Finite element methods for elliptic PDEs on surfaces Finite element methods for elliptic PDEs on...
date post
22-Jul-2020Category
Documents
view
0download
0
Embed Size (px)
Transcript of Finite element methods for elliptic PDEs on surfaces Finite element methods for elliptic PDEs on...
Finite element methods for elliptic PDEs on surfaces
Klaus Deckelnick, Otto–von–Guericke–Universität Magdeburg
3rd Workshop Analysis, Geometry and Probability
Universität Ulm
Klaus Deckelnick FEM for elliptic surface PDEs
Motivation
Two-phase flow with insoluble surfactant
ρut + ρ(u · ∇)u −∇ · T (u, p) = ρf
∇ · u = 0
} in Ω±(t)
[ u ]
= 0[ T (u, p)ν
] = σ(c)Hν −∇Γ(σ(c))
v · ν = u · ν
∂•t c −∇Γ · (D∇Γc) + c∇Γ · u = 0
on Γ(t)
James & Lowengrub (2004), Ganesan & Tobiska (2009), Barrett, Garcke & Nürnberg (2015)
Klaus Deckelnick FEM for elliptic surface PDEs
A model problem
given smooth, compact hypersurface Γ ⊂ Rn+1, ∂Γ = ∅, f : Γ→ R;
find u : Γ→ R such that
−∆Γu + u = f on Γ. (1)
Aim Development and analysis of numerical methods for (1)
Difficulties Simultaneous approximation of the PDE and the geometry
G. Dziuk, C.M. Elliott: Finite element methods for surface PDEs, Acta Numerica 22, 289-396 (2013)
Klaus Deckelnick FEM for elliptic surface PDEs
A model problem
given smooth, compact hypersurface Γ ⊂ Rn+1, ∂Γ = ∅, f : Γ→ R;
find u : Γ→ R such that
−∆Γu + u = f on Γ. (1)
Aim Development and analysis of numerical methods for (1)
Difficulties Simultaneous approximation of the PDE and the geometry
G. Dziuk, C.M. Elliott: Finite element methods for surface PDEs, Acta Numerica 22, 289-396 (2013)
Klaus Deckelnick FEM for elliptic surface PDEs
A model problem
given smooth, compact hypersurface Γ ⊂ Rn+1, ∂Γ = ∅, f : Γ→ R;
find u : Γ→ R such that
−∆Γu + u = f on Γ. (1)
Aim Development and analysis of numerical methods for (1)
Difficulties Simultaneous approximation of the PDE and the geometry
G. Dziuk, C.M. Elliott: Finite element methods for surface PDEs, Acta Numerica 22, 289-396 (2013)
Klaus Deckelnick FEM for elliptic surface PDEs
Basics on hypersurfaces
Local description of Γ
U∩Γ =
{ F (Ω), F : Ω→ Rn+1, rankDF (ω) = n,
{x ∈ U |φ(x) = 0}, φ : U → R, ∇φ(x) 6= 0.
Tangent space
TxΓ =
span{ ∂F ∂ω1
(ω), . . . , ∂F∂ωn (ω)}, x = F (ω);( span{∇φ(x)}
)⊥ , φ(x) = 0.
Unit normal ν ∈ C 0(Γ,Rn+1), ν(x) ⊥ TxΓ, |ν(x)| = 1.
Klaus Deckelnick FEM for elliptic surface PDEs
Basics on hypersurfaces
Local description of Γ
U∩Γ =
{ F (Ω), F : Ω→ Rn+1, rankDF (ω) = n,
{x ∈ U |φ(x) = 0}, φ : U → R, ∇φ(x) 6= 0.
Tangent space
TxΓ =
span{ ∂F ∂ω1
(ω), . . . , ∂F∂ωn (ω)}, x = F (ω);( span{∇φ(x)}
)⊥ , φ(x) = 0.
Unit normal ν ∈ C 0(Γ,Rn+1), ν(x) ⊥ TxΓ, |ν(x)| = 1.
Klaus Deckelnick FEM for elliptic surface PDEs
Basics on hypersurfaces
Local description of Γ
U∩Γ =
{ F (Ω), F : Ω→ Rn+1, rankDF (ω) = n,
{x ∈ U |φ(x) = 0}, φ : U → R, ∇φ(x) 6= 0.
Tangent space
TxΓ =
span{ ∂F ∂ω1
(ω), . . . , ∂F∂ωn (ω)}, x = F (ω);( span{∇φ(x)}
)⊥ , φ(x) = 0.
Unit normal ν ∈ C 0(Γ,Rn+1), ν(x) ⊥ TxΓ, |ν(x)| = 1.
Klaus Deckelnick FEM for elliptic surface PDEs
Differentiation on hypersurfaces
Definition A function f : Γ→ R is called differentiable on Γ if f ◦ F is differentiable for every local parametrisation F of Γ.
Tangential gradient
∇Γf (x) =
{ ∑n i ,j=1 g
ij(ω)∂j ( f ◦ F
) (ω)∂iF (ω), x = F (ω)
(In+1 − ν(x)⊗ ν(x))∇f e(x), f e = f on Γ.
}
Laplace–Beltrami operator: ∆Γf = divΓ∇Γf
Mean curvature: H = −divΓν
Example: Γ = ∂BR(0) ⊂ Rn+1, ν(x) = xR ,H = − n R , x ∈ Γ
Klaus Deckelnick FEM for elliptic surface PDEs
Differentiation on hypersurfaces
Definition A function f : Γ→ R is called differentiable on Γ if f ◦ F is differentiable for every local parametrisation F of Γ.
Tangential gradient
∇Γf (x) =
{ ∑n i ,j=1 g
ij(ω)∂j ( f ◦ F
) (ω)∂iF (ω), x = F (ω)
(In+1 − ν(x)⊗ ν(x))∇f e(x), f e = f on Γ.
}
Laplace–Beltrami operator: ∆Γf = divΓ∇Γf
Mean curvature: H = −divΓν
Example: Γ = ∂BR(0) ⊂ Rn+1, ν(x) = xR ,H = − n R , x ∈ Γ
Klaus Deckelnick FEM for elliptic surface PDEs
Differentiation on hypersurfaces
Definition A function f : Γ→ R is called differentiable on Γ if f ◦ F is differentiable for every local parametrisation F of Γ.
Tangential gradient
∇Γf (x) =
{ ∑n i ,j=1 g
ij(ω)∂j ( f ◦ F
) (ω)∂iF (ω), x = F (ω)
(In+1 − ν(x)⊗ ν(x))∇f e(x), f e = f on Γ.
}
Laplace–Beltrami operator: ∆Γf = divΓ∇Γf
Mean curvature: H = −divΓν
Example: Γ = ∂BR(0) ⊂ Rn+1, ν(x) = xR ,H = − n R , x ∈ Γ
Klaus Deckelnick FEM for elliptic surface PDEs
Integration by parts ∫ Γ ∇Γf dσ =
∫ Γ f H ν dσ.
Function spaces
C 1(Γ) := {f : Γ→ R | f is continuously differentiable on Γ};
H1(Γ) := Completion of C 1(Γ) under the norm
‖f ‖H1(Γ) = (∫
Γ |f |2dσ +
∫ Γ |∇Γf |2dσ
)1/2 .
Klaus Deckelnick FEM for elliptic surface PDEs
Integration by parts ∫ Γ ∇Γf dσ =
∫ Γ f H ν dσ.
Function spaces
C 1(Γ) := {f : Γ→ R | f is continuously differentiable on Γ};
H1(Γ) := Completion of C 1(Γ) under the norm
‖f ‖H1(Γ) = (∫
Γ |f |2dσ +
∫ Γ |∇Γf |2dσ
)1/2 .
Klaus Deckelnick FEM for elliptic surface PDEs
Weak solutions Suppose that u : Γ→ R satisfies −∆Γu + u = f on Γ.
Multiply by v and integrate over Γ:
− ∫
Γ ∆Γu v dσ = −
∫ Γ ∇Γ ·
( v∇Γu
) dσ +
∫ Γ ∇Γu · ∇Γvdσ
= − ∫
Γ Hv ∇Γu · ν︸ ︷︷ ︸
=0
dσ +
∫ Γ ∇Γu · ∇Γvdσ.
Definition A function u ∈ H1(Γ) is called a weak solution of
−∆Γu + u = f on Γ if∫ Γ ∇Γu · ∇Γv dσ +
∫ Γ u v dσ︸ ︷︷ ︸
=a(u,v)
=
∫ Γ f v dσ︸ ︷︷ ︸
=l(v)
∀v ∈ H1(Γ).
Klaus Deckelnick FEM for elliptic surface PDEs
Weak solutions Suppose that u : Γ→ R satisfies −∆Γu + u = f on Γ.
Multiply by v and integrate over Γ:
− ∫
Γ ∆Γu v dσ = −
∫ Γ ∇Γ ·
( v∇Γu
) dσ +
∫ Γ ∇Γu · ∇Γvdσ
= − ∫
Γ Hv ∇Γu · ν︸ ︷︷ ︸
=0
dσ +
∫ Γ ∇Γu · ∇Γvdσ.
Definition A function u ∈ H1(Γ) is called a weak solution of
−∆Γu + u = f on Γ if∫ Γ ∇Γu · ∇Γv dσ +
∫ Γ u v dσ︸ ︷︷ ︸
=a(u,v)
=
∫ Γ f v dσ︸ ︷︷ ︸
=l(v)
∀v ∈ H1(Γ).
Klaus Deckelnick FEM for elliptic surface PDEs
Theorem For every f ∈ L2(Γ) the PDE
−∆Γu + u = f on Γ
has a unique weak solution u ∈ H1(Γ). Furthermore, u ∈ H2(Γ) and there exists c > 0 such that
‖u‖H2(Γ) ≤ c‖f ‖L2(Γ).
Idea of proof:
I Existence and uniqueness: Lax–Milgram theorem
I Regularity: ũ := u ◦ F (F : Ω→ Rn+1 local parametrisation) is a weak solution of
− n∑
i ,j=1
∂j ( g ij √ g∂i ũ
) + √ gũ =
√ g f ◦ F in Ω.
Klaus Deckelnick FEM for elliptic surface PDEs
Theorem For every f ∈ L2(Γ) the PDE
−∆Γu + u = f on Γ
has a unique weak solution u ∈ H1(Γ). Furthermore, u ∈ H2(Γ) and there exists c > 0 such that
‖u‖H2(Γ) ≤ c‖f ‖L2(Γ).
Idea of proof:
I Existence and uniqueness: Lax–Milgram theorem
I Regularity: ũ := u ◦ F (F : Ω→ Rn+1 local parametrisation) is a weak solution of
− n∑
i ,j=1
∂j ( g ij √ g∂i ũ
) + √ gũ =
√ g f ◦ F in Ω.
Klaus Deckelnick FEM for elliptic surface PDEs
Oriented distance function
Suppose that Γ = ∂Ω ∈ C 2 for some bounded domain Ω ⊂ Rn+1. Let
d(x) :=
infy∈Γ |x − y | x ∈ Rn+1 \ Ω̄
0 x ∈ Γ − infy∈Γ |x − y | x ∈ Ω.
Lemma
(a) There exists δ > 0 such that d ∈ C 2(Γδ), where Γδ = {x ∈ Rn+1 | |d(x)| < δ};
(b) (Fermi coordinates) For every x ∈ Γδ there exists a unique p(x) ∈ Γ such that
x = p(x) + d(x)ν(p(x)).
see: D. Gilbarg, N.S. Trudinger: Elliptic Partial Differential Equations of 2nd Order, Springer
Klaus Deckelnick FEM for elliptic surface PDEs
Oriented distance function