Preliminary formula Sheet for LSU Physics 2101, Final · PDF filePreliminary formula Sheet for...

4
Preliminary formula Sheet for LSU Physics 2101, Final Exam, Fall ’12 Units: 1 m = 39.4 in = 3.28 ft 1 mi = 5280 ft 1 min = 60 s, 1 day = 24 h 1 rev = 360 =2π rad 1 atm = 1.013×10 5 Pa T = 1 K 1 C T C + 273.15 K T F = 9 F 5 C T C + 32 F Constants: g = 9.8 m/s 2 R Earth =6.37 × 10 6 m M Earth = 5.98×10 24 kg G = 6.67×10 -11 m 3 /(kg·s 2 ) R Moon =1.74 × 10 6 m M Moon = 7.36×10 22 kg Earth-Sun distance = 1.50×10 11 m M Sun = 1.99×10 30 kg Earth-Moon distance = 3.82×10 8 m k =1.38 × 10 -23 J/K R = 8.31 J/(mol·K) Avogadro’s # = 6.02 ×10 23 particles/mol Properties of H 2 O: Density: ρ water = 1000 kg/m 3 Specific heat: c water = 4187 J/(kg K) c ice = 2220 J/(kg K) Heats of transformation: L vaporization =2.256 × 10 6 J/kg L fusion =3.33 × 10 5 J/kg Quadratic formula: for ax 2 + bx + c =0, x 1,2 = -b ± b 2 - 4ac 2a Magnitude of a vector: | ~a| = q a 2 x + a 2 y + a 2 z Dot Product: ~a · ~ b = a x b x + a y b y + a z b z = | ~a| ~ b cos(φ) (φ is smaller angle between ~a and ~ b) Cross Product: ~a × ~ b =(a y b z - a z b y ı +(a z b x - a x b z +(a x b y - a y b x ) ˆ k, ~a × ~ b = | ~a| ~ b sin(φ) Equations of Constant Acceleration: linear equation along x missing missing rotational equation v x = v ox + a x t x - x o θ - θ o ω = ω o + α x t x - x o = v ox t + 1 2 a x t 2 v x ω θ - θ o = ω o t + 1 2 αt 2 v 2 x = v 2 ox +2a x (x - x o ) t t ω 2 = ω 2 o +2α(θ - θ o ) x - x o = 1 2 (v ox + v x )t a x α θ - θ o = 1 2 (ω o + ω)t x - x o = v x t - 1 2 a x t 2 v ox ω o θ - θ o = ωt - 1 2 αt 2 Vector Equations of Motion for Constant Acceleration: ~ r = ~ r o + ~v o t + 1 2 ~at 2 , ~v = ~v o + ~at Projectile Motion: (with + direction pointing up from Earth) x - x o =(v o cos θ o )t y - y o =(v o sin θ o )t - 1 2 gt 2 v x = v o cos θ o v y =(v o sin θ o ) - gt y = (tan θ o )x - gx 2 2(v o cos θ o ) 2 v 2 y =(v o sin θ o ) 2 - 2g(y - y o ) Newton’s Second Law: X ~ F = m~a Uniform circular motion: F c = ma c = mv 2 r , T = 2 πr v Force of Friction: Static: f s f s,max = μ s F N , Kinetic: f k = μ k F N Spring (elastic) Force: Hooke’s Law F spring = -kx (k = spring (force) constant) Kinetic Energy: Translational K = 1 2 mv 2 Work: W = Z x f x i F (x)dx (variable 1-D force), W = Z r f r i ~ F (~ r) · d~ r (variable 3-D force), W = ~ F · ~ d (constant force) Work - Kinetic Energy Theorem: W K = K f - K i Work done by weight (gravity close to the Earth surface): W = m~g · ~ d = -mg Δy

Transcript of Preliminary formula Sheet for LSU Physics 2101, Final · PDF filePreliminary formula Sheet for...

Page 1: Preliminary formula Sheet for LSU Physics 2101, Final · PDF filePreliminary formula Sheet for LSU Physics 2101, Final Exam, Fall ’12 Units: 1m = 39.4in = 3.28ft 1mi = 5280ft 1min

Preliminary formula Sheet for LSU Physics 2101, Final Exam, Fall ’12

Units:1m = 39.4 in = 3.28 ft 1 mi = 5280 ft 1min = 60 s, 1 day = 24 h 1 rev = 360 = 2π rad

1 atm = 1.013×105 Pa T =(

1K

1C

)TC + 273.15K TF =

(9 F5C

)TC + 32F

Constants:g = 9.8 m/s2 REarth = 6.37× 106 m MEarth = 5.98×1024 kgG = 6.67×10−11 m3/(kg·s2) RMoon = 1.74× 106 m MMoon = 7.36×1022 kgEarth-Sun distance = 1.50×1011 m MSun = 1.99×1030 kg Earth-Moon distance = 3.82×108 mk = 1.38× 10−23 J/K R = 8.31 J/(mol·K) Avogadro’s # = 6.02 ×1023 particles/mol

Properties of H2O:Density: ρwater = 1000 kg/m3

Specific heat: cwater = 4187 J/(kg K) cice = 2220 J/(kg K)Heats of transformation: Lvaporization = 2.256× 106 J/kg Lfusion = 3.33× 105 J/kg

Quadratic formula: for ax2 + bx + c = 0, x1,2 =−b ± √

b2 − 4ac

2a

Magnitude of a vector: |~a| =√

a2x + a2

y + a2z

Dot Product: ~a ·~b = axbx + ayby + azbz = |~a|∣∣∣~b

∣∣∣ cos(φ) (φ is smaller angle between ~a and ~b)

Cross Product: ~a ×~b = (aybz − azby)ı + (azbx − axbz) + (axby − aybx)k,∣∣∣~a ×~b

∣∣∣ = |~a|∣∣∣~b

∣∣∣ sin(φ)

Equations of Constant Acceleration:

linear equation along x missing missing rotational equationvx = vox + axt x − xo θ − θo ω = ωo + αxt

x − xo = voxt +1

2axt2 vx ω θ − θo = ωot +

1

2αt2

v2x = v2

ox + 2ax(x − xo) t t ω2 = ω2o + 2α(θ − θo)

x − xo =1

2(vox + vx)t ax α θ − θo =

1

2(ωo + ω)t

x − xo = vxt − 1

2axt2 vox ωo θ − θo = ωt − 1

2αt2

Vector Equations of Motion for Constant Acceleration: ~r = ~ro + ~vot +1

2~at2, ~v = ~vo + ~at

Projectile Motion: (with + direction pointing up from Earth)

x − xo = (vo cos θo)t y − yo = (vo sin θo)t − 1

2gt2

vx = vo cos θo vy = (vo sin θo) − gt

y = (tan θo)x − gx2

2(vo cos θo)2v2

y = (vo sin θo)2 − 2g(y − yo)

Newton’s Second Law:∑

~F = m~a

Uniform circular motion: Fc = mac =mv2

r, T =

2 π r

v

Force of Friction: Static: fs ≤ fs,max = µsFN , Kinetic: fk = µkFN

Spring (elastic) Force: Hooke’s Law Fspring = −kx (k = spring (force) constant)

Kinetic Energy: Translational K =1

2mv2

Work:W =

∫ xf

xi

F (x)dx (variable 1-D force), W =∫ rf

ri

~F (~r) · d~r (variable 3-D force), W = ~F · ~d (constant force)

Work - Kinetic Energy Theorem: W = ∆K = Kf − Ki

Work done by weight (gravity close to the Earth surface): W = m ~g · ~d = −m g ∆y

Page 2: Preliminary formula Sheet for LSU Physics 2101, Final · PDF filePreliminary formula Sheet for LSU Physics 2101, Final Exam, Fall ’12 Units: 1m = 39.4in = 3.28ft 1mi = 5280ft 1min

Work Done by a Spring Force: Ws = −k

(x2

f

2− x2

i

2

)

Power:

Average: Pavg =W

∆t, P = ~F · ~vavg (const. force) Instantaneous: P =

dW

dt, P = ~F · ~v (const. force)

Potential Energy Change: ∆U = −W

Gravitational Potential Energy: Ug(y) = mgy

Elastic (Spring) Potential Energy: Us =1

2kx2 (relative to the relaxed spring)

Potential-Force Relation: F (x) = −dU(x)

dxMechanical Energy: Emec = K + U

Change of Mechanical Energy due to Non-Conservative (nc) Forces:

Wnc = ∆Emec = (Kf + Uf) − (Ki + Ui)

Conservation of Energy: Wext = ∆K + ∆U + ∆Eth + ∆Eint, Wext is the net, external work done byexternal forces on the system, ∆Eth = −Wfk is the thermal energy change, ∆Eint is the internal energy change

Center of mass: M =N∑

i=1

mi, xcom =1

M

N∑

i=1

mixi, ycom =1

M

N∑

i=1

miyi, zcom =1

M

N∑

i=1

mizi

~rcom =1

M

N∑

i=1

mi~ri ~vcom =1

M

N∑

i=1

mi~vi ~acom =1

M

N∑

i=1

mi~ai =1

M

N∑

i=1

~Fi

Definition of Linear Momentum: one particle: ~p = m~v, system of particles: ~P =N∑

i=1

~pi = M~vcom

Newton’s 2nd Law for a System of Particles: ~Fnet = M~acom =d ~P

dt

Conservation of Linear Momentum of an Isolated System:∑

~pi =∑

~pf

Impulse - Linear Momentum Theorem: ∆~p1 = ~J12 =∫ t2

t1

~F12(t)dt = ~Favg,12∆t

Elastic Collision (1 Dim): v1f =m1 − m2

m1 + m2v1i +

2m2

m1 + m2v2i v2f =

2m1

m1 + m2v1i +

m2 − m1

m1 + m2v2i

Linear and Angular Variables Related:

s = rθ v = ωr at = αr ar =v2

r= ω2r (magnitude of the radial or centripetal acceleration)

Rotation: Rotational Inertia (Icom) for Simple Shapes: see next page

Rotational Inertia: Descrete particles: I =N∑

i=1

Ii Continuous object: I =∫

r2dm

Parallel Axis Theorem: I = Icom + Mh2

Torque: ~τ = ~r × ~F τ = rFt = r⊥F = rF sin φ

Angular Momentum: rigid body, fixed axis: ~L = I~ω point-like particle: ~L = ~r × ~p

Newton’s 2nd Law: ~τnet = I~α ~τnet =d~L

dtConservation Law (isolated system,

∑τ = 0):

∑ ~Li =∑ ~Lf

Rotational Work: W =∫ θf

θi

τdθ = τavg∆θ Kinetic Energy: K =1

2Iω2

Rotational Power: Instantaneous: P =dW

dt= τω Average: Pavg =

W

t= τavgωavg

Rolling: vcom = ωR acom = αR

Kinetic Energy of Rolling: K =1

2mv2

com +1

2Icomω2

Page 3: Preliminary formula Sheet for LSU Physics 2101, Final · PDF filePreliminary formula Sheet for LSU Physics 2101, Final Exam, Fall ’12 Units: 1m = 39.4in = 3.28ft 1mi = 5280ft 1min

Static equilibrium: ~Fnet = 0 ~τnet = 0

Gravity:

Newton’s law: |~F | = Gm1m2

r2Gravitational acceleration (planet of mass M): ag =

GM

r2

Law of periods: T 2 =

(4π2

GM

)r3 Potential Energy: U = −G

m1m2

r

Potential Energy of a System (more than 2 masses): U = −(

Gm1m2

r12+ G

m1m3

r13+ G

m2m3

r23+ ...

)

Static Fluids:

Density: ρ =∆m

∆VPressure: p =

∆F

∆AAbsolute Pressure: p = po + ρgh

Pressure Variation with Height or Depth: p2 = p1 + ρ g (y1 − y2) Gauge pressure: p − po

Archimedes’ Principle: Fb = ρfVdisplacedg = mfg weightapparent= mg − Fb

Simple Harmonic Motion (SHM): T =1

f=

ωLinear: x(t) = xm cos(ωt + φ) Angular: Θ(t) = Θm cos(ωt + φ)

v(t) = −xmω sin(ωt + φ) Ω(t) = −Θmω sin(ωt + φ)a(t) = −xmω2 cos(ωt + φ) = −ω2x(t) α(t) = −Θmω2 cos(ωt + φ) = −ω2Θ(t)

Linear Oscillator: Spring-Block: ω =

√k

mHorizontal Spring-Block: Emec =

1

2kx2

m

Pendulums: Torsion: ω =√

κ

ISimple: ω =

√g

LPhysical: ω =

√mgh

ITorsion torque: τ = −κΘ

Page 4: Preliminary formula Sheet for LSU Physics 2101, Final · PDF filePreliminary formula Sheet for LSU Physics 2101, Final Exam, Fall ’12 Units: 1m = 39.4in = 3.28ft 1mi = 5280ft 1min

Waves:

y(x, t) = ym sin(kx ∓ ωt + φ) Angular Frequency: ω =2π

TWave Number: k =

λ

Speed: v =ω

k= λf Stretched String Speed: v =

√τ

µLinear Density: µ =

m

L

Interference (same direction): y′(x, t) = [2ym cosφ

2] sin(kx ∓ ωt +

φ

2)

Standing waves: y′(x, t) = [2ym sin(kx)] cos(ωt) Resonance: fn =v

λn= n

v

2L, n = 1, 2, ...

Thermodynamics:

Linear Expansion: ∆L = Lα∆T Volume Expansion: ∆V = V β∆T = 3αV ∆THeat of Warming/Cooling: Q = mc∆T Heat of Transformation: Q = mL

Work Done by the System: W =∫ f

ip dV Root-mean-square speed: vrms =

√3RT

MFirst Law: ∆Eint = Q − W ∆Eint = Eint,f − Eint,i dEint = dQ − dW

Ideal Gas Law: pV = nRT = NkTpV

T= const for n=const

Change in Entropy: ∆S =∫ f

i

dQ

T...(reversible path) ∆S = Sf − Si

Second Law: ∆S ≥ 0 ...(closed system)

Solids/Liquids: ∆S =mL

T(transformation) ∆S = mc ln

Tf

Ti(warming/cooling)

Molecule Monoatomic Diatomic Polyatomic

CV (3/2)R (5/2)R 3R γ = Cp/CV , Eint =3

2nRT (for monoatomic)

Cp (5/2)R (7/2)R 4R

Process Type Const. Quant. Useful RelationsAny path ∆Eint = nCV ∆T = (CV /R)(pfVf − piVi)

∆S = nR ln(Vf/Vi) + nCV ln(Tf/Ti)Isochoric V Q = ∆Eint = nCV ∆T , W = 0Isobaric p Q = nCp∆T, W = p∆V, ∆S = nCpln(Vf/Vi)Isothermal T W = nRT ln(Vf/Vi), ∆Eint = 0Cyclic Q = W , ∆Eint = 0, ∆S = 0Adiabatic pV γ , TV γ−1 Q = 0, W = −∆Eint, ∆S = 0

Engines:1st Law for Eng. and Refrig.: 0 = |QH | − |QL| − |W |

Efficiency: ε =| W || QH | Carnot (ideal) efficiency: εC = 1 − | QL |

| QH | = 1 − TL

TH