Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy...

32
Usage of corrugated structure for increase of the energy chirp Large Bandwidth Radiation at XFEL Igor Zagorodnov S2E Meeting DESY 18. April 2016

Transcript of Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy...

Page 1: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Usage of corrugated structure for increase of the energy chirp

Large Bandwidth Radiation at XFEL

Igor Zagorodnov

S2E Meeting

DESY18. April 2016

Page 2: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2

Energy spread and Radiation Bandwidth

-2 -1 0 1 20

20

40

60

80

100

120

02

ωω ρ∆

(0)x

x

E

E0

~ω ρ

ω∆

11gz L =

FEL bandwidth for negligible energy spread (1D simulation)

3~ 10 at EXFELρ −

Page 3: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 3

Energy spread and Radiation Bandwidth

0~ 0.1%

ωω∆

Page 4: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 4

Energy spread and Radiation Bandwidth

0 0

0 02

γ γ ω ωγ ω− −≈

2

21

22u Kλλ

γ

= +

The energy deviation (of electron) is equivalent to the wavelength deviation (of EM wave)

3% in bandwidth ~ 1.5% in energy spread

For 17.5 GeV we need energy spread of 260 MeV.

Page 5: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 5

S2E simulations with over-compressionStart-to-End simulations done by Guangyao Feng, DESY.

�At the end of the linacE=17.5 GeV , Ipeak=~5.0kA, Q=0.5nC

�Beam energy at some key positions

1 130MeVE = 2 700MeVE = 3 2400 MeVE =

ASTRA+CSRTrack

Page 6: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 6

S2E simulations with over-compression

Parameter settings for the bunch compressors

RF settings in accelerating modules

Linac3: accelerating on-crest

Start-to-End simulations done by Guangyao Feng, DESY.

Page 7: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 7

S2E simulations with over-compressionStart-to-End simulations done by Guangyao Feng, DESY.

CSR impactOver compression

Page 8: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 8

S2E simulations with over-compression

Parameter XFEL

Beam energy, GeV 17.5

Charge, pC 500

Beam average current, kA 3.75

FWHM bunch length, um 40

Emittance ��/��, um 0.64/1.09

Energy spread , keV 500

-30 -20 -10 0 10 20 300

1

2

3

4

5

[ ]kAI

[ ]MeVEσ[ ]µmxε

[ ]µmyε

[ ]GeVE

[µm]s [µm]s

50MeV

Page 9: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 9

Flat structure with delayed layerFor flat structure (paper of Bane Stupakov, 2015)

12 10 tanh( )

( , ) sech ( ) ,2

ccx x

Z c XZ k k X ika X ak

a Xη

−− = − =

12 10 coth( )

( , ) csch ( )2

ssx

Z c XZ k k X ika

a Xη

−− = −

0 0 0( , , , ) ( , ) cosh( )cosh( ) ( , )sinh( )sinh( )cc ssx x x x x x xZ y y k k Z k k k y k y Z k k k y k y= +

0 0 0 , , 0 ,1

1( , , , , ) ( , , , )sin( )sin( ),

2x m x m x m xm

mZ x y x y k Z y y k k k x k x k

w w

π∞

=

= =∑

2a

- conductive layeriωµηκ

=Surface impedance

( )12 - dielectric layerikwη µ ε −= − −

For rectangular structure

Page 10: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 10

Corrugated structure

12 mm

1.4 mm

g = 0.25 mmp = 0.5 mm2w = 12 mm2a = 1.4 mmh = 0.5 mmLength = 2&3 m

1 kη− <<

( )12 , , 1g

ikwp

η µ ε µ ε−= − − = << - equivalent dielectric layer

- high frequency behavior for any delayed layer

Page 11: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 11

Corrugated structure wakes1

2 10 tanh( )( , ) sech ( ) ,

2cc

x x

Z c XZ k k X ika X ak

a Xη

−− = − =

12 10 coth( )

( , ) csch ( )2

ssx

Z c XZ k k X ika

a Xη

−− = −

02

X( , ) ( , )

2 cosh(X)sinh(X)cc ss

x x

Z cZ k k Z k k i

ka= =

02

X( , ) ( , )

2 cosh(X)sinh(X)cc ss

x x

Z cW k s W k s

a= =

0 0 0( , , , ) ( , ) cosh( )cosh( ) ( , )sinh( )sinh( )cc ssx x x x x x xW y y k s W k s k y k y W k s k y k y= +

0 0 0 , , 0 ,1

1( , , , , ) ( , , , )sin( )sin( ),

2x m x m x m xm

mW x y x y s W y y k s k x k x k

w w

π∞

=

= =∑

K. Bane, G. Stupakov, LCLS-II, TN-16-01, 2016

- independent from s

1 kη− <<

Page 12: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 12

Corrugated structure wakes

-30 -20 -10 0 10 20 300

10

20

30

40

50

-30 -20 -10 0 10 20 300

500

1000

1500

2000

2500

3000

[µm]s [µm]s

||[MeV]W ,Q

MeV

mmyW

Current[a.u.]

ECHO

analytical

Current[a.u.]

ECHO

analytical

K. Bane, G. Stupakov, LCLS-II, TN-16-01, 2016

“0-order” approximation

Page 13: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 13

Corrugated structure wakes

( )1 1

10 0|| 2

2( ) 1 1

4 2

Z L Z c aZ k i i ik

ka a kg ca

α π ηπ π

− −− = + + = −

( ) 11 i

Lgk

πη α−

+=

- “surface” impedance

From paper of K. Bane, K. Yokoya , PAC 1999 for chain of pillbox cavities

0tanh( ) 40( , )

sinh(2 )

x

x

k a s

k a scc xa x

x

kW k s Z c e

k a

=

0coth( ) 40( , )

sinh(2 )

x

x

k a s

k a sss xa x

x

kW k s Z c e

k a

=

2

0 2 ( / )

g as

g p pπ α =

“First order” in paper of K. Bane, G. Stupakov, I. Zagorodnov, DESY 16-056

“0-order

Page 14: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 14

Corrugated structure wakes

2

0 0.1514mm8 ( / )

g as

g p pα = =

from paperof K.Bane SLAC-PUB-9663, 2003

from fit to ECHO (calculations for bunches with up to 2um RMS)

1.8 1.6

0 2.40.41 0.12mm

a gs

p= =

from Bane, Mosnier, Novokhatsky,Yokoya, ICAP 98.

0 5 10 15 20 250.4

0.45

0.5

0.55

0.6

0.6504

mm

s

-1mmxk0tanh( )0( , )

2 cosh( )sinh( )

x

x

k a s

k a scc xa x

x x

Z c kW k s e

k a k a

=

0 0.12 mms =

Page 15: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 15

Corrugated structure wakes

-30 -20 -10 0 10 20 300

5

10

15

20

25

30

35

-30 -20 -10 0 10 20 300

500

1000

1500

2000

2500

-40 -20 0 20 400

500

1000

1500

2000

2500

3000

[µm]s [µm]s

||[MeV]W,Q

MeV

mmyW

ECHOanalytical

Current[a.u.]

ECHO

analytical

[µm]s

,D

MeV

mmyW

Current[a.u.]

ECHO

analytical

Page 16: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 16

Beam dynamics in corrugated structure

Patrameter Theoretical(0 order)

Numerical,ASTRA

(0 order)

Numerical,ASTRA

(1st order)

Emittance growth � ��⁄ 1.33 1.32 1.20

Energy spread in tail [keV] 67 66 45

Energy loss in tail [MeV] 45 45 35

230

40

1384 5

Z ceQ Ll

a E

ε π βε

= +

40µml =

34 40

4

2( )

256E x y

Z ceQLss

a l

πσ σ σ= +

0|| 2( )

16

Z ceQLW l

a

π=K. Bane, G. Stupakov, LCLS-II, TN-16-01, 2016

ASTRA tracking with wakefields.M.Dohlus et al. Fast Particle Tracking with Wakefields, 2012

Page 17: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 17

0 2 4 6 8 10 12 14 160

10

20

30

40

50

60

Beam dynamics in corrugated structure

[ ]mz

[ ]mxβ

[ ]myβ

13 m

horizontal quadvertical

ASTRA tracking with wakefields.M.Dohlus et al. Fast Particle Tracking with Wakefields, 2012

Page 18: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 18

Beam dynamics in corrugated structure

-20 -10 0 10 200

1

2

3

4

-20 -10 0 10 200

1

2

3

4

Parameter Before After6 mod.

Emittance �� 0.64 0.68

Emittance �� 1.09 1.26

Energy spread in tail [keV] 0 30

Energy loss in tail [MeV] 0 210

[ ]µmxε

[ ]µmyε

[ ]0.1 keVEσ

[ ]kAI [ ]kAI

[ ]0.1 keVEσ

[ ]µmxε

[ ]µmyε

[ ]MeVdE

[µm]s

Page 19: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 19

Beam dynamics in corrugated structure

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 160.8

1

1.2

1.4

1.6

[ ]mz

,0

y

y

εε

,0

x

x

εε

Page 20: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 20

Beam dynamics in corrugated structure

Parameter after 1 module as

1 kick

after 1 module,10 kicks

after 6 modules,

60 kicks

Emittance growth ��

��,�1.20 1.32 1.06

Emittance growth ��

��,�1.20 1.11 1.15

Energy spread in tail[keV]

45 45 30

Energy Loss in tail[MeV]

35 35 210

Page 21: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 21

Beam dynamics in corrugated structure

Parameter Before After

Emittance �� 0.64 0.64

Emittance �� 1.09 1.37

Energy spread in tail [keV] 500 530

Energy loss in tail [MeV] 50 250

-30 -20 -10 0 10 20 300

1

2

3

4

5

-30 -20 -10 0 10 20 300

1

2

3

4

5

[ ]kAI

[ ]0.1 keVEσ[ ]µmxε [ ]µmyε

[ ]kAI

[ ]0.1 keVEσ[ ]µmxε [ ]µmyε

[ ]GeVE

[µm]s

Page 22: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 22

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

1

1.2

1.4

1.6

Beam dynamics in corrugated structure

,0

x

x

εε

[ ]mz

,0

y

y

εε

Page 23: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 23

0 50 100 1500

0.5

1

1.5

2

2.5

3

3.5

SASE (“ideal” beam)

[mJ]E

[m]z

Genesis 1.3ALICE

SASE, ALICE vs. Genesis for „ideal“ beam

Page 24: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 24

-30 -20 -10 0 10 20 300

10

20

30

40

-30 -20 -10 0 10 20 300

10

20

30

40

SASE (“ideal” beam)

averaged

one shot

current[a.u]

Energy distribution at z=100 m

[GW]P

[µm]s

Energy distribution at z=175 m

[GW]P

[µm]s

Page 25: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 25

-2 -1 0 1 20

0.5

1

1.5

0.098 0.099 0.1 0.1010

0.5

1

1.5

SASE (“ideal” beam)

averaged

[nm]λ

Spectrum[a.u.] Spectrum[a.u.]

0

[%]ωω

1.8%

FWHM

Spectrum at z=100 m

Page 26: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 26

-2 -1 0 1 20

0.5

1

1.5

0.098 0.099 0.1 0.1010

0.5

1

1.5

SASE (“ideal” beam)

averaged

[nm]λ

Spectrum[a.u.] Spectrum[a.u.]

0

[%]ωω

2%

FWHM

Spectrum at 175 m

Page 27: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 27

SASE

0 50 100 1500

1

2

3

4[mJ]E

[m]z

SASE, ALICE, for „real“ beam, 15 shots

Page 28: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 28

-30 -20 -10 0 10 20 300

10

20

30

40

s [um]

SASE

averaged

one shotcurrent[a.u]

Energy distribution at z=100 m

[GW]P

[µm]s

Page 29: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 29

-2 -1 0 1 20

0.5

1

1.5

0.098 0.0985 0.099 0.0995 0.1 0.1005 0.101 0.10150

0.5

1

1.5

lambda [nm]

SASE

averaged

[nm]λ

Spectrum[a.u.] Spectrum[a.u.]

0

[%]ωω

1.7%

FWHM

Spectrum at z=100 m

Page 30: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 30

SASE

-30 -20 -10 0 10 20 300

20

40

60

80

100

averaged

one shotcurrent[a.u]

Energy distribution at z=175 m

[GW]P

[µm]s

Page 31: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 31

SASE

0.098 0.0985 0.099 0.0995 0.1 0.1005 0.101 0.10150

0.5

1

1.5

lambda [nm]-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

averaged

[nm]λ

Spectrum[a.u.] Spectrum[a.u.]

0

[%]ωω

2.2%

FWHM

Spectrum at z=175 m

Page 32: Large Bandwidth Radiation at XFELIgor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 2 Energy spread and Radiation Bandwidth -2 -1 0 1 2 0 20 40 60 80 100 120 2 0 ω ωρ ∆ (0)

Igor Zagorodnov | S2E Meeting| 18. April 2016 | Seite 32

Conclusion

With 6 corrugated modules of total length 12 m we can obtain 2% radiation bandwidth at 17.5 GeV (0.1 nm radiation wavelength).

Parameter z=100 m z=175 m

Bunch charge, pC 500

Bunch energy, GeV 17.5

Radiation wavelength, nm 0.1

Bandwidth (FWHM), % 1.7 2.2

Radiation energy, mJ 2 3.5