The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of...

69
Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

Transcript of The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of...

Page 1: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

Sergey Levonian

DESY, Hamburg

The Legacy of HERA

Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

Page 2: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

1This is dummy text in order to force correct page orientation (landscape). Attempt to cure autorotation by pdf conversion

Page 3: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

2

Looking deeper inside matter

λ = h/p ∼ 1E

Illustration of improved understandingof the structure of matter with time(and with increasing resolution power)

High energy scattering processhas been the basic tool during last 100 years

Page 4: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

2

Looking deeper inside matter

λ = h/p ∼ 1E

Rutherford (1911)

– elastic (Coulomb) scattering of 7 MeV α on Au

– planetary model of atom ⇒ QM

; N(θ)∼ 1sin4(θ/2)

Page 5: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

2

Looking deeper inside matter

λ = h/p ∼ 1E

Rutherford (1911)

– elastic (Coulomb) scattering of 7 MeV α on Au

– planetary model of atom ⇒ QM

Hofstadter (1953)

– (in)elastic eN scattering of 400 MeV electrons

– Nucleus structure; size of A,p

Page 6: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

2

Looking deeper inside matter

λ = h/p ∼ 1E

Rutherford (1911)

– elastic (Coulomb) scattering of 7 MeV α on Au

– planetary model of atom ⇒ QM

Hofstadter (1953)

– (in)elastic eN scattering of 400 MeV electrons

– Nucleus structure; size of A,p

SLAC (1968)– Fixed target DIS with 20 GeV electron beam

– internal structure of hadrons

– experimental evidence for quarks

Page 7: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

2

Looking deeper inside matter

λ = h/p ∼ 1E

Rutherford (1911)

– elastic (Coulomb) scattering of 7 MeV α on Au

– planetary model of atom ⇒ QM

Hofstadter (1953)

– (in)elastic eN scattering of 400 MeV electrons

– Nucleus structure; size of A,p

SLAC (1968)– Fixed target DIS with 20 GeV electron beam

– internal structure of hadrons

– experimental evidence for quarks

HERA (1992 − 2007)

– first (and so far the only) ep collider

– energy frontier:√s = 319 GeV

– resolution power down to 10−18m

– QCD in low x regime (x > 10−5)

Page 8: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

2

Looking deeper inside matter

λ = h/p ∼ 1E

Rutherford (1911)

– elastic (Coulomb) scattering of 7 MeV α on Au

– planetary model of atom ⇒ QM

Hofstadter (1953)

– (in)elastic eN scattering of 400 MeV electrons

– Nucleus structure; size of A,p

SLAC (1968)– Fixed target DIS with 20 GeV electron beam

– internal structure of hadrons

– experimental evidence for quarks

HERA (1992 − 2007)

– first (and so far the only) ep collider

– energy frontier:√s = 319 GeV

– resolution power down to 10−18m

– QCD in low x regime (x > 10−5)

By increasing E we are not only looking deeper into matter,but also perform ‘backward evolution’ of the Universe in attemptto understand better fundamental forces of nature

Page 9: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

2

Looking deeper inside matter Restoring Universe Evolution

→ 1µsec

HERATevatronLHC

λ = h/p ∼ 1E

E ∼ T

Page 10: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

In the beginning the was the Idea...

e

p

1979

Page 11: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

...then a lot of Hard Work...

e

p

1979

1984-1991

Page 12: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

...then a lot of Hard Work...

e

p

1979

1984-19911986-1992

Page 13: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

...then a lot of Hard Work...

e

p

Days of running

H1

Inte

grat

ed L

umin

osity

/ p

b-1

Status: 1-July-2007

0 500 1000 15000

100

200

300

400electronspositronslow E

HERA-1

HERA-2

1979

1984-19911986-1992

1992-2007

Page 14: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

...and finally...

3

10 10

-7

-5

-3

-1

10

]2 [p

b/G

eV2

/dQ

σd

-710

-510

-310

-110

10

]2 [GeV2Q310 410

p CC (prel.)+H1 e

p CC (prel.)-H1 e

p CC 06-07 +ZEUS e

p CC 04-06-ZEUS e

p CC (HERAPDF 1.0)+SM e

p CC (HERAPDF 1.0)-SM e

p NC (prel.)+H1 ep NC (prel.)-H1 e

p NC 06-07 (prel.)+ZEUS ep NC 05-06-ZEUS e

p NC (HERAPDF 1.0)+SM ep NC (HERAPDF 1.0)-SM e

y < 0.9 = 0eP

HERA

0.2

0.4

0.6

0.8

1

-410 -310 -210 -110 1

0.2

0.4

0.6

0.8

1

HERAPDF1.5 (prel.)

exp. uncert.

model uncert.

parametrization uncert.

xxf 2 = 10 GeV2Q

vxu

vxd

0.05)×xS (

0.05)×xg (

HE

RA

Str

uctu

re F

unct

ions

Wor

king

Gro

upJu

ly 2

010

H1 and ZEUS HERA I+II Combined PDF Fit

0.2

0.4

0.6

0.8

1

)Z

(Msα0.11 0.12 0.13

)Z

(Msα0.11 0.12 0.13

uncertainty

exp.

th.

World averageS. Bethke, Eur. Phys. J. C64, 689 (2009)

D0 incl. midpoint cone jetsPhys. Rev. D80, 111107 (2009)

Aleph Event Shapes, NNLO+NLLAJHEP 08, 036 (2009)

Aleph 3−jet rate, NNLOPhys. Rev. Lett. 104, 072002 (2010)

jets, NLOTZEUS incl. anti−kPhys. Lett. B691, 127 (2010)

jets, NLOTZEUS incl. kPhys. Lett. B 649, 12 (2007)

multijets, NLOT k2H1 low QEur. Phys. J. C67, 1 (2010)

multijets, NLOT norm. k2H1 high QEur. Phys. J. C65, 363 (2010)

H1+ZEUS NC, CC and jet QCD fits, NLOH1−prelim−11−034

trijet, NLO2H1 high QH1−prelim−11−032

dijet, NLO2H1 high QH1−prelim−11−032

inclusive jet, NLO2H1 high QH1−prelim−11−032

[GeV]LQM200 400 600 800 1000

-210

-110

1

λH1 Search for First Generation Scalar Leptoquarks

H1d)+ (eL

1/2S~

H1 limitH1 94-00 limitH1 CI analysis limitCMS pair productionATLAS pair productionDØ pair productionOPAL indirect limit

HERA

Lots of Textbook results

-0.2

0

0.2

0.4

2 10 50

0.28

0.43

0.59

0.88

1.29

1.69

2.24

3.19

4.02

5.40

6.86

10.3

14.6

x 10

4

H1

ZEUS

HERAPDF1.0 NLOCT10 NLO JR09 NNLO

ABKM09 NNLONNPDF2.1 NLO

MSTW08 NNLO

H1 Collaboration

Q2 / GeV2

FL

HERAρ ZEUS 96-00ρ ZEUS 94

ρ ZEUS LPS 94ρ ZEUS 95ρ H1 95-96φ ZEUS 98-00φ ZEUS 94J/ψ ZEUS 98-00J/ψ ZEUS 96-97J/ψ H1 96-00

DVCS H1 HERA IDVCS H1 HERA II e-p

DVCS ZEUS LPS (31 pb -1)

Q2+M2(GeV2)

b(G

eV-2

)

0

2

4

6

8

10

12

14

0 10 20 30 40 50

HERA

10-1

1

10

10 2

10 3

0 5 10 15 20 25 30

H1 99-00 b jetH1 99-00 b→µ jetZEUS 96-00 b→µ jetZEUS 05 b→µ jetH1 (prel) 06/07 b →µ jetZEUS 96-97 b→eZEUS 120 pb -1 b→eH1 97-00 b→D*µZEUS 96-00 b→D*µZEUS 114 pb -1 bb→µµZEUS (prel) 128 pb -1 b jet

NLO QCD (FMNR)µ2 = 1/4 (m2 + pT

2)

µ2 = m2 + pT2

<pTb> (GeV)

/dp

Tb (

pb

/Ge

V)

dσ/dpT(ep→ebX)dσ/dpb

Q2<1GeV2, 0.2<y<0.8, |ηb|< 2

HERA

Page 15: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

4 HERA: The World’s Only ep Collider

Days of running

H1

Inte

grat

ed L

umin

osity

/ p

b-1

Status: 1-July-2007

0 500 1000 15000

100

200

300

400electronspositronslow E

HERA-1

HERA-2

• 1998 Ep upgrade: 820 ⇒ 920 GeV(√s : 301 ⇒ 319 GeV)

• 2001 HERA-2 upgrade: L × 3, Polarised e+/e−

(〈P 〉 = 40%)

HERA-1 (1993-2000) ≃ 120 pb−1

HERA-2 (2003-2007) ≃ 380 pb−1

Final Data samples

H1+ZEUS: 2 × 0.5 fb−1

Page 16: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

5 Deep-Inelastic Scattering at HERA

Neutral Current DIS: ep → e′X

Charged Current DIS: ep → νX

x

Q2

Kinematics: (Momentum transfer)2: Q2 = −q2

Bjorken x: x = Q2/(2p · q)

Inelasticity: y = (p · q)/(p · l)

(Total hadronic energy)2: W 2 = (p + q)2

W 2 ≃ Q2/x

(l)

(l)

(p)

(p)

Page 17: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

6 Physics landscape at HERA

• HERA as Super-microscope

⊲ Proton structure at high resolution

⊲ Impact for LHC

• HERA as Energy frontier machine

⊲ Electroweak unification at work

⊲ Anything beyond the Standard Model?

• HERA as QCD laboratory

⊲ Putting QCD in stringent tests with:◦ Jets (parton evolution schemes, NLO QCD, αs)◦ Heavy flavor sector (multiscale problem: Q2,MQ, Et)◦ Diffraction (interplay of soft and hard physics)

⊲ HERA specifics: lox x physics

Page 18: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

6 Physics landscape at HERA

• HERA as Super-microscope

⊲ Proton structure at high resolution

⊲ Impact for LHC

• HERA as Energy frontier machine

⊲ Electroweak unification at work

⊲ Anything beyond the Standard Model?

• HERA as QCD laboratory

⊲ Putting QCD in stringent tests with:◦ Jets (parton evolution schemes, NLO QCD, αs)◦ Heavy flavor sector (multiscale problem: Q2,MQ, Et)◦ Diffraction (interplay of soft and hard physics)

⊲ HERA specifics: lox x physics

e

q

e

q

⇒⇓

HERA

LEP

TEVATRON

LHC

Page 19: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

6 Physics landscape at HERA

• HERA as Super-microscope

⊲ Proton structure at high resolution

⊲ Impact for LHC

• HERA as Energy frontier machine

⊲ Electroweak unification at work

⊲ Anything beyond the Standard Model?

• HERA as QCD laboratory

⊲ Putting QCD in stringent tests with:◦ Jets (parton evolution schemes, NLO QCD, αs)◦ Heavy flavor sector (multiscale problem: Q2,MQ, Et)◦ Diffraction (interplay of soft and hard physics)

⊲ HERA specifics: lox x physics

e

q

e

q

⇒⇓

HERA

LEP

TEVATRON

LHC

e+

p

e+

γ*

q

q

Q2

x

x0, k ⊥ 0

x i, k ⊥ i

x i+1 , k ⊥ i+1

Page 20: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

6 Physics landscape at HERA

• HERA as Super-microscope

⊲ Proton structure at high resolution

⊲ Impact for LHC

• HERA as Energy frontier machine

⊲ Electroweak unification at work

⊲ Anything beyond the Standard Model?

• HERA as QCD laboratory

⊲ Putting QCD in stringent tests with:◦ Jets (parton evolution schemes, NLO QCD, αs)◦ Heavy flavor sector (multiscale problem: Q2,MQ, Et)◦ Diffraction (interplay of soft and hard physics)

⊲ HERA specifics: lox x physics

e

q

e

q

⇒⇓

HERA

LEP

TEVATRON

LHC

e+

p

e+

γ*

q

q

Q2

x

x0, k ⊥ 0

x i, k ⊥ i

x i+1 , k ⊥ i+1

Search for Novel PhenomenaPrecision Measurements

Page 21: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

HERA as Energy Frontier Machine

Page 22: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

7 HERA at Energy Frontier

.

Unpolarized DIS cross sections σCCpol (e

±p) = (1 ± Pe) · σCCunpol(e

±p)

3

10 10

-7

-5

-3

-1

10

]2 [p

b/G

eV2

/dQ

σd

-710

-510

-310

-110

10

]2 [GeV2Q310 410

p CC (prel.)+H1 e

p CC (prel.)-H1 e

p CC 06-07 +ZEUS e

p CC 04-06-ZEUS e

p CC (HERAPDF 1.0)+SM e

p CC (HERAPDF 1.0)-SM e

p NC (prel.)+H1 ep NC (prel.)-H1 e

p NC 06-07 (prel.)+ZEUS ep NC 05-06-ZEUS e

p NC (HERAPDF 1.0)+SM ep NC (HERAPDF 1.0)-SM e

y < 0.9 = 0eP

HERA

NC

CC

Electro-Weak Unification

Page 23: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

7 HERA at Energy Frontier

.

Unpolarized DIS cross sections σCCpol (e

±p) = (1 ± Pe) · σCCunpol(e

±p)

3

10 10

-7

-5

-3

-1

10

]2 [p

b/G

eV2

/dQ

σd

-710

-510

-310

-110

10

]2 [GeV2Q310 410

p CC (prel.)+H1 e

p CC (prel.)-H1 e

p CC 06-07 +ZEUS e

p CC 04-06-ZEUS e

p CC (HERAPDF 1.0)+SM e

p CC (HERAPDF 1.0)-SM e

p NC (prel.)+H1 ep NC (prel.)-H1 e

p NC 06-07 (prel.)+ZEUS ep NC 05-06-ZEUS e

p NC (HERAPDF 1.0)+SM ep NC (HERAPDF 1.0)-SM e

y < 0.9 = 0eP

HERA

eP-1 -0.5 0 0.5 1

[pb]

CC

σ0

20

40

60

80

100

120p Scattering±HERA Charged Current e

2 > 400 GeV2Q

y < 0.9

Xν →p +e

Xν →p -e

HERAPDF 1.0

H1 HERA IH1 HERA II (prel.)ZEUS 98-06

H1 HERA IH1 HERA II (prel.)ZEUS 06-07ZEUS HERA I

eP-1 -0.5 0 0.5 1

[pb]

CC

σ0

20

40

60

80

100

120NC

CC

Electro-Weak UnificationNo W coupling

to e−R and e+L

Page 24: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

8 Anything beyond the SM ?

e

q

e

q

⇒⇓

HERA

LEP

TEVATRON

√s = 319 GeV

LHC

So far all NC and CC HERA data were in good agreement with the SM.Try to look more carefully at the tails, using two strategies:

1. Specific BSM signals search (LQ, LFV, SUSY, ...) – guided by theory

2. Model independent generic search (data vs SM) – guided by data

Page 25: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

9 Leptoquarks ?

e+

Proton(P)

γ,Z (W+)

e+ (ν)

q (q ,)

q

(a)

e+

q i

LQ

l+n

q k

λ n kλ 1 i

(b)

e+ l+n

LQ

q k– q i

–λ n k

λ 1 i

(c)

Q2e (GeV2)

even

ts /

bin

H1

(a)

Q2e (GeV2)

data

/ SM H1 (b)

1

10

10 2

5000 10000 15000 20000 25000 30000

1

10

5000 10000 15000 20000 25000 30000

Q2 = 16950 GeV2; y = 0:44; M = 196 GeVe+ jet� �

Et/GeV1994-97: High Q2 events.Rate in excess of Standard Model!

Page 26: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

9 Leptoquarks ?

e+

Proton(P)

γ,Z (W+)

e+ (ν)

q (q ,)

q

(a)

e+

q i

LQ

l+n

q k

λ n kλ 1 i

(b)

e+ l+n

LQ

q k– q i

–λ n k

λ 1 i

(c)

Q2e (GeV2)

even

ts /

bin

H1

(a)

Q2e (GeV2)

data

/ SM H1 (b)

1

10

10 2

5000 10000 15000 20000 25000 30000

1

10

5000 10000 15000 20000 25000 30000

Q2 = 16950 GeV2; y = 0:44; M = 196 GeVe+ jet� �

Et/GeV1994-97: High Q2 events.Rate in excess of Standard Model!

2011: Final status

100 200 300

Eve

nts

/ GeV

-210

-110

1

10

210

310NC data

SM NC

CC data

SM CC

H1 p-e-1= 164 pb

[GeV]LQM100 200 300

Eve

nts

/ GeV

-210

-110

1

10

210

310NC data

SM NC

CC data

SM CC

H1 p+e-1= 282 pb

[GeV]LQM

H1 Search for First Generation Leptoquarks

L L

[GeV]LQM200 400 600 800 1000

-210

-110

1

λH1 Search for First Generation Scalar Leptoquarks

H1d)+ (eL

1/2S~

H1 limitH1 94-00 limitH1 CI analysis limitCMS pair productionATLAS pair productionDØ pair productionOPAL indirect limit

Page 27: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

10 Model independent search for New Phenomena

j-je-j

-jµ-jννe-

e-eµe-µ-µ-jγ

-eγµ-γν-γγ-γ

j-j-je-j-j

-j-jµ-j-jν

e-e-jνe-e-

e-e-e-jµ-µµ-µe-ν-µ-µ-jµe--jνe--jν-µν-µe-

-j-jγ-e-jγ

-jν-γe-j-j-j

-j-j-jν-j-jν-γ-j-jνe--j-j-eγ

-jνe-e--jν-µe-

j-j-j-je-j-j-j-j

-j-j-j-jνj-j-j-j-j

j-je-j

-jµ-jννe-

e-eµe-µ-µ-jγ

-eγµ-γν-γγ-γ

j-j-je-j-j

-j-jµ-j-jν

e-e-jνe-e-

e-e-e-jµ-µµ-µe-ν-µ-µ-jµe--jνe--jν-µν-µe-

-j-jγ-e-jγ

-jν-γe-j-j-j

-j-j-jν-j-jν-γ-j-jνe--j-j-eγ

-jνe-e--jν-µe-

j-j-j-je-j-j-j-j

-j-j-j-jνj-j-j-j-j

j-je-j

-jµ-jννe-

e-eµe-µ-µ-jγ

-eγµ-γν-γγ-γ

j-j-je-j-j

-j-jµ-j-jν

e-e-jνe-e-

e-e-e-jµ-µµ-µe-ν-µ-µ-jµe--jνe--jν-µν-µe-

-j-jγ-e-jγ

-jν-γe-j-j-j

-j-j-jν-j-jν-γ-j-jνe--j-j-eγ

-jνe-e--jν-µe-

j-j-j-je-j-j-j-j

-j-j-j-jνj-j-j-j-j

SM

H1 Data

-210 -110 1 10 210 310 410 510

)-1p, 285 pb+H1 General Search at HERA (e

Events

H1

e+p

• Identify isolated objects:e, µ, γ, j, ν

• Select events, having at least twoobjects with high PT>20GeV

• Classify into exclusive channelscontaining from 2 to 5 objects

• Compare with SM predictions⇒ good overall agreement

• Find interesting regionswith greatest deviations from SMin kin. distributions (Mall, ΣPT )

⇒ Combine H1 and ZEUS data

Page 28: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

10 Model independent search for New Phenomena

j-je-j

-jµ-jννe-

e-eµe-µ-µ-jγ

-eγµ-γν-γγ-γ

j-j-je-j-j

-j-jµ-j-jν

e-e-jνe-e-

e-e-e-jµ-µµ-µe-ν-µ-µ-jµe--jνe--jν-µν-µe-

-j-jγ-e-jγ

-jν-γe-j-j-j

-j-j-jν-j-jν-γ-j-jνe--j-j-eγ

-jνe-e--jν-µe-

j-j-j-je-j-j-j-j

-j-j-j-jνj-j-j-j-j

j-je-j

-jµ-jννe-

e-eµe-µ-µ-jγ

-eγµ-γν-γγ-γ

j-j-je-j-j

-j-jµ-j-jν

e-e-jνe-e-

e-e-e-jµ-µµ-µe-ν-µ-µ-jµe--jνe--jν-µν-µe-

-j-jγ-e-jγ

-jν-γe-j-j-j

-j-j-jν-j-jν-γ-j-jνe--j-j-eγ

-jνe-e--jν-µe-

j-j-j-je-j-j-j-j

-j-j-j-jνj-j-j-j-j

j-je-j

-jµ-jννe-

e-eµe-µ-µ-jγ

-eγµ-γν-γγ-γ

j-j-je-j-j

-j-jµ-j-jν

e-e-jνe-e-

e-e-e-jµ-µµ-µe-ν-µ-µ-jµe--jνe--jν-µν-µe-

-j-jγ-e-jγ

-jν-γe-j-j-j

-j-j-jν-j-jν-γ-j-jνe--j-j-eγ

-jνe-e--jν-µe-

j-j-j-je-j-j-j-j

-j-j-j-jνj-j-j-j-j

SM

H1 Data

-210 -110 1 10 210 310 410 510

)-1p, 285 pb+H1 General Search at HERA (e

Events

H1

[GeV]T PΣ0 20 40 60 80 100 120 140 160 180

Eve

nts

-210

-110

1

10

210

310

[GeV]T PΣ0 20 40 60 80 100 120 140 160 180

Eve

nts

-210

-110

1

10

210

310SM

SM Pair Prod.

)-1H1+ZEUS (0.56 fbp+e

Multi-Leptons at HERA

[GeV]XTP

0 10 20 30 40 50 60 70 80 90 100

Eve

nts

-110

1

10

210

[GeV]XTP

0 10 20 30 40 50 60 70 80 90 100

Eve

nts

-110

1

10

210SMSM Signal

)-1H1+ZEUS (0.59 fb

p+e

[GeV]XTP

0 10 20 30 40 50 60 70 80 90 100

Eve

nts

-110

1

10

210

e+p

H1+ZEUS,0.59 fb−1

2.6σ

1.9σ

Largest observed deviationsfrom the SM at HERA

JHEP 0910:013 (2009)JHEP 1003:035 (2010)

• Identify isolated objects:e, µ, γ, j, ν

• Select events, having at least twoobjects with high PT>20GeV

• Classify into exclusive channelscontaining from 2 to 5 objects

• Compare with SM predictions⇒ good overall agreement

• Find interesting regionswith greatest deviations from SMin kin. distributions (Mall, ΣPT )

⇒ Combine H1 and ZEUS data

Page 29: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

HERA at Energy Frontier:

Standard Model is still in excellent shape!

Page 30: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

HERA as Super−microscope

Page 31: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

11 DIS: Cross sections and Structure Functions

NC

CC

Dominant contribution

Only sensitive at high Q2 ∼ M2Z

Only sensitive at high y

(similarly for pure weak CC analogues: W±2 , xW3 and W±

L )

Page 32: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

12 Structure of the proton

F2

dotted lines show the spread in predictionsprior to HERA startup (1992)

Page 33: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

12 Structure of the proton

F2

dotted lines show the spread in predictionsprior to HERA startup (1992)

H1 and ZEUS

HE

RA

Incl

usiv

e W

orki

ng G

roup

Aug

ust 2

010

x = 0.00005, i=21x = 0.00008, i=20

x = 0.00013, i=19x = 0.00020, i=18

x = 0.00032, i=17x = 0.0005, i=16

x = 0.0008, i=15x = 0.0013, i=14

x = 0.0020, i=13

x = 0.0032, i=12

x = 0.005, i=11

x = 0.008, i=10

x = 0.013, i=9

x = 0.02, i=8

x = 0.032, i=7

x = 0.05, i=6

x = 0.08, i=5

x = 0.13, i=4

x = 0.18, i=3

x = 0.25, i=2

x = 0.40, i=1

x = 0.65, i=0

Q2/ GeV2

σ r,N

C(x

,Q2 )

x 2i

+

HERA I+II NC e +p (prel.)Fixed TargetHERAPDF1.5

10-3

10-2

10-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

1 10 102

103

104

105

Combined HERA e+p data(L = 2 × 250 pb−1)

Bjorken scaling regime at x > 0.05

Large scaling violation at x < 0.01

Page 34: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

12 Structure of the proton

F2H1 and ZEUS

HE

RA

Incl

usiv

e W

orki

ng G

roup

Aug

ust 2

010

x = 0.00005, i=21x = 0.00008, i=20

x = 0.00013, i=19x = 0.00020, i=18

x = 0.00032, i=17x = 0.0005, i=16

x = 0.0008, i=15x = 0.0013, i=14

x = 0.0020, i=13

x = 0.0032, i=12

x = 0.005, i=11

x = 0.008, i=10

x = 0.013, i=9

x = 0.02, i=8

x = 0.032, i=7

x = 0.05, i=6

x = 0.08, i=5

x = 0.13, i=4

x = 0.18, i=3

x = 0.25, i=2

x = 0.40, i=1

x = 0.65, i=0

Q2/ GeV2

σ r,N

C(x

,Q2 )

x 2i

+

HERA I+II NC e +p (prel.)Fixed TargetHERAPDF1.5

10-3

10-2

10-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

1 10 102

103

104

105

0.2

0.4

0.6

0.8

1

-410 -310 -210 -110 1

0.2

0.4

0.6

0.8

1

HERAPDF1.5 (prel.)

exp. uncert.

model uncert.

parametrization uncert.

x

xf 2 = 10 GeV2Q

vxu

vxd

0.05)×xS (

0.05)×xg (

HE

RA

Str

uctu

re F

unct

ions

Wor

king

Gro

upJu

ly 2

010

H1 and ZEUS HERA I+II Combined PDF Fit

0.2

0.4

0.6

0.8

1

• Precision of (1 − 2)% in the bulk region

• Perfect desciption of the data by NLO QCDover many orders in x and Q2

• using QCD factorisation: σDIS ∼∑

aCa ⊗ fa/puniversal PDFs, fa/p, determined with error bands

Any substructures at 10−18m ?

Page 35: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

12 Structure of the proton

F2H1 and ZEUS

HE

RA

Incl

usiv

e W

orki

ng G

roup

Aug

ust 2

010

x = 0.00005, i=21x = 0.00008, i=20

x = 0.00013, i=19x = 0.00020, i=18

x = 0.00032, i=17x = 0.0005, i=16

x = 0.0008, i=15x = 0.0013, i=14

x = 0.0020, i=13

x = 0.0032, i=12

x = 0.005, i=11

x = 0.008, i=10

x = 0.013, i=9

x = 0.02, i=8

x = 0.032, i=7

x = 0.05, i=6

x = 0.08, i=5

x = 0.13, i=4

x = 0.18, i=3

x = 0.25, i=2

x = 0.40, i=1

x = 0.65, i=0

Q2/ GeV2

σ r,N

C(x

,Q2 )

x 2i

+

HERA I+II NC e +p (prel.)Fixed TargetHERAPDF1.5

10-3

10-2

10-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

1 10 102

103

104

105

0.2

0.4

0.6

0.8

1

-410 -310 -210 -110 1

0.2

0.4

0.6

0.8

1

HERAPDF1.5 (prel.)

exp. uncert.

model uncert.

parametrization uncert.

x

xf 2 = 10 GeV2Q

vxu

vxd

0.05)×xS (

0.05)×xg (

HE

RA

Str

uctu

re F

unct

ions

Wor

king

Gro

upJu

ly 2

010

H1 and ZEUS HERA I+II Combined PDF Fit

0.2

0.4

0.6

0.8

1

• Precision of (1 − 2)% in the bulk region

• Perfect desciption of the data by NLO QCDover many orders in x and Q2

• using QCD factorisation: σDIS ∼∑

aCa ⊗ fa/puniversal PDFs, fa/p, determined with error bands

Any substructures at 10−18m ?

No. Quarks are still pointlike

]2 [GeV2Q310 410

2/d

QS

/ d

2/d

Qσd

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1−p NC 0.16 fb−H1 e

m18−

10⋅ = 0.65 qR

1−p NC 0.28 fb+H1 e

m18−

10⋅ = 0.65 qR

H1

Quark Radius

Upper limit: Rq < 0.65 · 10−3 fm

Page 36: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

13 HERAPDF for LHC

W+ cross-section

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������

������������������������

������������������������

�������� ��������

������������������

������������������

HERA

LHC

Tevatron Jet Cross Sections

1.6 < |yjet| < 2.1 (x 10-6)

1.1 < |yjet| < 1.6 (x 10-3)

0.7 < |yjet| < 1.1

0.1 < |yjet| < 0.7 (x 103)

|yjet| < 0.1 (x 106)

KT D=0.7 - fastNLO

HERAPDF1.0(corrected to hadron level)

CDF Data (RunII)(Stat. unc. only)

PT jet [Gev/c]

d2 σ/dy

jet dp

T je

t [nb/

(Gev

/c)]

10-13

10-10

10-7

10-4

10-1

10 2

10 5

10 8

0 100 200 300 400 500 600 700

CDF Data

(Run II)

2011

LHC Data

Page 37: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

HERA as a Super-microscope:

• best ever measurement of the proton structure down to 0.001 fm (F2, FL, xF3)

• lots of glue at low x ⇒ in high enery limit QCD processes are gluon-driven

Page 38: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

HERA as QCD factory

Page 39: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

14 HERA as QCD factory

leadLx

0.1 0.3 0.5 0.7

lead

L/d

dD

ISσ

1/

-310

-210

-110

H1 DataSIBYLL 2.1EPOS 1.99QGSJET II-03QGSJET 01

H1Forward Photons

*| (

pb

)η∆

/d|

σd

10

210

H1 FPS Data (Prel.)RapGap / 1.23NLO DPDF Fit B / 1.23

H1 Preliminary

1 central jet + 1 forward jet

*|η∆|0 1 2 3

R

0

1

2

*|η∆|0 1 2 3

R

0

1

2

10-1

1

10

10 2

10 3

10 4

ZEUS 82 pb-1

NLO hadr Z0⊗ ⊗

Q2 > 125 GeV2

-2 < ηB jet < 1.5

|cos γh| < 0.65

jet energy scale uncertainty

kT (x 100)

anti-kT(x 10)

SIScone

dσ/

dEje

tT

,B (

pb/G

eV)

0.8

0.9

1

1.1

5 10 15 20 25 30 35 40 45 50 55

kT (+0.05)

anti-kT

SIScone

hadronisation uncertainty

EjetT,B (GeV)

hadr

onis

atio

n co

rrec

tion

(x) 10

log-4 -3.5 -3

(x)

(pb)

10/d

log

σd

0

20

40

60

(x) 10

log-4 -3.5 -3

(x)

(pb)

10/d

log

σd

0

20

40

60

H1 Data (Prel.)

NLO DPDF Jets 2007 (x 0.83)

VFPS DIS Dijets

H1 Preliminary

ZEUS

xL

(1/σ

ep →

eX)d

σ ep →

eX

n/d

xL

ZEUS 40 pb -1 pT2 < 0.476 xL

2 GeV2

ep → ejjXnQ2 < 1 GeV2

ZEUS 40 pb -1

ep → eXnQ2 > 2 GeV2

ZEUS 6 pb -1

ep → eXnQ2 < 0.02 GeV2

0

0.05

0.1

0.15

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H1 and ZEUS

0

0.2

F2 cc_

Q2= 2 GeV2 Q2= 4 GeV2

Oct

ober

200

9

Q2= 6.5GeV2

0

0.5 Q2= 12GeV2 Q2= 20GeV2

HE

RA

Hea

vy F

lavo

ur W

orki

ng G

roup

Q2= 35GeV2

0

0.5 Q2= 60GeV2 Q2=120GeV2

10-4

10-3

10-2

x

Q2=200GeV2

0

0.5

10-4

10-3

10-2

Q2=400GeV2

10-4

10-3

10-2

x

Q2=1000GeV2

HERA (prel.)

MSTW08 NNLOMSTW08 NLOCTEQ 6.6ABKM BMSN

H1 data

data correlated uncertainty

)hadrδ (1+×NLO H1 2006 Fit B

Rapgap

H1 data

data correlated uncertainty

)hadrδ (1+×NLO H1 2006 Fit B

Rapgap

H1 data

data correlated uncertainty

)hadrδ (1+×NLO H1 2006 Fit B

Rapgap

H1 data

data correlated uncertainty

)hadrδ (1+×NLO H1 2006 Fit B

Rapgap

H1 data

data correlated uncertainty

)hadrδ (1+×NLO H1 2006 Fit B

Rapgap

H1 data

data correlated uncertainty

)hadrδ (1+×NLO H1 2006 Fit B

Rapgap

H1 data

data correlated uncertainty

)hadrδ (1+×NLO H1 2006 Fit B

Rapgap

H1 data

data correlated uncertainty

)hadrδ (1+×NLO H1 2006 Fit B

Rapgap

H1 data

data correlated uncertainty

)hadrδ (1+×NLO H1 2006 Fit B

Rapgap

γjetsx

0.2 0.4 0.6 0.8 1

data

/ th

eory

0.5

1

γjetsx

0.2 0.4 0.6 0.8 1

data

/ th

eory

0.5

1

γjetsx

0.2 0.4 0.6 0.8 1

data

/ th

eory

0.5

1(a)H1

[GeV]jet1TE

6 8 10 12 14

data

/ th

eory

0.5

1

[GeV]jet1TE

6 8 10 12 14

data

/ th

eory

0.5

1

[GeV]jet1TE

6 8 10 12 14

data

/ th

eory

0.5

1(b)

IPjetsz

0.2 0.4 0.6 0.8

data

/ th

eory

0.5

1

IPjetsz

0.2 0.4 0.6 0.8

data

/ th

eory

0.5

1

IPjetsz

0.2 0.4 0.6 0.8

data

/ th

eory

0.5

1(c)

H1 data / theory

)hadrδ (1+×NLO H1 2006 Fit B

data correlated uncertainty

)hadrδ (1+×NLO H1 2007 Fit Jets

)hadrδ (1+× 1.23 ×NLO ZEUS SJ

H1 data / theory

)hadrδ (1+×NLO H1 2006 Fit B

data correlated uncertainty

)hadrδ (1+×NLO H1 2007 Fit Jets

)hadrδ (1+× 1.23 ×NLO ZEUS SJ

H1 data / theory

)hadrδ (1+×NLO H1 2006 Fit B

data correlated uncertainty

)hadrδ (1+×NLO H1 2007 Fit Jets

)hadrδ (1+× 1.23 ×NLO ZEUS SJ

H1 data / theory

)hadrδ (1+×NLO H1 2006 Fit B

data correlated uncertainty

)hadrδ (1+×NLO H1 2007 Fit Jets

)hadrδ (1+× 1.23 ×NLO ZEUS SJ

H1 data / theory

)hadrδ (1+×NLO H1 2006 Fit B

data correlated uncertainty

)hadrδ (1+×NLO H1 2007 Fit Jets

)hadrδ (1+× 1.23 ×NLO ZEUS SJ

H1 data / theory

)hadrδ (1+×NLO H1 2006 Fit B

data correlated uncertainty

)hadrδ (1+×NLO H1 2007 Fit Jets

)hadrδ (1+× 1.23 ×NLO ZEUS SJ

H1 data / theory

)hadrδ (1+×NLO H1 2006 Fit B

data correlated uncertainty

)hadrδ (1+×NLO H1 2007 Fit Jets

)hadrδ (1+× 1.23 ×NLO ZEUS SJ

H1 data / theory

)hadrδ (1+×NLO H1 2006 Fit B

data correlated uncertainty

)hadrδ (1+×NLO H1 2007 Fit Jets

)hadrδ (1+× 1.23 ×NLO ZEUS SJ

H1 data / theory

)hadrδ (1+×NLO H1 2006 Fit B

data correlated uncertainty

)hadrδ (1+×NLO H1 2007 Fit Jets

)hadrδ (1+× 1.23 ×NLO ZEUS SJ

ZEUS

0

5

10

15

20

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(a)γprompt + jet7 < ET γ < 16 GeV

6 < ET jet < 17 GeV

ηγ

dσ/d

ηγ (pb

)

10-1

1

6 8 10 12 14 16

ZEUS (77 pb-1)NLO+had. (KZ) 0.5< µR< 2

NLO+had. (FGH) µR=1kT -fact.+had. (LZ) 0.5< µR < 2

PYTHIA 6.3

HERWIG 6.5

(b)

ET jet (GeV)

dσ/E

T jet (

pb /

GeV

)

0

2

4

6

8

10

-1.5 -1 -0.5 0 0.5 1 1.5 2

(c)

η jet

dσ/d

ηjet (

pb)

0

2

4

6

8

10

0 5 10 15 20 25 30Q2 [GeV2]

b [

GeV

-2]

H1 HERA IH1 HERA II

ZEUS HERA I

Dipole modelGPD model

W = 82 GeV

H1

| [degrees]φ|0 20 40 60 80 100 120 140 160 180

)φ(C

A

-0.6

-0.4

-0.2

0

0.2

0.4

0.6H1 H1 HERA II

φ0.16 cos GPD model

*η0 1 2 3 4 5 6

*ηd dn

N1

0

0.1

0.2

0.3

0.4 H1 Preliminary

* > 1 GeV T

p

° < 155θ < ° 10 lab

H1 data (prelim.)DJANGOHRAPGAP (ALEPH tuning)RAPGAP (default PYTHIA hadronisation)CASCADE

Page 40: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

15 Jets at HERA

Precision QCD

αs

from Jet Cross Sections in DISsα

/ GeV r

µ10 210

0.10

0.15

0.20

0.25

/ GeV r

µ10 210

αs

0.10

0.15

0.20

0.25

2 < 100 GeV2H1 data for 5 < Q2 > 150 GeV2H1 data for Q

Central value and exp. unc.

PDF unc.⊕Theory

(th.) ± 0.0016 (PDF)−0.0030+0.0046± 0.0007 (exp.) = 0.1168 sα

[arXiv:0904.3870]2 > 150 GeV2Fit from Q

Running αs in a single experiment!

Page 41: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

15 Jets at HERA

Precision QCD

αs

from Jet Cross Sections in DISsα

/ GeV r

µ10 210

0.10

0.15

0.20

0.25

/ GeV r

µ10 210

αs

0.10

0.15

0.20

0.25

2 < 100 GeV2H1 data for 5 < Q2 > 150 GeV2H1 data for Q

Central value and exp. unc.

PDF unc.⊕Theory

(th.) ± 0.0016 (PDF)−0.0030+0.0046± 0.0007 (exp.) = 0.1168 sα

[arXiv:0904.3870]2 > 150 GeV2Fit from Q

)Z

(Msα0.11 0.12 0.13

)Z

(Msα0.11 0.12 0.13

uncertainty

exp.

th.

World averageS. Bethke, Eur. Phys. J. C64, 689 (2009)

D0 incl. midpoint cone jetsPhys. Rev. D80, 111107 (2009)

Aleph Event Shapes, NNLO+NLLAJHEP 08, 036 (2009)

Aleph 3−jet rate, NNLOPhys. Rev. Lett. 104, 072002 (2010)

jets, NLOTZEUS incl. anti−kPhys. Lett. B691, 127 (2010)

jets, NLOTZEUS incl. kPhys. Lett. B 649, 12 (2007)

multijets, NLOT k2H1 low QEur. Phys. J. C67, 1 (2010)

multijets, NLOT norm. k2H1 high QEur. Phys. J. C65, 363 (2010)

H1+ZEUS NC, CC and jet QCD fits, NLOH1−prelim−11−034

trijet, NLO2H1 high QH1−prelim−11−032

dijet, NLO2H1 high QH1−prelim−11−032

inclusive jet, NLO2H1 high QH1−prelim−11−032 Running αs in a single experiment!

HERA results are comparable (and competetive)with the world average

Errors are dominated by theoretical uncertainties(calculations are lacking HO (NNLO) terms)

Page 42: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

15 Jets at HERA

Precision QCD

αs

from Jet Cross Sections in DISsα

/ GeV r

µ10 210

0.10

0.15

0.20

0.25

/ GeV r

µ10 210

αs

0.10

0.15

0.20

0.25

2 < 100 GeV2H1 data for 5 < Q2 > 150 GeV2H1 data for Q

Central value and exp. unc.

PDF unc.⊕Theory

(th.) ± 0.0016 (PDF)−0.0030+0.0046± 0.0007 (exp.) = 0.1168 sα

[arXiv:0904.3870]2 > 150 GeV2Fit from Q

)Z

(Msα0.11 0.12 0.13

)Z

(Msα0.11 0.12 0.13

uncertainty

exp.

th.

World averageS. Bethke, Eur. Phys. J. C64, 689 (2009)

D0 incl. midpoint cone jetsPhys. Rev. D80, 111107 (2009)

Aleph Event Shapes, NNLO+NLLAJHEP 08, 036 (2009)

Aleph 3−jet rate, NNLOPhys. Rev. Lett. 104, 072002 (2010)

jets, NLOTZEUS incl. anti−kPhys. Lett. B691, 127 (2010)

jets, NLOTZEUS incl. kPhys. Lett. B 649, 12 (2007)

multijets, NLOT k2H1 low QEur. Phys. J. C67, 1 (2010)

multijets, NLOT norm. k2H1 high QEur. Phys. J. C65, 363 (2010)

H1+ZEUS NC, CC and jet QCD fits, NLOH1−prelim−11−034

trijet, NLO2H1 high QH1−prelim−11−032

dijet, NLO2H1 high QH1−prelim−11−032

inclusive jet, NLO2H1 high QH1−prelim−11−032

?

Grand Unification?

Precision does matter!

Page 43: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

16 QCD at low x

e+

p

e+

γ*

q

q

Q2

x

x0, k ⊥ 0

x i, k ⊥ i

x i+1 , k ⊥ i+1

Lots of glue in the proton ⇒ long gluon cascade at low x. Perturbative expansion

of evolution equations ∼ ∑mnAmn ln(Q2)m ln(1/x)n hard to calculate explicitely

⇒ approximations needed

DGLAP: resums ln(Q2)n terms, neglecting ln(1/x)n terms

strong kT ordering in partonic cascade

BFKL: resums ln(1/x)n terms

no kT ordering in partonic cascade ⇒ more hard gluons

are radiated far from the hard interaction vertex

CCFM: angular ordered parton emission ⇒reproduces DGLAP at large x and BFKL at x → 0

• How long is partonic cascade at HERA, at small x?

• Do the ln(1/x)n terms play a major role in parton dynamics as suggested by BFKL?

⇒ Look at (multi)jet final states at low x in different configurations

Page 44: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

17 Jets at HERA: New dynamics?

e+

p

e+

γ*

q

q

Q2

x

x0, k ⊥ 0

x i, k ⊥ i

x i+1 , k ⊥ i+1

look at different topologies

especially with forward jets

jet, Et>4 GeV

Page 45: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

17 Jets at HERA: New dynamics?

e+

p

e+

γ*

q

q

Q2

x

x0, k ⊥ 0

x i, k ⊥ i

x i+1 , k ⊥ i+1

look at different topologies

especially with forward jets

jet, Et>4 GeV

1 forward jet + 2 central jets

10 3

10 4

10 5

10−4

10−3

Datacorr. errorO(αs

3)O(αs

2)

x

dσ/d

x [p

b] H1

NLO DGLAP is OK

Page 46: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

17 Jets at HERA: New dynamics?

e+

p

e+

γ*

q

q

Q2

x

x0, k ⊥ 0

x i, k ⊥ i

x i+1 , k ⊥ i+1

look at different topologies

especially with forward jets

jet, Et>4 GeV

1 forward jet + 2 central jets

10 3

10 4

10 5

10−4

10−3

Datacorr. errorO(αs

3)O(αs

2)

x

dσ/d

x [p

b] H1

NLO DGLAP is OK

2 forward jets + 1 central jet

10 3

10 4

10 5

10−4

10−3

Datacorr. errorO(αs

3)O(αs

2)

xdσ

/dx

[pb] H1

NLO DGLAP fails at low x

NLO DGLAP insufficientat low x ⇒ Room fornon-DGLAP dynamics!

Page 47: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

Diffraction

e

p

P

M

e

p

O

p

e

M

n

π,η,...

π

o

LRG

Page 48: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

Diffraction

e

p

P

M

e

p

O

p

e

M

n

π,η,...

π

o

D i f f r a c t i o n

LRG

Diffraction in HEP =

Colorless exchange carrying vacuum quantum numbers

Page 49: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

18 Two approaches to Strong Interactions

1. Regge Pole Model ⇒ RFT 2. Quark-Parton Model ⇒ QCD

t

s

m1

m2

M1

M2

g1

g2

α(t)

A(s, t) =

g1(m1,M1, t)g2(m2,M2, t)sα(t)±(−s)α(t)

sin(πα(t))

σab =∫fi/a(xi, µ

2) · fj/b(xj, µ2) · σ̂ij(xi, xj, µ2)

hadronic language sub-hadronic language

Ultimate goal: derive (1) from (2)

Page 50: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

19 RFT: soft hh scattering vs QCD: deep inelastic ep scattering

• Hadronic degrees of freedom • Partonic degrees of freedom

• Validity: large s ≫ t • Low x: W 2 ≫ Q2, t (Q2/W 2 ≃ x ≪ 1)

• IP dominates: αIP (0) > αIR(0) • gluons dominate: xg(x) ≫ xqval(x)

→ σtot ∝ sαIP (0)−1 F2(x, Q2) ∝ xg(x) ∼ x−λ

• Unitarity corrections unavoidable • Saturation of the xg(x)

(σtot ≤ ln2(s/s0) at s → ∞) (non-linear effects, shadowing, ...)

• When? ssat =? • xsat(Qsat) =?

• First to be seen in diffraction: σD ∝ s2(α−1) • First to be seen in diffraction: σD ∝ |xg(x)|2

⇒ Diffraction ≡ Physics of the Pomeron, ⇒ Diffraction ≡ Gluodynamics,the essence of strong interactions the essence of QCD

(in high energy limit) .

Page 51: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

20 Diffraction at HERA

� Fundamental aim: understand high energy limit of QCD (gluodynamics; CGC ?)

� Novelty: for the first time probe partonic structure of diffractive exchange

� Practical motivations: study factorisation properties of diffraction; try to transport tohh scattering (e.g. predict diffractive Higgs production at LHC)

2

β

′(MY )

xIP = ξ =Q2+M2

XQ2+W 2

(momentum fraction of colour singlet exchange)

β = Q2

Q2+M2X

= xq/IP = xxIP

(fraction of exchange momentum, coupling to γ∗)

t = (p− p′)2

(4-momentum transfer squared)

Experimental methods:

1) selecting LRG events

2) detecting p in Roman Pots(60 − 220 m from IP) FPS, VFPS

Page 52: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

21 Inclusive Diffraction in DIS

ZEUS-1993

First observation

of diffraction in DIS

1992 data, 24.7 nb−1

Page 53: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

21 Inclusive Diffraction in DIS

ZEUS-1993

First observation

of diffraction in DIS

1992 data, 24.7 nb−1

Current H1 status H1 VFPS PreliminaryH1 FPS PreliminaryH1 LRG Preliminary x 0.81

H1 LRG Published x 0.81H1 2006 DPDF Fit B x 0.81H1 2006 DPDF Fit B x 0.81 (extrapol.)

D(3

)r

σIP

x

210 10 210 10 210 10 210 10 210 10 210 10]2 [GeV2Q

0.020.040.06 =0.017β

=0.0003IPx

0.020.040.06 =0.027β

0.020.040.06 =0.043β

0.020.040.06 =0.067β

0.020.040.06 =0.110β

0.020.040.06 =0.170β

0.020.040.06 =0.270β

0.020.040.06 =0.430β

0.020.040.06 =0.670β

2

0.020.040.06 =0.0010IPx

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06 =0.0030IPx

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

10 210

0.02

0.04

0.06 =0.011β

10 210

0.02

0.04

0.06 =0.022β

10 210

0.02

0.04

0.06 =0.045β

10 210

0.02

0.04

0.06 =0.089β

10 210

0.02

0.04

0.06 =0.178β

10 210

0.02

0.04

0.06 =0.355β

10 210

0.02

0.04

0.06 =0.708β

210

0.02

0.04

0.06

210

0.02

0.04

0.06

210

0.02

0.04

0.06

210

0.02

0.04

0.06

210

0.02

0.04

0.06

210

0.02

0.04

0.06

210

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.02

0.04

0.06

2

0.020.040.06 =0.002β

=0.035IPx

2

0.020.040.06 =0.006β

2

0.020.040.06 =0.018β

2

0.020.040.06 =0.056β

2

0.020.040.06 =0.178β

2

0.020.040.06 =0.562β

0.020.040.06 =0.050IPx

0.020.040.06

0.020.040.06

0.020.040.06

0.020.040.06

0.020.040.06

2

0.020.040.06 =0.075IPx

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06

10 210

0.020.040.06 =0.002β

=0.010IPx

10 210

0.020.040.06 =0.004β

10 210

0.020.040.06 =0.007β

210

0.020.040.06 =0.013IPx

210

0.020.040.06

210

0.020.040.06

2

0.020.040.06 =0.017IPx

2

0.020.040.06

2

0.020.040.06

2

0.020.040.06 =0.022IPx

2

0.020.040.06

2

0.020.040.06

LRG

VFPS

FPS

scaling violation up to

very large β (= x of IP )

• Compelling confirmation of the NLO QCD picture of diffractionover a wide kinematic range. Clear candidate for the textbook!

• Diffractive PDFs are determined from these data. Are they universal?

Page 54: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

22 Factorisation properties in diffraction

pp

X (M )X

e

QCD collinearfactorisation at

fixed x , t

(b)

(x )IP

(t)

e

(Q )2g*

}

}

IP

γ

ppIP

IPq

ppIP= x

QCD versus Regge factorisation

QCD factorisation(rigorously proven for

DDIS by Collins et al.):

Regge factorisation(conjecture, e.g. RPM

by Ingelman,Schlein):

σD(4)r ∝ ∑

i σ̂γ∗i(x,Q2) ⊗ fDi (x,Q2;xIP , t)

• σ̂γ∗i – hard scattering part, same as in inclusive DIS

• fDi

– diffractive PDF’s, valid at fixed xIP , t which obey (NLO) DGLAP

FD(4)2 (xIP , t, β,Q

2) = Φ(xIP , t) · F IP2 (β,Q2)

• In this case shape of diffractive PDF’s is independent of xIP , t

while normalization is controlled by Regge flux Φ(xIP , t)

Page 55: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

23 QCD Factorisation Tests in Diffraction at HERA

QCD Factorisation holds in DIS regime, e.g.:

(x) 10

log-4 -3.5 -3

(x)

(pb

)1

0/d

log

σd

0

20

40

60

(x) 10

log-4 -3.5 -3

(x)

(pb

)1

0/d

log

σd

0

20

40

60

H1 Data (Prel.)

NLO DPDF Jets 2007 (x 0.83)

VFPS DIS Dijets

H1 Preliminary

( p

b )

IP/d

zσd

200

400

600

800H1 FPS Data (Prel.)RapGap / 1.23NLO DPDF Fit B / 1.23

H1 Preliminary

2 central jets

IPz0 0.5 1

0.51

1.52

R

IPz0 0.5 1

0.51

1.52

Page 56: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

23 QCD Factorisation Tests in Diffraction at HERA

QCD Factorisation holds in DIS regime, e.g.:

(x) 10

log-4 -3.5 -3

(x)

(pb

)1

0/d

log

σd

0

20

40

60

(x) 10

log-4 -3.5 -3

(x)

(pb

)1

0/d

log

σd

0

20

40

60

H1 Data (Prel.)

NLO DPDF Jets 2007 (x 0.83)

VFPS DIS Dijets

H1 Preliminary

( p

b )

IP/d

zσd

200

400

600

800H1 FPS Data (Prel.)RapGap / 1.23NLO DPDF Fit B / 1.23

H1 Preliminary

2 central jets

IPz0 0.5 1

0.51

1.52

R

IPz0 0.5 1

0.51

1.52

However, it breaks down at Tevatron ...

H1 2002 σrD QCD Fit (prel.)

QCD fit to ZEUS 97 data

CDF IP+RR

β

FJJD (

β)

10-1

1

10

10 2

10-1

Tevatron vs HERA

Page 57: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

23 QCD Factorisation Tests in Diffraction at HERA

QCD Factorisation holds in DIS regime, e.g.:

(x) 10

log-4 -3.5 -3

(x)

(pb

)1

0/d

log

σd

0

20

40

60

(x) 10

log-4 -3.5 -3

(x)

(pb

)1

0/d

log

σd

0

20

40

60

H1 Data (Prel.)

NLO DPDF Jets 2007 (x 0.83)

VFPS DIS Dijets

H1 Preliminary

( p

b )

IP/d

zσd

200

400

600

800H1 FPS Data (Prel.)RapGap / 1.23NLO DPDF Fit B / 1.23

H1 Preliminary

2 central jets

IPz0 0.5 1

0.51

1.52

R

IPz0 0.5 1

0.51

1.52

However, it breaks down at Tevatron ......due to soft remnant rescattering (S ∼ 0.15)

H1 2002 σrD QCD Fit (prel.)

QCD fit to ZEUS 97 data

CDF IP+RR

β

FJJD (

β)

10-1

1

10

10 2

10-1

Tevatron vs HERA

Page 58: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

23 QCD Factorisation Tests in Diffraction at HERA

QCD Factorisation holds in DIS regime, e.g.:

(x) 10

log-4 -3.5 -3

(x)

(pb

)1

0/d

log

σd

0

20

40

60

(x) 10

log-4 -3.5 -3

(x)

(pb

)1

0/d

log

σd

0

20

40

60

H1 Data (Prel.)

NLO DPDF Jets 2007 (x 0.83)

VFPS DIS Dijets

H1 Preliminary

( p

b )

IP/d

zσd

200

400

600

800H1 FPS Data (Prel.)RapGap / 1.23NLO DPDF Fit B / 1.23

H1 Preliminary

2 central jets

IPz0 0.5 1

0.51

1.52

R

IPz0 0.5 1

0.51

1.52

However, it breaks down at Tevatron ......due to soft remnant rescattering (S ∼ 0.15)

H1 2002 σrD QCD Fit (prel.)

QCD fit to ZEUS 97 data

CDF IP+RR

β

FJJD (

β)

10-1

1

10

10 2

10-1

Tevatron vs HERA

⇒ Test it in photoproduction:

p(P) )Y

Y (P

IPx

IPz (v)

* (q)γ (u)

e(k) e(k’)

jet

jet)

XX(P

GAP

remnant

e(k) e(k’)

* (q)γ

(u)

jet 12M )X

X(P

(v)IPz

remnant

GAP

p(P) )Y

Y (P

jet

remnant

(a) (b)

12M

IPx

direct, xγ=1 (DIS-like) resolved, xγ<1 (hadron-like)

Page 59: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

23 QCD Factorisation Tests in Diffraction at HERA

QCD Factorisation holds in DIS regime, e.g.:

(x) 10

log-4 -3.5 -3

(x)

(pb

)1

0/d

log

σd

0

20

40

60

(x) 10

log-4 -3.5 -3

(x)

(pb

)1

0/d

log

σd

0

20

40

60

H1 Data (Prel.)

NLO DPDF Jets 2007 (x 0.83)

VFPS DIS Dijets

H1 Preliminary

( p

b )

IP/d

zσd

200

400

600

800H1 FPS Data (Prel.)RapGap / 1.23NLO DPDF Fit B / 1.23

H1 Preliminary

2 central jets

IPz0 0.5 1

0.51

1.52

R

IPz0 0.5 1

0.51

1.52

However, it breaks down at Tevatron ......due to soft remnant rescattering (S ∼ 0.15)

H1 2002 σrD QCD Fit (prel.)

QCD fit to ZEUS 97 data

CDF IP+RR

β

FJJD (

β)

10-1

1

10

10 2

10-1

Tevatron vs HERA

⇒ Test it in photoproduction:

p(P) )Y

Y (P

IPx

IPz (v)

* (q)γ (u)

e(k) e(k’)

jet

jet)

XX(P

GAP

remnant

e(k) e(k’)

* (q)γ

(u)

jet 12M )X

X(P

(v)IPz

remnant

GAP

p(P) )Y

Y (P

jet

remnant

(a) (b)

12M

IPx

direct, xγ=1 (DIS-like) resolved, xγ<1 (hadron-like)

S = 0.58 ± 0.21

• Global, xγ-independent suppresion factor is observed – somewhat unexpected

⇒ Details of factorisation breaking mechanism in γp at HERA are not fully understood yet

Page 60: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

24 Vector Mesons at HERA

αIP(t)=α(0)+α′t

soft IPomeron exchange hard IPomeron diagrams

Page 61: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

24 Vector Mesons at HERA

Exclusive VM production at HERA – a nice tool to study ‘soft’ vs ‘hard’ Pomeron regimes

αIP(t)=α(0)+α′t

soft IPomeron exchange hard IPomeron diagramsHard scales: Q2,MV , t

Predictions

αIP (0) ≃ 1.08 / 1.20

α′IP ≃ 0.25 / 0.0

Universal scale µ2 = (Q2+M2V )/4

Page 62: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

24 Vector Mesons at HERA

Exclusive VM production at HERA – a nice tool to study ‘soft’ vs ‘hard’ Pomeron regimes

αIP(t)=α(0)+α′t

soft IPomeron exchange hard IPomeron diagramsHard scales: Q2,MV , t

Predictions

αIP (0) ≃ 1.08 / 1.20

α′IP ≃ 0.25 / 0.0

Universal scale µ2 = (Q2+M2V )/4

transition from soft to hard regime at µ2 ≃ 4÷5 GeV2

Page 63: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

25 Vector Mesons at HERA:t−dependence

dσ/dt ∼ e−b|t| → diffractive peak (approximated from Bessel function)

b = (R/2)2 → transverse size of the target (geometric picture)

Page 64: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

25 Vector Mesons at HERA:t−dependence

dσ/dt ∼ e−b|t| → diffractive peak (approximated from Bessel function)

b = (R/2)2 → transverse size of the target (geometric picture)

Predictions: b = b0 + 4α′IP ln(W/W0);

soft IP : shrinkage of diffractive peak (α′IP =0.25); large b0 ≈ 10 GeV−2

hard IP : no (or small) shrinkage (α′IP <0.1); small b0 ≈ 5 GeV−2

Page 65: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

25 Vector Mesons at HERA:t−dependence

dσ/dt ∼ e−b|t| → diffractive peak (approximated from Bessel function)

b = (R/2)2 → transverse size of the target (geometric picture)

Predictions: b = b0 + 4α′IP ln(W/W0);

soft IP : shrinkage of diffractive peak (α′IP =0.25); large b0 ≈ 10 GeV−2

hard IP : no (or small) shrinkage (α′IP <0.1); small b0 ≈ 5 GeV−2

3

4

5

6

b(W

γp)

[GeV

-2]

⟨Q2⟩ = 0.05 GeV2H1a)

3

4

5

6

Wγp [GeV]

b(W

γp)

[GeV

-2]

50 100 200

H1ZEUS2D-Fit

⟨Q2⟩ = 8.9 GeV2H1b)

Example: shrinkage in γ∗p → J/ψp

Q2 < 1 GeV2:

α′IP = 0.164 ± 0.028 ± 0.030

Q2 = 2 − 80 GeV2:

α′IP = 0.019 ± 0.139 ± 0.076

Page 66: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

25 Vector Mesons at HERA:t−dependence

dσ/dt ∼ e−b|t| → diffractive peak (approximated from Bessel function)

b = (R/2)2 → transverse size of the target (geometric picture)

Predictions: b = b0 + 4α′IP ln(W/W0);

soft IP : shrinkage of diffractive peak (α′IP =0.25); large b0 ≈ 10 GeV−2

hard IP : no (or small) shrinkage (α′IP <0.1); small b0 ≈ 5 GeV−2

Dipole picture interpretation:

b = bVM + bp

bVM ∼ 1/(Q2 +M2VM)

bp → size of the gluons area:

〈r2〉 = 2bp·(~c)2 ≃ 0.6 fm

Gluons confinement area (0.6 fm) is smaller than the proton size (0.8 fm)

Page 67: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

26 Summary

� Standard Model survived 1 fb−1 of HERA data and is still in a good shape.Next challenge is now coming from the LHC - stay tuned!

� Combining H1 and ZEUS data allowed proton structure to be measuredwith unprecedental precision

� NLO DGLAP is surprisingly successful down to lowQ2 and low x in describ-ing bulk of HERA data. However, some room for parton evolution beyondDGLAP is found at specific phase space corners ⇒ important message forLHC

� Gained new insights into high energy diffraction: Pomeron under the HERAmicroscope shows complicated interplay of soft and hard phenomena.Understanding colour singlet exchange remains a major challenge in QCD

� Is this the end of DIS experiments? Or what’s next at the horizon?

Page 68: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

27This is dummy text in order to force correct page orientation (landscape). Attempt to cure autorotation by pdf conversion

e±p(60 − 140)GeV × 7000 GeV

Project under discussion For late LHC period:

∼ 2022−2032

√s ≈ (4 − 6)×HERA L ≈ (50 − 100)×HERA

Page 69: The Legacy of HERAlevonian/papers/Prague_2013.pdf · Sergey Levonian DESY, Hamburg The Legacy of HERA Seminar of the Physics Institute of the Czech Academy of Sciencies Prague, 12-Feb-2013

28 100 years of studying the structure of matter

� Fixed target experiments

⊲ Rutherford – 1911 (7 MeV, αAu)structure of atoms ⇒ planetary model ⇒ quantum mechanics

⊲ Hofstadter – 1953 (400 MeV, eA)structure of the nucleus; determination of the size of A and p

⊲ SLAC – 1968 (20 GeV, ep)structure of the proton ⇒ quarks ⇒ QPM

⊲ SPS@CERN – 1976 (EMC, NA4, etc. studying DIS with µ beam)

� Collider experiments

⊲ HERA – 1992 (27.5 × 920 GeV ep)gluon dominated proton (and Pomeron); low x QCD; EW sector of SM

⊲ LHeC – 2022 (60 × 7000 GeV, ep/eA) – not approved yet

non-linear QCD? Strong parton saturation? BSM phenomena?