Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf ·...

38
Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George Schmiedeshoff, Occidental College were heavily used

Transcript of Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf ·...

Page 1: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

DilatometryPHY 590B S14

Sergey L. Bud’ko

Materials from the 2007 presentation of

George Schmiedeshoff, Occidental Collegewere heavily used

Page 2: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Dilation: ∆V (or ∆L)

� T: thermal expansion: β = dln(V)/dT

H: magnetostriction: λ = ∆L(H)/L

Intensive Parameters:

� H: magnetostriction: λ = ∆L(H)/L

� P: compressibility: κ = dln(V)/dP

� E: electrostriction: ξ = ∆L(E)/L

� etc.

Page 3: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

A (very) Brief History

� Heron of Alexandria (0±100): Fire heats air, air expands, opening temple doors (first practical application…).

� Galileo (1600±7): Gas thermometer.� Galileo (1600±7): Gas thermometer.

� Fahrenheit (1714): Mercury-in-glass thermometer.

� Mie (1903): First microscopic model.

� Grüneisen (1908): β(T)/C(T) ~ constant.

Page 4: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Phase Transition: TN

2nd Order Phase Transition, Ehrenfest Relation(s):

p

N2M

c

N2

CTV

p

T

∆= c

d

d α

TbNi2Ge2

(Ising Antiferromagnet)

after gms et al. AIP Conf. Proc. 850, 1297 (2006). (LT24)

pc Cp ∆d

S

)(V

S

V

p

TM

N1

∆≈

∆=

L

L

cd

d

1st Order Phase Transition, Clausius-Clapyeron Eq(s).:

Page 5: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Paul Ehrenfest (1880-1933)

PhD from Vienna Technical University

1904 – married Tatyana Alexeyevna

Afanasieva – Russian mathematician

He was not merely the best teacher in our profession whom I have

ever known; he was also passionately preoccupied with the

development and destiny of men, especially his students. A. Einstein

Ehrenfest theorem

Ehrenfest paradox

Spinor

Classification of phase transitions

Ehrenfest-Tolman effect

Ehrenfest time

1907-1912 – St. Petersburg, Russia

(happiest days of his life)

1912-1933 - professor in Leiden

-------------------------------------------------

Depression…

Page 6: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Grüneisen Theory (one energy scale: Uo)

.)(

)()(

ln

lnconst

TC

TTV

V

UM

o ==∂

∂−≡Γ

βκ

Γ−∝ VUo

)(ln TCV p

M∂

e.g.: If Uo = EF (ideal ) then:3

2=ΓIFG

Page 7: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Grüneisen Theory (multiple energy scales: Ui each with Ci and Γi)

)()(

)(

TTC

TC

i

i

i

ii

Γ=

Γ

≡Γ∑

∑ e.g.: phonon, electron,

magnon, CEF, Kondo,

RKKY, etc.

)()(

)()( T

TC

TTV eff

p

Meff Γ=≡Γβ

κ

Examples: Simple metals: Γ~ 2 )ln(

*)ln(

3

2

Vd

mde +=Γ

Page 8: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Example (Noble Metals):

After White & Collins, JLTP (1972).

Also: Barron, Collins & White, Adv. Phys. (1980).Also: Barron, Collins & White, Adv. Phys. (1980).

(Γlattice shown.)

Page 9: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Example (Heavy Fermions):

After deVisser et al. (1990)

ΓHF(0)

Page 10: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Dilatometers

� Mechanical (pushrod etc.)

� Optical (interferometer etc.).

� Electrical (Inductive, Capacitive, Strain Gauges).� Electrical (Inductive, Capacitive, Strain Gauges).

� Diffraction (X-ray, neutron).

� Others (absolute & differential).

Page 11: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Technical Specifications

Furnaces (exchangeable):

RT ... 1200°C, RT ... 1600°C

Heating/Cooling rates:

0 ... 50 K/min

Sample holders: Fused Silica (max. 1100°C)

NEITZSCH – DIL 402

Alumina (max. 1600°C)

(user exchangeable)

Sample thermocouple:

type S (Pt/Pt10%Rh)

Measurement range:

500/5000 µm

Resolution: up to 8 nm/digit

Sample diameter ≈1 ... 12 mm

Sample length: 0 ... 50 mm

Atmospheres: oxid. (static, dynamic), inert

Electronics: integrated TASC 414/5

PC-Interface: USB

push-rod with inductive readout

(Ames Laboratory thermal analysis

facility in Wilhelm Hall)

Page 12: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Optical dilatometer -

interferometer

nanometer resolution, commercially

available

Page 13: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Strain gauges

Gauge factor,

GF =

[∆R/R]/[∆L/L] is [∆R/R]/[∆L/L] is

usually about 2

(for metal film

gauges)

Page 14: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Strain gauges

GOOD:

- small, simple, cheap

- can be used with a rotator

∆ ∆ ∆

NOT SO GOOD:

- glue?

- calibration?- can measure ∆x, ∆y, ∆z in

one experiment

- can be used in pressure cells

- calibration?

- low T sensitivity?

- re-usability?

- dissipation at low temperatures?

- “large” samples

- effects of magnetic field?

Page 15: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Piezoresistive canteliever dilatometer

Page 16: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Piezoresistive canteliever dilatometer

Page 17: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Piezoresistive canteliever dilatometer

α - U

Page 18: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Piezoresistive canteliever dilatometer

GOOD:

- very small and compact

- can be used with a rotator

NOT SO GOOD:

- cell effects?

- calibration?- atomic resolution

- can be used in pulsed fields

- environmentally insensitive

- calibration?

- device to device reproducibility?

- re-usability?

- dissipation at low temperatures?

Page 19: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

fiber Bragg grating dilatometer

fiber Bragg grating

Page 20: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

fiber Bragg grating dilatometer

Page 21: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

fiber Bragg grating dilatometer

GdSb

5.4K

GdSi

4.8K

Page 22: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

fiber Bragg grating dilatometer

GOOD:

- intrinsically calibrated

- ~ 1A resolution

NOT SO GOOD:

- cell effects?

- only L || H- can be used in pulsed fields

- environmentally insensitive

- little dissipation at low T

- only L || H

- re-usability?

suggested to work in piston – cylinder pressure cell ???

Page 23: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

XRD dilatometry

Less accurate

Tedious/expensive

VERY useful for structural phase

transitions (gives structural

information)

Page 24: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Capacitive Dilatometer (Cartoon)

DCapacitor

Plates

LCell

Body

Sample

D

AεC o=

Page 25: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

D3

Rev. Sci. Instrum. 77, 123907 (2006)

(cond-mat/0617396 has fewer typos…)

� Cell body: OHFC Cu.� Cell body: OHFC Cu.

� BeCu spring (c).

� Stycast 2850FT (h) and

Kapton (i) insulation.

� Sample (d).

Page 26: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Calibration

� Use sample platform to push

against lower capacitor plate.

� Rotate sample platform (θ),

measure C.

Operating

Region

measure C.

� Aeff from slope (edge effects).

� Aeff = Ao to about 1%?!

� “Ideal” capacitive geometry.

� Consistent with estimates.

� CMAX >> C: no tilt correction.

CMAX ≥ 65 pF

Page 27: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Cell Effect CuCuCellCellSampleSampledT

dL

LdT

dL

Lαα +−= ++

11

Much smaller cell effect, above ∼10K, using quartz (or sapphire?) instead of Cu for cell body. See, for example, Neumeier et al. (2005) and references therein.

Page 28: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George
Page 29: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Tilt Correction

� If the capacitor plates are truly parallel then C → ∞ as D → 0.

� More realistically, if there is an angular misalignment, one can show that

C → CMAX as D → DSHORT (plates touch) and that

2

Pott & Schefzyk (1988).

� For our design, CMAX = 100 pF corresponds to an angular misalignment of about 0.1o.

� Tilt is not always bad: enhanced sensitivity is exploited in the design of Rotter et al. (1998).

+=

2

MAX

o

C

C1

C

AεD

Page 30: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Kapton Bad (thanks to A. deVisser and Cy Opeil)

• Replace Kapton

washers with alumina.

• New cell effect scale.

• Investigating sapphire

washers.

Page 31: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Torque Bad

� The dilatometer is sensitive to magnetic torque on the sample (induced moments, permanent moments, shape effects…).

� Manifests as irreproducible magnetostriction (for example).

� Best solution (so far…): glue sample to platform.

� Duco cement, GE varnish, N-grease…

� Low temperature only. Glue contributes above about 20 K.

Page 32: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Hysteresis ~Bad

� Cell is very sensitive to thermal gradients: thermal hysteresis. But slope is unaffected if T changes slowly.changes slowly.

� Magnetic torque on induced eddy-currents: magnetic hysteresis. But symmetric hysteresis averages to “zero”:

Page 33: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Quantum Oscillations

Can estimate uniaxial

pressure derivatives

of the extremal FS

cross-sections

Page 34: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Lashley PRL Ce

Page 35: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Bud’ko JPhysCondMat

Page 36: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Correa, PRL

Extreme Conditions Group

Page 37: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

The Good & The Bad

� Small (scale up or down).

� Open architecture.

� Rotate in-situ (NHMFL/TLH).

� Cell effect (T ≥ 2K).

� Magnetic torque effects.

� Thermal and magnetic hysteresis.

� Vacuum, gas, or liquid

(magnetostriction only?).

� Sub-angstrom precision.

� Thermal contact to sample in

vacuum (T ≤ 100mK ?).

Page 38: Sergey L. Bud’ko - Iowa State Universitycanfield.physics.iastate.edu/course/D14_SLB.pdf · Dilatometry PHY 590B S14 Sergey L. Bud’ko Materials from the 2007 presentation of George

Recommended:

� Book: Heat Capacity and Thermal Expansion at Low Temperatures, Barron & White, 1999.

� Collection of Review Articles: Thermal Expansion of Solids, v.I-4 of Cindas

Data Series on Material Properties, ed. by C.Y. Ho, 1998.

� Book (broad range of data on technical materials etc.): Experimental � Book (broad range of data on technical materials etc.): Experimental Techniques for Low Temperature Measurements, Ekin, 2006.

� Book: Magnetostriction: Theory and Applications of Magnetoelasticity, Etienne du Trémolet de Lacheisserie, 1993.

� Book: Thermal Expansion, Yates, 1972.

� Review Article: Barron, Collins, and White; Adv. Phys. 29, 609 (1980).

� Review Article: Chandrasekhar & Fawcett; Adv. Phys. 20, 775 (1971).

� …and references therein.