Power analysis formula

11
  ECE 3364 Circuits II Power Formulas (front)  Instantaneous power ) ( * ) ( ) (  t i t v t  p  =  In AC-circuits ) cos( ) ( 0  v m  t v t v  θ ω  + =  and ) cos( ) ( 0  i m  t i t i  θ ω  + =  Inductors: 2 / π = θ θ  i v . Capacitors: 2 / π = θ θ  i v  [ ]  a v t i v t i v t  p i v m m i v m m ω θ θ ω + θ θ = ) 2 sin( ) sin( 2 ) 2 cos( 1 ) cos( 2 ) ( 0 0  where ) (t i  is the reference ° 0  [ ]  a v t i v t  p i v i v m m θ + θ + ω + θ θ = ) 2 cos( 1 ) cos( 2 ) ( 0  where i v  θ θ &  can be referenced with respect to any reference ° 0  Average power watts i v P i v m m ) cos( 2 θ θ  =  Reactive power s i v Q i v m m var ) sin( 2 θ θ  =  Power factor angle i v  pfa  θ θ  =  Power factor ) cos(  i v  pf  θ θ  =  Reactive factor ) sin(  i v rf  θ θ  =  Lagging (current-phase lags voltage-phase) i v  θ θ  >  leading (current-phase leads voltage-phase) i v  θ θ  <  RMS values 2 m rms v v  =  and 2 m rms i i  =  so that watts i v P i v rms rms ) cos(  θ θ  =   Note: "rms" and "effect ive" are synonymous, so you often see eff v  instead of rms v , etc. Complex power a v  jQ P S  + =  Apparent power a v Q P S  + = 2 2   Z  I  Z V  I V S rms rms rms rms 2 * 2 * ~ / ~ ~ ~ = = =  a v i v e i v S i v m m m m  i v = =  ) ( 2 2 ) ( θ θ θ θ  watts S P i v ) cos(  θ θ =  s S Q i v var ) sin(  θ θ =  Given S  , a lagging  pf , watts  pf S P | | =  and s  pf S Q var )) ( cos sin( 1 + =  Given S  , a leading  pf , watts  pf S P | | =  and s  pf S Q var )) ( cos sin( 1 =  In phasor notation (AC-circuits) v m v V  θ = ~  and i m i  I  θ = ~  or in RMS units v rms v m rms v v V  θ θ  = = 2 ~  and i rms i m rms i i  I  θ θ  = = 2 ~  ( )  Load rms  Load rms rms rms i v m m  Z  I  Z V a v  I V  I V i v S 2 * 2 * * | ~ | ) ( | ~ | ~ ~ 2 ~ ~ ) ( 2 = = = = θ θ =  Balanced 3-phase circuits (AC) Pos phase seq: ( )  AN  BN  V V ~ 120 0 . 1 ~ ° =  ; ( )  AN CN  V V ~ 120 0 . 1 ~ ° + =  and [ ]  AB  BC  V V ~ 120 0 . 1 ~ ° =  ;  [ ]  AB CA  V V ~ 120 0 . 1 ~ ° + =   Neg phase seq: ( )  AN  BN  V V ~ 120 0 . 1 ~ ° + =  ; ( )  AN CN  V V ~ 120 0 . 1 ~ ° =  and [ ]  AB  BC  V V ~ 120 0 . 1 ~ ° + =  ;  [ ]  AB CA  V V ~ 120 0 . 1 ~ ° =  Pos phase seq: ( )  AN  AB  V V ~ 30 3 ~ ° + =  aA  AB  I  I ~ 30 3 1 ~  ⎠  ⎞ ⎝ ⎛ ° + =  note: aA  AN  I  I ~ ~ =   Neg phase seq: ( )  AN  AB  V V ~ 30 3 ~ ° =  aA  AB  I  I ~ 30 3 1 ~  ⎠  ⎞ ⎝ ⎛ ° =  watts P P  I V P  load Y C load Y  B  I V rms aA rms  AN load Y  A  aA  AN = = = ) cos( ~ ~ θ θ   A TTL  P P 3 =  s Q Q  I V Q  load Y C load Y  B  I V rms aA rms  AN load Y  A  aA  AN var ) sin( ~ ~  = = =  θ θ   A TTL  Q Q 3 =  ( )  C  B  I V rms aA rms  AN rms aA rms  AN  A  S S  I V  I V S aA  AN = = = = ) ( ~ ~ ~ ~ * θ θ  Voltage source transformation: Δ Y  and Y Δ  Δ Y : n a ab  v v ' ' 30 3  o + =  Y  Z  Z 3 = Δ  Y Δ : ' ' 30 3 1 ab o n a  v v  ⎠  ⎞ ⎝ ⎛ =  Δ =  Z  Z Y 3 1  For Δ Y  load transformation, just let voltages =0 For Y Δ  load transformation, just let voltages=0 + -              -     +    - Z Δ a’ a  b c v ca’ v bc’ v ab’ b’ c’  + - + -              -              -     +    -     +    - Z Δ Z Δ a’ a  b c v ca’ v ca’ v bc’ v bc’ v ab’ v ab’ b’ c’ + -                - Z Y a’ a b c v a’n n v b’n v c’n + - + -                             -  +  - Z Y Z Y a’ a b c v a’n v a’n n v b’n v b’n v c’n v c’n

description

Good Collection of formulas

Transcript of Power analysis formula

  • ECE 3364 Circuits II Power Formulas (front) Instantaneous power )(*)()( titvtp = In AC-circuits

    )cos()( 0 vm tvtv += and )cos()( 0 im titi += Inductors: 2/= iv . Capacitors: 2/= iv [ ] avtivtivtp ivmmivmm += )2sin()sin(2)2cos(1)cos(2)( 00 where )(ti is the reference0 [ ] avtivtp ivivmm +++= )2cos(1)cos(2)( 0 where iv & can be referenced with respect to any reference0

    Average power wattsiv

    P ivmm )cos(

    2 = Reactive power sivQ ivmm var)sin(2 =

    Power factor angle ivpfa = Power factor )cos( ivpf = Reactive factor )sin( ivrf = Lagging (current-phase lags voltage-phase) iv > leading (current-phase leads voltage-phase) iv < RMS values

    2m

    rmsv

    v = and 2m

    rmsi

    i = so that wattsivP ivrmsrms )cos( = Note: "rms" and "effective" are synonymous, so you often see effv instead of rmsv , etc.

    Complex power avjQPS += Apparent power avQPS += 22 ZIZVIVS rmsrmsrmsrms2*2* ~/~~~ ===

    aviv

    eiv

    S ivmmmm iv == )(

    22)( wattsSP iv )cos( = sSQ iv var)sin( =

    Given S , a lagging pf , wattspfSP ||= and spfSQ var))(cossin( 1+= Given S , a leading pf , wattspfSP ||= and spfSQ var))(cossin( 1= In phasor notation (AC-circuits)

    vmvV =~ and imiI =~ or in RMS units vrmsvmrms vvV ==2

    ~ and irmsi

    mrms ii

    I ==2

    ~

    ( ) LoadrmsLoad

    rmsrmsrms

    ivmm ZI

    ZVavIVIV

    ivS 2

    *

    2**|~|

    )(|~|~~

    2

    ~~)(

    2=====

    Balanced 3-phase circuits (AC) Pos phase seq: ( ) ANBN VV ~1200.1~ = ; ( ) ANCN VV ~1200.1~ += and [ ] ABBC VV ~1200.1~ = ; [ ] ABCA VV ~1200.1~ += Neg phase seq: ( ) ANBN VV ~1200.1~ += ; ( ) ANCN VV ~1200.1~ = and [ ] ABBC VV ~1200.1~ += ; [ ] ABCA VV ~1200.1~ = Pos phase seq: ( ) ANAB VV ~303~ += aAAB II ~30

    31~

    += note: aAAN II ~~ =

    Neg phase seq: ( ) ANAB VV ~303~ = aAAB II ~303

    1~

    =

    wattsPPIVP loadYCloadY

    BIVrmsaA

    rmsAN

    loadYA aAAN

    === )cos(~~ ATTL PP 3= sQQIVQ loadYC

    loadYBIV

    rmsaA

    rmsAN

    loadYA aAAN var)sin(

    ~~ === ATTL QQ 3= ( ) CBIVrmsaArmsANrmsaArmsANA SSIVIVS aAAN ==== )(~~~~ *

    Voltage source transformation: Y and Y Y : ( ) naab vv '' 303 o+= YZZ 3= Y : '' 30

    31

    abo

    na vv

    = = ZZY 3

    1

    For Y load transformation, just let voltages =0 For Y load transformation, just let voltages=0 +-

    +-

    + -

    Z a

    a

    bc

    vca

    vbc

    vab

    b

    c +- +-

    +-+-

    + -+ -

    Z Z a

    a

    bc

    vcavca

    vbcvbc

    vabvab

    b

    c

    +-

    +- +-

    Z Ya

    a

    b

    c

    vann

    vbnvcn

    +-+-

    +-+- +- +-

    Z YZ Ya

    a

    b

    c

    vanvann

    vbnvbnvcnvcn

  • ECE 3364 Circuits II Power Formulas (back) Currents/Voltages at the load Design of a load impedance LLL XRZ j+= for maximum power transfer to the load. Case 1: Both LR and LX can be chosen without any constraints. Choose *)( thL ZZ = . Case 2: Constrained. bLRa and dLXc . Step 1: Choose LX as near to

    *)( thL XX = as dLXc permits. Step 2: choose LR as near to ( ) ( )22 LththL XXRR ++= as bLRa permits.

    Case 3: LZLL ZZ = where LZ is specified and cannot be changed, and LZ can be chosen by the circuit designer. Choose thL ZZ = Design of a series-impedance ddd jXRZ += for maximum power transfer to the load. Case 1: Both dR and dX can be chosen without any constraints. Choose 0=dR . Choose dX so that ( ) 0=++ LXdXthX Case 2: Constrained. bRa d and dXc d . Step 1: choose dR as near to 0 as bdRa permits. Step 2: Choose dX so that ( )LXdXthX ++ is as near to 0 as dXc d permits. Case 3: dZdd ZZ = where dZ is specified and cannot be changed, and dZ can be chosen by the circuit designer. Choose [ ]dd ZLthZLthd XXRRZ sin)(cos)( +++= if it yields a value 0>dZ , else choose

    0== dd XR Wattmeters

    = ivrmsrms IVreadingwattmeter cos~~ 21 WWPTTL += 13 WQTTL =

    +-V th Z =R +jXL L L

    thZ =R +jXth th Z =R +jXd d d

    +-V thV th Z =R +jXL L LZ =R +jXL L L

    thZ =R +jXth ththZ =R +jXth th Z =R +jXd d dZ =R +jXd d d

    +-V th Z =R +jXL L L

    thZ =R +jXth th

    +-V thV th Z =R +jXL L LZ =R +jXL L L

    thZ =R +jXth ththZ =R +jXth th

    Positive phase sequence

    30

    30

    30

    VCA VAB

    VBC

    VCN

    VBN

    VAN30

    3030

    I CA

    I AB

    I BC

    I cC

    I bB I aA

    Positive phase sequence

    30

    30

    30

    VCA VAB

    VBC

    VCN

    VBN

    VAN

    30

    30

    30

    VCAVCA VABVAB

    VBCVBC

    VCNVCN

    VBNVBN

    VANVAN30

    3030

    I CA

    I AB

    I BC

    I cC

    I bB I aA

    30

    3030

    I CA

    I AB

    I BC

    I cC

    I bB I aA

    Negative phase sequence

    30

    30

    30

    I CA

    I AB

    I BC

    I cC

    I bB I aA

    VCA VAB

    VBC

    VCN

    VBN

    VAN

    30

    3030

    Negative phase sequence

    30

    30

    30

    I CA

    I AB

    I BC

    I cC

    I bB I aA30

    30

    30

    I CA

    I AB

    I BC

    I cC

    I bB I aA

    VCA VAB

    VBC

    VCN

    VBN

    VAN

    30

    3030

    VCAVCA VABVAB

    VBCVBC

    VCNVCN

    VBNVBN

    VANVAN

    30

    3030

    A

    B

    C

    3phaseload

    cc2

    cc1pc1

    pc2

    +

    +

    +

    +

    A

    B

    C

    3phaseload

    cc2

    cc1pc1

    pc2

    ++

    ++

    ++

    ++

    A

    B

    C

    3phaseload

    cc1

    pc1

    +

    +

    A

    B

    C

    3phaseload

    cc1

    pc1

    ++

    ++

  • ECE 3364 Circuits II Formula Sheet: Inductance and Transformers

    Self-inductance: dttdtvL)()( = where )()()( tiPNtNt LL == td

    tidLtdtidPN

    dttdtv LLL

    )()()()( 2 === :)(t flux-linkage; )(tL : magnetic flux; P : permeance of space occupied by the flux; N : number of wire turns

    Mutual inductance dot convention for windings: Current into dots causes flux that adds. Use right-hand-rule for flux-direction. dot convention for transformer circuit: current into the dot of a transformer coil causes a voltage drop across the other coils with positive polarity at the dot in the other coils.

    21LLkM = coefficient of coupling 0.10 k ; 2

    1

    2

    1LL

    NN =

    coils not magnetically linked -> k=0; all flux from each coil links other coil -> k=1.0

    )()( 1,21,12

    11 PPNL += )()( 2,12,2222 PPNL += For non-magnetic core: 1,22,1 PP = )()()( 111,21,11 tiNPPt += )()()( 222,12,22 tiNPPt +=

    dttidPPN

    dttdNtv )()()()()( 11,21,1

    21

    111 +== ; dt

    tidPPNdt

    tdNtv )()()()()( 22,12,22

    22

    22 +== Phasor domain: Linear transformer model

    2

    2line22

    2line2

    *2line22

    22

    reflected2ndary

    )()(

    )(

    LL XXLRRR

    ZLjRMZ

    +++++++=

    22line2

    22line2

    22

    reflectedL )()()(

    LL

    LL

    XXLRRRjXRMZ +++++

    =

    111line

    reflected LjRZZVMj

    Vs

    s+++

    = ;

    2

    11line2

    11line

    11line11line22

    )()(

    )]()[(

    LXXRRR

    LXXjRRRMZ

    ss

    ssrefl

    +++++

    ++++=

    Phasor domain: Ideal transformers ; Reflect to primary side: Reflect to secondary side

    i (t)1 i (t)2

    L1 L 2 v (t)2 v (t)1

    +

    -

    +

    -

    N1 N 2i (t)1 i (t)1 i (t)2 i (t)2

    L1 L1 L 2 L 2 v (t)2 v (t)2 v (t)1

    +

    -v (t)1 v (t)1

    +

    -

    +

    -

    N1N1 N 2N 2

    v (t) 1 v (t) 2

    i (t) 1 i (t) 2 ++

    - -

    M

    v (t) 1 v (t) 2

    i (t) 1 i (t) 2 ++

    - -v (t) 1v (t) 1 v (t) 2

    i (t) 1 i (t) 2 ++

    - -v (t) 2v (t) 2

    i (t) 1i (t) 1 i (t) 2i (t) 2 ++

    - -

    M

    Zs

    +- V s ZL

    N1N 2

    2ZsZs

    +- V s +- V s V s ZLZL

    N1N1N 2N 2

    2+-V s ZL

    1 ZsN2 N2

    N2N1

    +-V s V s ZLZL1 ZsN2 N

    21 ZsN2 N

    2ZsZsN2N2 N

    2N2N1N2N2N1

    Zs

    +- V s ZL

    N1 N 2ZsZs

    +- V s +- V s V s ZLZL

    N1N1 N 2N 2

    )()( 11

    22 tvN

    Ntv =)()( 12

    12 tiN

    Nti =

    jwM

    jwL1

    R1 R2

    I 1 I 2 ZL

    Zline 1

    jwL2

    Zline 2

    +-

    Zs

    V s

    jwM

    jwL1 jwL1

    R1 R1 R2 R2

    I 1 I 1 I 2 I 2 ZLZLZL

    Zline 1Zline 1

    jwL2 jwL2

    Zline 2Zline 2Zline 2

    +-

    Zs

    V s +-+-

    ZsZs

    V s V s

    jwL1 R1

    I s

    Zline 1

    ZL reflectedZ2ndary reflected

    +-

    Zs

    V s

    jwL1 jwL1 R1 R1

    I s I s

    Zline 1Zline 1

    ZL reflectedZL reflectedZ2ndary reflectedZ2ndary reflected

    +-+-

    ZsZs

    V s V s

    R2

    I 2 ZL

    jwL2 Zline 2

    +-

    Zreflected

    V reflected

    R2 R2

    I 2 I 2 ZLZL

    jwL2 jwL2 Zline 2Zline 2

    +-+-

    ZreflectedZreflected

    V reflectedV reflected

    Reflect to primary side

    Reflect to secondary side

    jwM

    jwL1

    R1 R2

    I 1 I 2 jwL2

    V 1 V 2 +

    -

    +

    -

    jwM

    jwL1 jwL1

    R1 R1 R2 R2

    I 1 I 1 I 2 I 2 jwL2 jwL2

    V 1 V 1 V 2 V 2 +

    -

    +

    -( )( ) ( )( )( )( ) ( )( )22212

    21111ILjRIMjVIMjILjRV

    ++=++=

  • Phasor domain: 3-phase ideal transformers

    Ideal three-phasetransformer

    A

    b Z line

    c Z line

    a

    Z line+-

    a

    n b

    c

    +

    -

    +-

    Z S-YZ S-Y

    Z S-YvS-Y~

    vcn~ vbn~

    B

    CZ L-Y

    N

    Z L-Y

    Z L-Y

    -YY-

    Y-Y

    N1 N 2

    Ideal three-phasetransformer

    A

    b Z lineZ line

    c Z lineZ line

    a

    Z lineZ line+-+-

    a

    n b

    c

    +

    -

    +

    -

    +- +-

    Z S-YZ S-YZ S-YZ S-Y

    Z S-YZ S-YvS-Y~vS-YvS-Y~

    vcn~vcnvcn~ vbn~vbnvbn~

    B

    CZ L-YZ L-Y

    N

    Z L-YZ L-Y

    Z L-YZ L-Y

    -YY-

    Y-Y

    -YY-

    Y-Y Y-Y

    N1 N 2N1N1 N 2N 2

    -Y

    Y-

    Y-Y

    and

    Reflected to primary Reflected to secondary

    +-Z S-Y

    vS-Y~Z L-Y

    N1N 2

    2Z line

    Z L-Y+-

    N1

    N 22Z S-Y

    N1

    N 2 vS-Y~

    N1

    N 22Z line

    +-Z S-Y

    vS-Y~3 Z L-Y

    N1N 2

    2Z line

    +-Z S-Y

    vS-Y~Z line

    3 Z L-YN1N 2

    21

    Z L-Y+-

    N1

    N 22Z S-Y N1

    N 22Z line3

    131

    N1

    N 2 vS-Y~31 -30

    3

    Z L-Y+-

    N1

    N 22Z S-Y N1

    N 22Z line3

    vS-Y~N1N 2+303

    -Y

    Y-

    Y-Y

    and

    Y-Y

    and

    Reflected to primary Reflected to secondary

    +-Z S-Y

    vS-Y~Z L-Y

    N1N 2

    2Z line+-+-

    Z S-YZ S-Y

    vS-Y~vS-YvS-Y~Z L-YZ L-Y

    N1N 2

    2N1N1N 2N 2

    2Z lineZ line

    Z L-Y+-

    N1

    N 22Z S-Y

    N1

    N 2 vS-Y~

    N1

    N 22Z line

    Z L-YZ L-Y+-+-

    N1

    N 22Z S-YN1

    N 22

    N1N1

    N 2N 22Z S-YZ S-Y

    N1

    N 2 vS-Y~N1N 2N1N1

    N 2N 2 vS-Y~vS-YvS-Y~

    N1

    N 22Z lineN1

    N 22

    N1N1

    N 2N 22Z lineZ line

    +-Z S-Y

    vS-Y~3 Z L-Y

    N1N 2

    2Z line+-+-

    Z S-YZ S-Y

    vS-Y~vS-YvS-Y~3 Z L-Y

    N1N 2

    23 Z L-YZ L-Y

    N1N 2

    2N1N1N 2N 2

    2Z lineZ line

    +-Z S-Y

    vS-Y~Z line

    3 Z L-YN1N 2

    21+-+-

    Z S-YZ S-Y

    vS-Y~vS-YvS-Y~Z lineZ line

    3 Z L-YN1N 2

    213 Z L-YZ L-Y

    N1N 2

    2N1N1N 2N 2

    21

    Z L-Y+-

    N1

    N 22Z S-Y N1

    N 22Z line3

    131

    N1

    N 2 vS-Y~31 -30

    Z L-YZ L-Y+-+-

    N1

    N 22Z S-YN1

    N 22

    N1N1

    N 2N 22Z S-YZ S-Y N1

    N 22Z lineN1

    N 22

    N1N1

    N 2N 22Z lineZ line3

    131

    3131

    N1

    N 2N1N1

    N 2N 2 vS-Y~vS-YvS-Y~3131 -30

    3

    Z L-Y+-

    N1

    N 22Z S-Y N1

    N 22Z line3

    vS-Y~N1N 2+303

    3

    Z L-YZ L-Y+-+-

    N1

    N 22Z S-YN1

    N 22

    N1N1

    N 2N 22Z S-YZ S-Y N1

    N 22Z lineN1

    N 22

    N1N1

    N 2N 22Z lineZ line3

    vS-Y~vS-YvS-Y~N1N 2+303 N1N 2N1N1

    N 2N 2+303

  • Phasor domain: 3-phase linear transformers Reflect to primary side: Reflect to secondary side: Y-Y transformer Y-Y transformer Y- transformer Y- transformer -Y transformer -Y transformer

    N

    R1 Zline 1

    Zrefl 1+-

    Zs

    jwL1

    n

    Aa

    van~IaA~

    N

    R1 R1 Zline 1Zline 1

    Zrefl 1+-+-

    ZsZs

    jwL1 jwL1

    n

    Aa

    van~vanvan~IaA~IaA~

    Linearthree-phasetransformer

    A

    b Z line 1

    c Z line 1

    a

    Z line 1+-

    a

    n b

    c

    +

    -

    +-

    Z S-YZ S-Y

    Z S-YvS-Y~

    vcn~ vbn~

    B

    CZ L-Y

    N

    Z L-Y

    Z L-Y

    -YY-

    Y-Y

    jwM

    Z line 2

    Z line 2

    Z line 2

    Linearthree-phasetransformer

    A

    b Z line 1Z line 1

    c Z line 1Z line 1

    a

    Z line 1Z line 1+-+-

    a

    n b

    c

    +

    -

    +

    -

    +- +-

    Z S-YZ S-YZ S-YZ S-Y

    Z S-YZ S-YvS-Y~vS-YvS-Y~

    vcn~vcnvcn~ vbn~vbnvbn~

    B

    CZ L-YZ L-Y

    N

    Z L-YZ L-Y

    Z L-YZ L-Y

    -YY-

    Y-Y

    -YY-

    Y-Y Y-Y

    jwMjwM

    Z line 2Z line 2

    Z line 2Z line 2

    Z line 2Z line 2

    211line

    211line

    11line11line22

    )()(

    )]()[(

    LXXRRR

    LXXjRRRMZ

    ss

    ssrefl

    +++++

    ++++=

    111linereflected

    ~

    LjRZZVMjV

    YSYS

    +++=

    Z line2Z L-Y

    a A

    +-1

    3-30 o Vrefl

    ~

    Z refl3

    jwL2 3

    R2 3

    Z line2Z line2Z L-YZ L-Y

    aa AA

    +-+-1

    3-30 o Vrefl

    ~13

    -30 o13

    1

    33-30 o-30 o Vrefl

    ~Vrefl~

    Z refl3

    Z reflZ refl3

    jwL2 3

    jwL2 jwL2 33

    R2 3

    R2 R2 33

    ( )222

    21 33 LjRZZ

    MZYLline

    refl

    +++=

    jwL1 R1

    I s

    Zline 1

    ZL reflectedZ2ndary reflected

    +-

    Zs

    V s

    jwL1 jwL1 R1 R1

    I s I s

    Zline 1Zline 1

    ZL reflectedZL reflectedZ2ndary reflectedZ2ndary reflected

    +-+-

    ZsZs

    V s V s

    22line2

    22line2

    22

    reflectedL )()()(

    LL

    LL

    XXLRRRjXRMZ +++++

    =

    R2

    I 2 ZL

    jwL2 Zline 2

    +-

    Zreflected

    V reflected

    R2 R2

    I 2 I 2 ZLZL

    jwL2 jwL2 Zline 2Zline 2

    +-+-

    ZreflectedZreflected

    V reflectedV reflected

    111linereflected LjRZZ

    VMjV

    s

    s+++

    =

    211line

    211line

    11line11line22

    )()(

    )]()[(

    LXXRRR

    LXXjRRRMZ

    ss

    ssrefl

    +++++

    ++++=

    22line2

    22line2

    *2line22

    22

    reflected2ndary

    )()(

    )(

    LL XXLRRR

    ZLjRMZ

    +++++++=

    N

    1 3 R1 Zline 1

    Zrefl 1+-

    Zs

    n

    Aa

    van~IaA~

    jwL1 1 3

    N

    1 3 R1 1 3 1 3 R1 R1 Zline 1Zline 1

    Zrefl 1+-+-

    ZsZs

    n

    Aa

    van~vanvan~IaA~IaA~

    jwL1 1 3 jwL1 jwL1 1 3 1 3

    ( )111line

    'refl 33

    303~LjRZZ

    VMjV

    sna

    +++

    =o

    ( ))(3 222

    21 LjRZZ

    MZYLline

    refl

    +++= ( )

    )33 111

    22 LjRZZ

    MZlines

    refl

    +++=

    Z line2Z L-Y

    a A

    +- Vrefl~

    Z refl 2 jwL2 R2 Z line2Z line2Z L-YZ L-Y

    aa AA

    +-+- Vrefl~Vrefl~

    Z refl 2Z refl 2 jwL2 jwL2 R2 R2

  • Table of 1-sided Laplace Transforms { } == + 0

    )()()( dtetxtxLsX st .

    )(tx )(sX

    [ ] nn dttd /)( ns )(tu 1s

    !)(

    ntuet tn ( ) 1

    1++ ns

    )()cos( 0 tut 20

    2 +ss

    )()sin( 0 tut 20

    20

    +

    s

    ( ) )()cos(exp 0 tutt ( ) 202 +++

    ss

    ( ) )()sin(exp 0 tutt ( ) 2020

    ++

    s

    [ ] )()cos()sin( 000 tuttt ( )2202302

    +

    s

    )()sin( 00 tutt ( )2202202

    +

    s

    s

    ( ) )()sin(exp 00 tuttt ( )( )[ ]2202202

    +++

    s

    s

    ( )[ ] )()cos()sin(exp 000 tutttt ( )[ ]2202302

    ++

    s

    ( ) )()sin()cos(exp tutbbaABtbAat

    22)( bas

    BAs++

    +

    ( ) )()cos(exp)!1(

    2 1tutbat

    rtK

    K

    r+

    Krr KK

    b

    jbasK

    jbasK =

    ++++

    0

    )()(

    *

  • Properties of 1-sided Laplace Transforms 1. Linearity )()()]()([ sbYsaXtbytaxL +=+ 2. Laplace transform of the derivative

    )0()0(...)0()0()0()()()()1(

    )1(

    )2(

    )2(

    2

    2321

    =

    n

    n

    n

    nnnnn

    n

    n

    dtxd

    dtxds

    dtxds

    dtdxsxssXstu

    dttxdL

    3. Integration =+=

    0|

    )()()(t

    t

    dttdx

    ssXdxL

    4. s-shift )()]([ asXtxeL at += and )]([)]([ 11 sXLeasXL at =+ 5. Delay 0)()]()([ >= asXeatuatxL as 6. Convolution theorem: { } )()()()()()()(*)(

    00sYsXduutyuxLduuyutxLtytxL

    tt =

    =

    =

    7. Product { } )(*)()()( sYsXtytxL = . 8. Time scaling { } 01)( >

    = aforasX

    aatxL

    9. Initial value theorem (provided the limit exists) 10. Final value theorem (provided the limit exists) )]([lim)(lim

    0ssXtx

    st +=+ )]([lim)(lim 0 ssXtx st + = if and only if all poles

    of )(ssX lie in the left half closed s-plane.

  • Circuit Response Impulse response: circuit output when all initial conditions equal to zero and input equals a Dirac delta function. Step response: circuit output when all initial conditions equal to zero and input equals a step function. Natural response: due only to initial conditions, voltage/current sources are cancelled. Transient response: portion of the output that goes to zero as time tends to infinity. Steady-state response: portion of the output that does not go to zero as time tends to infinity. Complete response: circuit output due to input and any non-zero initial conditions. LaPlace-domain Circuit Analysis Damping of 2nd-order Circuits

    2 poles: 0012 =++ asas yields poles 0212/12,1 4)(5.0 aaas = )

    2nd-order RLC circuit: the parameters 01, aa are functions of RLC, can be designed to have either of three dampings. Two real and equal poles 2,1s : critically damped Two real and distinct poles 2,1s : over-damped Two complex conjugate poles 2,1s : under-damped

    s-domain inductor and capacitor Transfer Function s-domain Change the circuit to the s-domain. RR , sLL , , )/(1 sCC set all initial conditions set to 0. Set the s-domain source to value 1.0, label the s-domain output as H(s) and use KVL or KCL to compute H(s). Impulse Response The impulse response )(th of the circuit is { })()( sHILTth = . Frequency Response The frequency response )(H of the circuit is jssHH == |)()( .

    LL

    +

    -

    L i(0 ) +-C

    v (0 )Cs

    CLL

    L

    +

    -

    +

    -

    +

    -

    L i(0 ) +-+-C

    v (0 )Cs

    C

  • LaPlace domain solutions: Linear Transformers with non-zero initial conditions time-domain Linear transformer model Note: possible non-zero initial conditions

    S-domain Linear transformer model th

    thth sCsLRsZ 1)(1 ++=

    L

    LLL sCsLRsZ 1)( ++=

    s

    viLiMiLsIC thcth

    )0()0()0()0()( 12111

    ++=

    s

    viLiMiLsIC LcL

    )0()0()0()0()( 21222

    +++=

    Reflect to primary side: )(

    )(22

    22

    sZsLRMssZ

    Lrefl ++

    =

    )(

    )()(22

    2refl sZsLR

    sICMssVL++

    =

    Reflect to secondary side: ; )(

    )(111

    22

    sZsLRMssZrefl ++

    =

    [ ]

    )()()(

    )(1111

    refl sZsLRsICsVMs

    sV s +++=

    sL1 R1

    I (s) 1 Z (s)1

    +- V (s) s

    +

    - IC (s) 1

    Z (s)refl

    +- V (s) refl

    sL1 sL1 R1 R1

    I (s) 1 I (s) 1 Z (s)1Z (s)1

    +-+- V (s) s V (s) s

    +

    -

    +

    - IC (s) 1 IC (s) 1

    Z (s)reflZ (s)refl

    +-+- V (s) reflV (s) refl

    +-

    +

    M

    L1 L 2

    R1 Rth L th Cth R2 RL L L

    CL

    -

    v (t) th

    v (t) C thi (t) 1 +

    -Lv (t) C

    i (t) 2 +-+-

    +

    M

    L1 L1 L 2 L 2

    R1 R1 RthRth L thL th CthCth R2 R2 RL RL L L L L

    CL CL

    -

    v (t) thv (t) th

    v (t) C thv (t) C thi (t) 1 i (t) 1 +

    -Lv (t) C Lv (t) C v (t) C

    i (t) 2 i (t) 2

    sM

    sL1

    R1 R2

    I (s) 1 I (s) 2 Z (s)LZ (s)1

    +- V (s) s sL2

    +-IC (s) 1 IC (s) 2 +-

    sM

    sL1 sL1

    R1 R1 R2 R2

    I (s) 1 I (s) 1 I (s) 2 I (s) 2 Z (s)LZ (s)LZ (s)1Z (s)1

    +-+- V (s) s V (s) s sL2 sL2

    +-+-IC (s) 1 IC (s) 1 IC (s) 2 IC (s) 2 +-+-

    R2

    Z (s)LZ (s)refl

    +-V (s) refl

    sL2 IC (s) 2 + -

    R2 R2

    Z (s)LZ (s)LZ (s)reflZ (s)refl

    +-+-V (s) reflV (s) refl

    sL2 sL2 IC (s) 2 IC (s) 2 + -+ -

  • A Brief Table of Integrals

    = )()()()()()( xduxvxvxuxdvxu = aaxxdxax

    4)2sin(

    2)(sin 2

    +=+1

    1

    nxdxxn

    n += )sin()cos()cos( xxxdxxx

    11

    )1(>

    = nfor

    nxdxx

    nn = )cos()sin()sin( xxxdxxx

    ( ) +=+ baxadxbxa ln11 [ ] )cos(2)sin(2)sin( 22 xxxxdxxx =

    ( ) >+=+

    1)1(

    )( )1( nfornbbxadxbxa

    nn [ ] )sin(2)cos(2)cos( 22 xxxxdxxx +=

    = aadxax

    xln

    == xxdxx seclncosln.tan

    = axax eadxe )1( )tan()sec(ln1)sec( axaxadxax +=

    = axax ea

    axdxxe 21 == )sin(ln)csc(ln)cot( xxdxx

    complexorrealaeaa

    xaxdxex axax

    += 322

    22 = )tan(1)(sec2 axadxax

    [ ] ++= 22)sin()cos()cos( baeaxbbxadxebxax

    ax

    = )sec()tan()sec( xdxxx

    = )csc()cot()csc( xdxxx

  • Some Trigonometric Identities: Reciprocal

    csc1sin = sec

    1cos = cot1tan =

    sin1csc = cos

    1sec = tan1cot =

    Quotient

    =

    cossintan

    =sincoscot

    Pythagorean sin2a + cos2a = 1 tan2a + 1 = sec2a 1 + cot2a = csc2a Even-Odd Identities

    )sin()sin( = )cos()cos( = )tan()tan( =

    )csc()csc( = )sec()sec( = )cot()cot( = Sum & Difference

    cossincossin)sin( = sinsincoscos)cos( m=

    tantan1tantan)tan( m

    = Double-Angle

    cossin22sin = =

    tan1tan2)2tan(

    2 )(sin211)(cos2)(sin)(cos)2cos( 2222 ===

    Half-Angle

    )sin(5.0)2/cos()2/sin( =

    2cos1

    2sin =

    2cos1

    2cos +=

    +

    =

    cos1cos1

    2tan

    Function-Product

    )cos(5.0)cos(5.0sinsin += )cos(5.0)cos(5.0coscos ++=

    )sin(5.0)sin(5.0cossin ++= )cos(5.0)sin(5.0sincos +=