Electron Transport in Molecules, Nanotubes and GrapheneMicrosoft PowerPoint - NT2006.ppt Author:...

34
Electron Transport in Molecules, Nanotubes and Graphene Philip Kim Department of Physics Columbia University

Transcript of Electron Transport in Molecules, Nanotubes and GrapheneMicrosoft PowerPoint - NT2006.ppt Author:...

  • Electron Transport in Molecules, Nanotubes and Graphene

    Philip Kim

    Department of PhysicsColumbia University

  • ky

    kx

    Rolling Up Graphene: Periodic Boundary Condition

    (n, 0)

    (n, n)

    Ch(n, m)

    a1

    a2

    Ch Periodic Boundary Condition

    qkCh π2=⋅ ⊥r

    kx

    ky

    Allowed statesMetallic nanotube

    E

    k1D

    E

    k1D

    Semiconducting nanotube

    x

    E(k2D)

    kx

    ky+ band

    - band

  • Tuning Carrier Density by Electric Field Effect

    Vg

    Vsd IDoped Si

    SiO2

    metalmetal

    nanotube

    + + + + + + + + + + + + + + + +

    - - - - - - -

    Induced charge: Cg Vg = e n = e (D.O.S) ∆EF

    E

    k1DEF

    E

    k1DEF

    Vg 0~

    E

    k1DEF

    E

    k1DEF

    Vg 0~

    Atomic force microscope image of nanotube device

    nanotubeelectrode

    SiO 2

    Si

  • OFFON

    Electrical Transport in Nanotube Devices

    E

    k1DEF

    E

    k1DEF

    100

    50

    050-5

    Vsd = 10 mV

    Vg (V)

    I(nA

    )

    E

    k1DEF

    Metallic nanotube

    E

    k1DEF

    Vg (V)

    4

    2

    0-5 0 5

    I(nA

    )

    Vsd = 10 mV

    Semiconducting nanotubeIVsd

    Vg

  • Controlled Growth of Ultralong Nanotubes

    B. H. Hong, J. Y. Lee, T. Beetz, Y. Zhu, P. Kim and S. Kim (2005)

  • (Avouris, IBM)

    Extraction of Inner Shells from MWNTs

    Hong, et al, PNAS (2005)

    AFM manipulation of long MWNTs

    2 µm

    5 µm

    2 µm 2 µm

    5 µm

  • Intershell and Intrashell Nanotube Devices

    Hong, et al, PNAS (2005)

  • 15 mm

    Extremely Long SWNT Field Effect Transistor

    gatesource drain

    100 µm

    100 µm

    FET characteristics

    -9 -6 -3 0 3 6 90

    10

    20

    30

    40

    Vg (V)

    I sd(n

    A)

    Vsd = 20 V

    ρ ~ 10-7 Ω m

  • 400

    200

    0

    6040200

    Length (µm)

    Res

    ista

    nce

    (kΩ

    )

    T = 250 K

    ρ = 8 kΩ/µm

    Electron Transport in Long Single Walled Nanotubes

    Multi-terminal Device with Pd contact

    M. Purewall, A. Ravi, and P. Kim (2006)

    * Scaling behavior of resistance:R(L)

    5678

    10

    2

    3

    4

    5678

    100

    2

    3

    4

    567

    0.12 4 6 8

    12 4 6 8

    102 4 6 8

    L (µm)

    R(kΩ

    )

    T = 250 K400

    200

    0

    6040200

    R(kΩ

    )

    L (µm)

    R ~ RQ

    R ~ L

  • - +-

    L

    Ballistic Transport and Mean Free PathElectron Transport in 1D Channel

    le : mean free path

    R(L) = ρ LDiffusive transport: le

  • 5

    6789

    10

    2

    3

    4

    5

    6789

    100

    2

    3

    4

    5

    67

    2 3 4 5 61

    2 3 4 5 610

    2 3 4 5 6100

    Electron Mean Free Path of Nanotube

    L (µm)

    R(kΩ

    )

    T = 250 K

    175 K

    110 K

    60 K

    30 K

    400

    200

    040200

    L (µm)

    R(kΩ

    )

    T = 250 K

    175 K

    110 K

    60 K

    30 K

    ec l

    Leh

    ehRLR 22 44

    )( ++=

    Lines are fit to

    45.64 2

    =eh

    kΩ

    Non-ideal contact resistance Rc < 2 kΩ

    Temperature (K)

    mea

    n fr

    ee p

    ath

    (µm

    )

    0.1

    2

    46

    1

    2

    46

    10

    2

    12 4 6 8

    102 4 6 8

    1002 4

    le ~ 0.5 µm @ RT !!

  • Extremely Long Mean Free Path: Hidden Symmetry ?

    le ~ 0.5 µm @ 300 K

    le ~ 10 µm @ 1.6 K

    Carbon nanotube: Ga[Al]As HEMT:le ~ 100 µm @ 1.6 K

    le ~ 0.06 µm @ 300 K

    E

    k1DEF

    right moving left moving

    •Small momentum transfer backward scattering must be inefficient.

    Selection rules by hidden symmetry in graphene?

    T. Ando, JPSJ (1998);McEuen at al, PRL (1999)

  • Electric Field Effect in Mesoscopic Graphite

  • Simple Yet Efficient Mechanical Extraction

    Using Scotch Tape is Essential!!

  • 1 µm

    AFM Image

    A Few Layer Graphene on SiO2/Si Substrate

    0.8 nm

    0.4 nm1.2 nm

    Optical microscope images

  • Transport Single Layer Graphene

    Cleaved graphite crystallite

    20 µm

    Single layer graphene device 5000

    4000

    3000

    2000

    1000

    0

    -80 -60 -40 -20 0 20 40 60 80

    Vg (V)

    Rxx

    (Ω)

    < 1 nm

    10 nm

    Field Effect Resistance~h/4e2

    Zhang, Tan, Stormer & Kim (2005), see also Novoselov et al (2005).

  • Graphene : Dirac Particles in 2D Box

    Band structure of graphene

    kx

    ky

    Ener

    gy

    kx' ky'

    E

    ⊥′≈ kvE Fr

    hMassless Dirac Particles with effective speed of light vF.

    hole

    electron

  • Graphene v.s. Conventional 2D Electron System

    Conventional 2D Electron System

    Graphene

    E

    N2D(E)

    *

    22

    2 emkE h=

    *

    22

    2 hmkE h−=

    N2D(E)

    E 2*

    hπem

    2

    *

    hπhm

    Band structures Density of States

    • Zero band mass• Strict electron hole symmetry• Electron hole degeneracy

    ~ h/4e2

  • DOS

    E

    2D Gas in Quantum Limit : Conventional Case

    DOS

    E2

    *

    hπem

    2

    *

    hπhm

    Density of States

    */ meBc hh =ω

    Landau Levels in Magnetic FieldQuantum Hall Effect in GaAs 2DEG

    s

    s

    EF

    Graphene• Vanishing carrier mass near Dirac point• Strict electron hole symmetry• Electron hole degeneracy *m

    eBc =ω

  • 15

    10

    5

    086420

    6

    4

    2

    0

    Hal

    l Res

    ista

    nce

    (kΩ

    )

    Magnetoresistance (kΩ

    )B (T)

    Quantum Hall Effect in Graphene

    ____ he2

    12

    ____ he2

    16

    ____ he2

    110

    T=50 mK

    ____ he2

    12

    -15

    -10

    -5

    0

    5

    10

    15

    -50 0 50Vg (V)

    Hal

    l Res

    ista

    nce

    (kΩ

    )

    T= 1.5K, B= 9T

    ____ he2

    16

    ____ he2

    110

    ____ he2

    114

    h1 ____e2-14

    e2____ h1

    -10

    ____ he2

    1-6

    ____ he2

    1-2

    Quantization:

    4 (n + )Rxy =-1 ___ e

    h2

    21

    Vg=-2 V

  • EF

    σxy

    Ene

    rgy

    gse2/h

    Relativistic Landau Level and Half Integer QHE

    Landau Level +_Landau Level Degeneracygs = 4

    2 for spin and 2 for sublattice

    Quantized Condition

    Haldane, PRL (1988)

    T. Ando et al (2002)

    n = 1

    n = 2

    n = 3

    n = -3

    n = 0

    n = -1

    n = -2

    DOS

    Ene

    rgy

  • Quantum Hall Effect in Graphene

    T = 1.7 KB = 9 T

    Mobility ~ 60,000 cm2/V s

  • Nanotube Electrodes for Molecular Electronics

    • Nanotubes are inherently small, yet compatible to microfabrication processes

    • Covalent chemistry between electrode and molecules

    • Potentially good conduction via π-bonding network

  • Nanotube device

    Nanotube Nanogaps

    Thin PMMA coating

    Narrow (

  • Process are optimized to Yield of cut tubes: 25% of ~2600 devices

    AFM micrographSEM micrograph

    Nanotube Nanogaps

    ~ 5 nmSEM micrograph

    Columbia NSEC (Hone, Wind, Nuckolls, and Kim) Collaboration

  • Molecular Bridges

    Pyridine, EDCI

    •Self-assembled•Covalently bonded•Conduction through π-back bone

    Bis-oxazole

    Guo et al., Science (2006)

  • Does It Work?

    50

    40

    30

    20

    10

    0

    -5 0 5

    Vg (v)

    Cur

    rent

    (nA

    )

    before cut

    after cut

    after reconnection

    Metallic Nanotube + Molecular Bridge

    Vsd

    ~ 10-15% of reconnectionout of ~ 100 fully cut tubes

    after reconnection

    Semiconducting Nanotube + Molecular Bridge

    after cut

    Vg (v)

    Cur

    rent

    (nA

    )

    before cut

    Vsd = 50 mV

    14

    12

    10

    8

    6

    4

    2

    0

    -5 0 5

    Vg

  • * Pyridine +EDCI without molecules No connection

    * Bis-oxazole without amines No connection

    * Bis-oxazole with Monoamine No connection

    * 1,12 dodecane diamine (insulator) No connection

    Connection with diamine bisoxazole

    Control Experiments

    Pyridine, EDCI

  • Pyridine, EDCI

    Oligoaniline: PH sensing

  • Transport Measurement

    -100

    -50

    0

    50

    -800 -400 0 400 800

    250 K

    180 K

    120 K50 K

    10 K

    1.6 K

    Vsd (mV)

    I (nA

    )

    Bis-oxazole + metallic SWNT

    I (nA

    )

    40

    20

    0

    -20

    -40-800 -400 0 400 800

    Vsd (mV)

    1.6 K

    -8

    -6

    -4

    -2

    0

    -450 -400 -350 -300

    1.0

    0.5

    0.0

    350300250200150

  • Temperature Dependence Transport Spectroscopy

    20

    10

    0

    -600 -400 -200 0 200 400 60020

    10

    0

    -600 -400 -200 0 200 400 60020

    10

    0

    -600 -400 -200 0 200 400 60020

    10

    0

    -600 -400 -200 0 200 400 600

    1.6 K

    10 K

    50 K

    180 K

    Vsd (mV)

    dI/d

    V(10−

    8 S)

    4

    3

    2

    1

    0

    300250200150

    1.6K10K20K50K

    Vsd (mV)

    dI/d

    V(10−

    8 S)

    10

    8

    6

    4

    2

    0

    -250 -200 -150Vsd (mV)

    dI/d

    V(10−

    8 S)

    30 K

    50 K80 K

    120 K

    180 K220 K250 K

    20 K

  • Gate Voltage Dependence

    Vg (V)

    Vsd

    (mV

    )

    150

    175

    200

    225

    125-9.3 -9.25 -9.2

    0

    0.2

    0.4

    dI/dV(µS)

    0.3

    0.2

    0.1

    0180170160150

    Vg=-9.25 V-9.23 V-9.21 V-9.19 V-9.17 V

    Vsd (mV)

    dI/d

    V(µ

    S)

    200

    -5.0-6.0 -4.0

    -500

    -250

    250

    500

    0

    Vg (V)

    Vsd

    (mV

    )

    dI/dVsd (µS)0 0.1

  • Summary

    •Nanotube electrode for single molecular electronics

    •Transport in graphene:Unusual quantum Hall effectGraphene nano ribbon devicesGate dependent Raman spectroscopy

    •Transport in long nanotubes:Subshell extraction in MWNTsExtremely long mean-free path in SWNTs

  • AcknowledgementSpecial Thanks to: Yuanbo ZhangMeninder PurewalByung Hee HongJosh SmallMelinda HanBarbaros Oezyilmaz

    Kim Group 2004 Summer Central Park

    Funding:

    Collaboration: Stormer, Pinczuk, Heinz, Nuckolls, Brus, Flynne, Hone,