Yue-Kin Tsang Centre for Astrophysical and Geophysical...

14
Particle diffusion in magnetohydrodynamic turbulence Yue-Kin Tsang Centre for Astrophysical and Geophysical Fluid Dynamics Mathematics, University of Exeter Joanne Mason

Transcript of Yue-Kin Tsang Centre for Astrophysical and Geophysical...

  • Particle diffusion in magnetohydrodynamic turbulence

    Yue-Kin Tsang

    Centre for Astrophysical and Geophysical Fluid DynamicsMathematics, University of Exeter

    Joanne Mason

  • Single-particle diffusion

    transport properties in fusion experiments

    astrophysical pheonomena:

    cosmic ray propagation

    thermal conductivity in galaxy-cluster plasma

    mean scalar φ evolution:

    〈φ(~x, t)〉 =

    ∫d~α 〈φ0(~α)〉P (~x, t|~α)

  • Diffusive turbulent transport

    mean squared displacement:

    〈|∆ ~X(t)|2〉 , ∆ ~X(t) = ~X(t)− ~X(0)

    Taylor’s formula (1921) for large t:

    ~X(t) = ~X(0) +

    ∫t

    0

    dτ ~V (τ)

    〈|∆ ~X(t)|2]〉 = 2 t

    ∫∞

    0

    dτ 〈~V (τ) · ~V (0)〉 = 2tD

    Lagrangian velocity correlation:

    CL(τ) = 〈~V (τ) · ~V (0)〉

    diffusion coefficient:

    D =

    ∫∞

    0

    dτ 〈~V (τ) · ~V (0)〉

  • MHD turbulenceThe governing equations:

    ∂~u

    ∂t+ (~u · ∇)~u = −∇p+ (∇× ~B)× ~B + ν∇2~u+ ~f

    ∂ ~B

    ∂t= ∇× (~u× ~B) + η∇2 ~B

    ∇ · ~u = ∇ · ~B = 0

    ~f : random forcing at the largest scales

    Evolution of passive tracer particles:

    d ~X(t)

    dt= ~V (X(t), t)

    ~X(0) = ~α

    Field-guided MHD turbulence:

    ~B(~x, t) = B0ẑ +~b(~x, t)

  • Previous work: the 2D case

    1. transport suppressed in direction ⊥ to B0ŷ

  • Previous work: the 2D case2. field-perpendicular transport is not diffusive

    3. the system has long-term memory: slow decay of CL(τ)

    “. . . it is unlikely that in three dimensions the turbulent diffusivity becomes

    suppressed . . . in three dimensions, motions that interchange field lines

    can bring together oppositely directed field lines without bending them.”

  • The hydrodynamic case, ~B = 0

    system is homogeneous and isotropic

  • The field-guided case, ~B = B0ẑ

    anisotropic: elongation in the along-field direction

  • Particle tracking

  • The hydrodynamic case, ~B = 0

    −20

    −10

    0

    10

    −100

    10

    −10

    0

    10

    20

    30

    40

    50

    y

    ν=5.00e−03 , η=5.00e−03 , B0z=0 , L

    z=5 , nx=128 , ny=128 , nz=256

    x

    z

    400 450 500 550−30

    −20

    −10

    0

    10

    20

    time

    x(t)

    − x

    0

    400 450 500 550−15

    −10

    −5

    0

    5

    10

    time

    y(t)

    − y

    0

    400 450 500 550−20

    −10

    0

    10

    20

    30

    time

    z(t)

    − z

    0

  • The field-guided case, ~B = B0ẑ

    −20

    −10

    0

    10

    −100

    10

    −10

    0

    10

    20

    30

    40

    50

    y

    ν=5.00e−03 , η=5.00e−03 , B0z=5 , L

    z=5 , nx=128 , ny=128 , nz=256

    x

    z

    200 250 300−30

    −20

    −10

    0

    10

    20

    time

    x(t)

    − x

    0

    200 250 300−15

    −10

    −5

    0

    5

    10

    time

    y(t)

    − y

    0

    200 250 300−20

    −10

    0

    10

    20

    30

    time

    z(t)

    − z

    0

    transport suppressed in the field-perpendicular direction!

  • Scaling of mean-squared displacement

    0 50 100 1500

    50

    100

    150

    200

    250

    hydrodynamic

    0 50 100 1500

    50

    100

    150

    200

    250field-guided

    10-1

    100

    101

    102

    elapsed time, ∆t

    10-2

    10-1

    100

    101

    102

    10-1

    100

    101

    102

    elapsed time, ∆t

    10-2

    10-1

    100

    101

    102

    t2 t2

    t t

    ballistic limit: ∼ t2 at small time

    diffusive scaling: ∼ t at large time

  • Lagrangian velocity correlation function

    CL(τ) = 〈~V (τ) · ~V (0)〉

    0 5 10 15 20 25 30τ0

    0.1

    0.2

    0.3

    0.4

    CL,uCL,vCL,w

    hydrodynamic

    0 5 10 15 20 25 30τ-0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5field-guided

    hydrodynamic: ∼ exp(−τ), short correlation time

    field-guided: oscillatory, long correlation time

  • Summary

    study single-particle diffusion in 3D MHD turbulence

    strong field-guided case versus the hydrodynamics case

    suppression of turbulent transport in the

    field-perpendicular direction

    transport shows diffusive scaling at large time

    Is the mechanism of transport suppression the same or

    different in 2D and 3D?

    Single-particle diffusionDiffusive turbulent transportMHD turbulencePrevious work: the 2D casePrevious work: the 2D caseThe hydrodynamic case, $vec B=0$The field-guided case, $vec B=B_0hat z$Particle trackingThe hydrodynamic case, $vec B=0$The field-guided case, $vec B=B_0hat z$Scaling of mean-squared displacementLagrangian velocity correlation functionSummary