(Γ).

Klaus Deckelnick FEM for elliptic surface PDEs

Let Vh := spanϕj ; aj ∈ T ∈ T Γh

Find uh ∈ Vh such that for all vh ∈ Vh∫Dh

(∇uh · ∇vh + uh vh

)|∇Ihd |dx =

∫Dh

f e vh|∇Ihd |dx .

Theorem The discrete problem has a unique solution uh ∈ Vh and(1

2h

∫Dh

|∇(ue − uh)|2|∇Ihd |dx) 1

2

≤ ch‖f ‖L2(Γ)

‖ue − uh‖L2(Γh) ≤ ch2‖f ‖L2(Γ).

Klaus Deckelnick FEM for elliptic surface PDEs

Sketch of the proof

Abstract error bound

1

2h

∫Dh

(∇uh · ∇vh + uhvh)|∇Ihd |dx︸ ︷︷ ︸=:ah(uh,vh)

=1

2h

∫Dh

f evh |∇Ihd |dx︸ ︷︷ ︸=:lh(vh)

.

Strang’s Second Lemma:

Let ‖v‖h :=√

ah(v , v). Then:

‖ue − uh‖h ≤ 2 infvh∈Vh

‖ue − vh‖h + supvh∈Vh

|ah(ue , vh)− lh(vh)|‖vh‖h

.

Klaus Deckelnick FEM for elliptic surface PDEs

Sketch of the proof

Abstract error bound

1

2h

∫Dh

(∇uh · ∇vh + uhvh)|∇Ihd |dx︸ ︷︷ ︸=:ah(uh,vh)

=1

2h

∫Dh

f evh |∇Ihd |dx︸ ︷︷ ︸=:lh(vh)

.

Strang’s Second Lemma:

Let ‖v‖h :=√

ah(v , v). Then:

‖ue − uh‖h ≤ 2 infvh∈Vh

‖ue − vh‖h + supvh∈Vh

|ah(ue , vh)− lh(vh)|‖vh‖h

.

Klaus Deckelnick FEM for elliptic surface PDEs

Interpolation error

infvh∈Vh

‖ue − vh‖h ≤ ‖ue − Ihue‖h ≤ ch‖u‖H2(Γ).

Consistency error

Fh(x) := x + (Ihd(x)− d(x))ν(p(x)).

Properties

a) Fh is a bijection from |Ihd | < h = Dh onto Dh = |d | < h;

b) |Fh(x)− x | ≤ ch2, |DFh(x)− In+1| ≤ ch;

c) |detDFh(x)− |∇Ihd(x)| | ≤ ch2.

Klaus Deckelnick FEM for elliptic surface PDEs

Interpolation error

infvh∈Vh

‖ue − vh‖h ≤ ‖ue − Ihue‖h ≤ ch‖u‖H2(Γ).

Consistency error

Fh(x) := x + (Ihd(x)− d(x))ν(p(x)).

Properties

a) Fh is a bijection from |Ihd | < h = Dh onto Dh = |d | < h;

b) |Fh(x)− x | ≤ ch2, |DFh(x)− In+1| ≤ ch;

c) |detDFh(x)− |∇Ihd(x)| | ≤ ch2.

Klaus Deckelnick FEM for elliptic surface PDEs

Recall that

−∆ue + ue = f e + d(x) g(x , (∇Γu) p, (D2

Γu) p).

We obtain for arbitrary vh ∈ Vh

1

2h

∫Dh

(−∆ue + ue)vh F−1h dx =

1

2h

∫Dh

(f e + dg)vh F−1h dx .

1

2h

∫Dh

(−∆ue + ue)vh F−1h =

1

2h

∫Dh

(∇ue · ∇(vh F−1

h ) + ue vh F−1h

)=

1

2h

∫Dh

(∇ue Fh · DF−th ∇vh + ue Fh vh

)detDFhdx

=1

2h

∫Dh

(∇ue · ∇vh + ue vh

)|∇Ihd |dx︸ ︷︷ ︸

=ah(ue ,vh)

+O(h‖vh‖h).

Klaus Deckelnick FEM for elliptic surface PDEs

Recall that

−∆ue + ue = f e + d(x) g(x , (∇Γu) p, (D2

Γu) p).

We obtain for arbitrary vh ∈ Vh

1

2h

∫Dh

(−∆ue + ue)vh F−1h dx =

1

2h

∫Dh

(f e + dg)vh F−1h dx .

1

2h

∫Dh

(−∆ue + ue)vh F−1h =

1

2h

∫Dh

(∇ue · ∇(vh F−1

h ) + ue vh F−1h

)=

1

2h

∫Dh

(∇ue Fh · DF−th ∇vh + ue Fh vh

)detDFhdx

=1

2h

∫Dh

(∇ue · ∇vh + ue vh

)|∇Ihd |dx︸ ︷︷ ︸

=ah(ue ,vh)

+O(h‖vh‖h).

Klaus Deckelnick FEM for elliptic surface PDEs

Recall that

−∆ue + ue = f e + d(x) g(x , (∇Γu) p, (D2

Γu) p).

We obtain for arbitrary vh ∈ Vh

1

2h

∫Dh

(−∆ue + ue)vh F−1h dx =

1

2h

∫Dh

(f e + dg)vh F−1h dx .

1

2h

∫Dh

(−∆ue + ue)vh F−1h =

1

2h

∫Dh

(∇ue · ∇(vh F−1

h ) + ue vh F−1h

)

=1

2h

∫Dh

(∇ue Fh · DF−th ∇vh + ue Fh vh

)detDFhdx

=1

2h

∫Dh

(∇ue · ∇vh + ue vh

)|∇Ihd |dx︸ ︷︷ ︸

=ah(ue ,vh)

+O(h‖vh‖h).

Klaus Deckelnick FEM for elliptic surface PDEs

Recall that

−∆ue + ue = f e + d(x) g(x , (∇Γu) p, (D2

Γu) p).

We obtain for arbitrary vh ∈ Vh

1

2h

∫Dh

(−∆ue + ue)vh F−1h dx =

1

2h

∫Dh

(f e + dg)vh F−1h dx .

1

2h

∫Dh

(−∆ue + ue)vh F−1h =

1

2h

∫Dh

(∇ue · ∇(vh F−1

h ) + ue vh F−1h

)=

1

2h

∫Dh

(∇ue Fh · DF−th ∇vh + ue Fh vh

)detDFhdx

=1

2h

∫Dh

(∇ue · ∇vh + ue vh

)|∇Ihd |dx︸ ︷︷ ︸

=ah(ue ,vh)

+O(h‖vh‖h).

Klaus Deckelnick FEM for elliptic surface PDEs

Recall that

−∆ue + ue = f e + d(x) g(x , (∇Γu) p, (D2

Γu) p).

We obtain for arbitrary vh ∈ Vh

1

2h

∫Dh

(−∆ue + ue)vh F−1h dx =

1

2h

∫Dh

(f e + dg)vh F−1h dx .

1

2h

∫Dh

(−∆ue + ue)vh F−1h =

1

2h

∫Dh

(∇ue · ∇(vh F−1

h ) + ue vh F−1h

)=

1

2h

∫Dh

(∇ue Fh · DF−th ∇vh + ue Fh vh

)detDFhdx

=1

2h

∫Dh

(∇ue · ∇vh + ue vh

)|∇Ihd |dx︸ ︷︷ ︸

=ah(ue ,vh)

+O(h‖vh‖h).

Klaus Deckelnick FEM for elliptic surface PDEs

Similarly

• 1

2h

∫Dh

f e vh F−1h dx =

1

2h

∫Dh

f e vh |∇Ihd |dx︸ ︷︷ ︸=lh(vh)

+O(h2‖vh‖h);

• | 1

2h

∫Dh

d(x)g(x , (∇Γu) p, (D2Γu) p)vh F−1

h | ≤ ch‖vh‖h.

In conclusion

‖ue − uh‖h ≤ 2 infvh∈Vh

‖ue − vh‖h︸ ︷︷ ︸≤ch

+ supvh∈Vh

|ah(ue , vh)− lh(vh)|‖vh‖h︸ ︷︷ ︸≤ch

.

Klaus Deckelnick FEM for elliptic surface PDEs

Similarly

• 1

2h

∫Dh

f e vh F−1h dx =

1

2h

∫Dh

f e vh |∇Ihd |dx︸ ︷︷ ︸=lh(vh)

+O(h2‖vh‖h);

• | 1

2h

∫Dh

d(x)g(x , (∇Γu) p, (D2Γu) p)vh F−1

h | ≤ ch‖vh‖h.

In conclusion

‖ue − uh‖h ≤ 2 infvh∈Vh

‖ue − vh‖h︸ ︷︷ ︸≤ch

+ supvh∈Vh

|ah(ue , vh)− lh(vh)|‖vh‖h︸ ︷︷ ︸≤ch

.

Klaus Deckelnick FEM for elliptic surface PDEs

Similarly

• 1

2h

∫Dh

f e vh F−1h dx =

1

2h

∫Dh

f e vh |∇Ihd |dx︸ ︷︷ ︸=lh(vh)

+O(h2‖vh‖h);

• | 1

2h

∫Dh

d(x)g(x , (∇Γu) p, (D2Γu) p)vh F−1

h | ≤ ch‖vh‖h.

In conclusion

‖ue − uh‖h ≤ 2 infvh∈Vh

‖ue − vh‖h︸ ︷︷ ︸≤ch

+ supvh∈Vh

|ah(ue , vh)− lh(vh)|‖vh‖h︸ ︷︷ ︸≤ch

.

Klaus Deckelnick FEM for elliptic surface PDEs

Sharp interface methods

Γh = x ∈ U ; Ihd(x) = 0

T Γh = T ∈ Th ; |T ∩ Γh| > 0

V Γh = spanϕj ; xj ∈ T ∈ T Γ

h .

Variant I (Olshanskii, Reusken & Grande, 2009):∫Γh

(Ph∇uh · ∇vh + uhvh

)dσh =

∫Γh

f evhdσh.

Variant II (D., Elliott, Ranner, 2014):∫Γh

(∇uh · ∇vh + uhvh

)dσh =

∫Γh

f evhdσh.

Higher order elements: Reusken, 2014.

Klaus Deckelnick FEM for elliptic surface PDEs

Sharp interface methods

Γh = x ∈ U ; Ihd(x) = 0

T Γh = T ∈ Th ; |T ∩ Γh| > 0

V Γh = spanϕj ; xj ∈ T ∈ T Γ

h .

Variant I (Olshanskii, Reusken & Grande, 2009):∫Γh

(Ph∇uh · ∇vh + uhvh

)dσh =

∫Γh

f evhdσh.

Variant II (D., Elliott, Ranner, 2014):∫Γh

(∇uh · ∇vh + uhvh

)dσh =

∫Γh

f evhdσh.

Higher order elements: Reusken, 2014.

Klaus Deckelnick FEM for elliptic surface PDEs

Comparison

Surface FEM

I construction of triangulation can be difficult, after that easyto implement

I efficient with respect to degrees of freedom

I coupling with bulk equations may be difficult

Narrow band bulk FEM

I no surface mesh required

I evaluation of narrow band integrals not straightforward

I possibly bad conditioning

I coupling with bulk equations can be done on the same mesh

Klaus Deckelnick FEM for elliptic surface PDEs

Comparison

Surface FEM

I construction of triangulation can be difficult, after that easyto implement

I efficient with respect to degrees of freedom

I coupling with bulk equations may be difficult

Narrow band bulk FEM

I no surface mesh required

I evaluation of narrow band integrals not straightforward

I possibly bad conditioning

I coupling with bulk equations can be done on the same mesh

Klaus Deckelnick FEM for elliptic surface PDEs