IEOR 4000: Production Management - Columbia Universitygmg2/4000/assol/sol5.pdf · IEOR 4000:...

1
IEOR 4000: Production Management Prof. Gallego Solution to HW 5, Fall 2004, Prepared by Lin Li 1 Note that X is lognormal with mean μ and standard deviation σ. We have μ = E(X) = exp(ν + τ 2 2 ) (1) σ 2 = E(X 2 ) - (E(X)) 2 = exp(2ν +2τ 2 ) - exp(2ν + τ 2 )= μ 2 (exp(τ 2 ) - 1) From these, we get, cv 2 =( σ μ ) 2 = exp(τ 2 - 1) which implies that τ 2 = ln(cv 2 + 1), thus τ = ln(1 + cv 2 ) Plug the result of τ into equation (1), we can find ν which is ν = ln μ - ln 1+ cv 2 2 Since D is lognormal with mean μ and variance σ 2 , ln(D) is normal with mean ν and variance τ 2 . Pr(D x)= Pr(ln D ln x)= Pr( ln D - ν τ ln x - ν τ ) = Φ( ln x - ν τ ) Use the formula of ν and τ in problem 1, Pr(D x) = Φ( ln( x μ ) + ln( 1+ cv 2 ) ln(1 + cv 2 ) ) With μ fixed, as σ 2 →∞, the ln(1 + cv 2 ) →∞ and ln( x μ ) + ln( 1+ cv 2 ) ln(1 + cv 2 ) →∞ Thus, Pr(D x) 1. 3 In the lognormal model, denote the base stock level asS, then ln( x μ ) + ln( 1+ cv 2 ) ln(1 + cv 2 ) = z β Solve for S, we have S = μ exp( ln(1 + cv 2 )z β - ln( 1+ cv 2 )) In this case, as σ 2 →∞, the ln(1 + cv 2 ) →∞ ln(1 + cv 2 )z β - ln( 1+ cv 2 )= ln(1 + cv 2 )(z β - 1 2 ln(1 + cv 2 )) → -∞, thus, S 0. 4 For normal model, S = μ + z β σ, so S μ =1+ z β cv For lognormal model, S = μ exp( ln(1 + cv 2 )z β - ln( 1+ cv 2 )), so S μ = exp( ln(1 + cv 2 )z β - ln( 1+ cv 2 )) See the excel file for solution. 1

Transcript of IEOR 4000: Production Management - Columbia Universitygmg2/4000/assol/sol5.pdf · IEOR 4000:...

Page 1: IEOR 4000: Production Management - Columbia Universitygmg2/4000/assol/sol5.pdf · IEOR 4000: Production Management Prof. Gallego Solution to HW 5, Fall 2004, Prepared by Lin Li 1

IEOR 4000: Production Management

Prof. GallegoSolution to HW 5, Fall 2004, Prepared by Lin Li

1 Note that X is lognormal with mean µ and standard deviation σ. We have

µ = E(X) = exp(ν +τ2

2) (1)

σ2 = E(X2)− (E(X))2 = exp(2ν + 2τ2)− exp(2ν + τ2) = µ2(exp(τ2)− 1)

From these, we get,cv2 = (

σ

µ)2 = exp(τ2 − 1)

which implies that τ2 = ln(cv2 + 1), thus τ =√

ln(1 + cv2)Plug the result of τ into equation (1), we can find ν which is ν = lnµ− ln

√1 + cv2

2 Since D is lognormal with mean µ and variance σ2, ln(D) is normal with mean ν and varianceτ2.

Pr(D ≤ x) = Pr(lnD ≤ lnx) = Pr(lnD − ν

τ≤ lnx− ν

τ) = Φ(

lnx− ν

τ)

Use the formula of ν and τ in problem 1,

Pr(D ≤ x) = Φ(ln( x

µ ) + ln(√

1 + cv2)√ln(1 + cv2)

)

With µ fixed, as σ2 →∞, the√

ln(1 + cv2)→∞ and

ln( xµ ) + ln(

√1 + cv2)√

ln(1 + cv2)→∞

Thus, Pr(D ≤ x)→ 1.

3 In the lognormal model, denote the base stock level asS, then

ln( xµ ) + ln(

√1 + cv2)√

ln(1 + cv2)= zβ

Solve for S, we haveS = µ exp(

√ln(1 + cv2)zβ − ln(

√1 + cv2))

In this case, as σ2 →∞, the√

ln(1 + cv2)→∞√ln(1 + cv2)zβ − ln(

√1 + cv2) =

√ln(1 + cv2)(zβ − 1

2

√ln(1 + cv2))→ −∞, thus, S → 0.

4 For normal model, S = µ + zβσ, soS

µ= 1 + zβcv

For lognormal model, S = µ exp(√

ln(1 + cv2)zβ − ln(√

1 + cv2)), so

S

µ= exp(

√ln(1 + cv2)zβ − ln(

√1 + cv2))

See the excel file for solution.

1