Átomo (1 Unidad)

38
Átomo En química y física, átomo (del latín atomum, y éste del griego ἄτομον, indivisible) 1 es la unidad más pequeña de un elemento químico que mantiene su identidad o sus propiedades y que no es posible dividir mediante procesos químicos. El concepto de átomo como bloque básico e indivisible que compone la materia del universo ya fue postulado por la escuela atomista en la Antigua Grecia. Sin embargo, su existencia no quedó demostrada hasta el siglo XIX. Con el desarrollo de la física nuclear en el siglo XX se comprobó que el átomo puede subdividirse en partículas más pequeñas. El núcleo atómico El núcleo del átomo se encuentra formado por nucleones, los cuales pueden ser de dos clases: Protones: Partícula de carga eléctrica positiva igual a una carga elemental, y 1,67262 × 10 –27 kg y una masa 1837 veces mayor que la del electrón. Neutrones: Partículas carentes de carga eléctrica y una masa un poco mayor que la del protón (1,67493 × 10 –27 kg). El núcleo más sencillo es el del hidrógeno, formado únicamente por un protón. El núcleo del siguiente elemento en la tabla periódica, el helio, se encuentra formado por dos protones y dos neutrones. La cantidad de protones contenidas en el núcleo del átomo se conoce como número atómico, el cual se representa por la letra Z y se escribe en la parte inferior izquierda del símbolo químico. Es el que distingue a un elemento químico de otro. Según lo descrito anteriormente, el número atómico del hidrógeno es 1 ( 1 H), y el del helio, 2 ( 2 He). La cantidad total de nucleones que contiene un átomo se conoce como número másico, representado por la letra A y escrito en la parte superior izquierda del símbolo químico. Para los ejemplos dados anteriormente, el número másico del hidrógeno es 1( 1 H), y el del helio, 4( 4 He). Existen también átomos que tienen el mismo número atómico, pero diferente número másico, los cuales se conocen como isótopos. Por ejemplo, existen tres isótopos naturales del hidrógeno, el protio ( 1 H), eldeuterio ( 2 H) y el tritio ( 3 H). Todos poseen las mismas propiedades químicas del hidrógeno, y pueden ser diferenciados únicamente por ciertas propiedades físicas. Otros términos menos utilizados relacionados con la estructura nuclear son los isótonos, que son átomos con el mismo número de neutrones. Los isóbaros son átomos que tienen el mismo número másico. Debido a que los protones tienen cargas positivas se deberían repeler entre sí, sin embargo, el núcleo del átomo mantiene su cohesión debido a la existencia de otra fuerza de mayor magnitud, aunque de menor alcance conocida como la interacción nuclear fuerte.

description

Química (todo sobre el átomo y las teorías atómicas)

Transcript of Átomo (1 Unidad)

Page 1: Átomo (1 Unidad)

ÁtomoEn química y física, átomo (del latín atomum, y éste del griego ἄτομον, indivisible)1 es la unidad más pequeña de

un elemento químico que mantiene su identidad o sus propiedades y que no es posible dividir mediante procesos químicos.

El concepto de átomo como bloque básico e indivisible que compone la materia del universo ya fue postulado por la escuela atomista en la Antigua Grecia. Sin embargo, su existencia no quedó demostrada hasta el siglo XIX. Con el desarrollo de la física nuclear en el siglo XX se comprobó que el átomo puede subdividirse en partículas más pequeñas.

El núcleo atómicoEl núcleo del átomo se encuentra formado por nucleones, los cuales pueden ser de dos clases:

Protones: Partícula de carga eléctrica positiva igual a una carga elemental, y 1,67262 × 10–27 kg y una masa 1837 veces mayor que la del electrón.

Neutrones: Partículas carentes de carga eléctrica y una masa un poco mayor que la del protón (1,67493 × 10 –

27 kg).El núcleo más sencillo es el del hidrógeno, formado únicamente por un protón. El núcleo del siguiente elemento en la tabla periódica, el helio, se encuentra formado por dos protones y dos neutrones. La cantidad de protones contenidas en el núcleo del átomo se conoce como número atómico, el cual se representa por la letra Z y se escribe en la parte inferior izquierda del símbolo químico. Es el que distingue a un elemento químico de otro. Según lo descrito anteriormente, el número atómico del hidrógeno es 1 (1H), y el del helio, 2 (2He).La cantidad total de nucleones que contiene un átomo se conoce como número másico, representado por la letra A y escrito en la parte superior izquierda del símbolo químico. Para los ejemplos dados anteriormente, el número másico del hidrógeno es 1(1H), y el del helio, 4(4He).Existen también átomos que tienen el mismo número atómico, pero diferente número másico, los cuales se conocen como isótopos. Por ejemplo, existen tres isótopos naturales del hidrógeno, el protio (1H), eldeuterio (2H) y el tritio (3H). Todos poseen las mismas propiedades químicas del hidrógeno, y pueden ser diferenciados únicamente por ciertas propiedades físicas.Otros términos menos utilizados relacionados con la estructura nuclear son los isótonos, que son átomos con el mismo número de neutrones. Los isóbaros son átomos que tienen el mismo número másico.Debido a que los protones tienen cargas positivas se deberían repeler entre sí, sin embargo, el núcleo del átomo mantiene su cohesión debido a la existencia de otra fuerza de mayor magnitud, aunque de menor alcance conocida como la interacción nuclear fuerte.

Interacciones eléctricas entre protones y electronesAntes del experimento de Rutherford la comunidad científica aceptaba el modelo atómico de Thomson, situación que varió después de la experiencia de Rutherford. Los modelos posteriores se basan en una estructura de los átomos con una masa central cargada positivamente rodeada de una nube de carga negativa.4

Este tipo de estructura del átomo llevó a Rutherford a proponer su modelo en que los electrones se moverían alrededor del núcleo en órbitas. Este modelo tiene una dificultad proveniente del hecho de que una partícula cargada acelerada, como sería necesario para mantenerse en órbita, radiaria radiación electromagnética, perdiendo energía. Las  leyes de Newton, junto con la ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de 10−10 s, toda la energía del átomo se habría radiado, con la consiguiente caída de los electrones sobre el núcleo.5

Partícula subatómicaUna partícula subatómica es una partícula más pequeña que el átomo. Puede ser una partícula elemental o

una compuesta. La física de partículas y la física nuclearse ocupan del estudio de estas partículas, sus interacciones y de la materia que las forma y que no se agrega en los átomos. Ejemplos de partículas subatómicas son las que constituyen los átomos: protones, electrones y neutrones.

Page 2: Átomo (1 Unidad)

La mayoría de las partículas elementales que se han descubierto y estudiado no pueden encontrarse en condiciones normales en la Tierra, sino que se producen en los rayos cósmicos y en los procesos que se dan en los aceleradores de partículas. De este modo, existen docenas de partículas subatómicas.

Introducción   Los primeros modelos atómicos consideraban básicamente tres tipos de partículas

subatómicas: protones, electrones y neutrones. Más adelante el descubrimiento de la estructura interna de protones y neutrones, reveló que estas eran partículas compuestas. Además el tratamiento cuántico usual de las interacciones entre las partículas comporta que la cohesión del átomo requiere otras partículas bosónicas como los piones,gluones o fotones.Los protones y neutrones por su parte están constituidos por quarks. Así un protón está formado por dos quarks up y un quark down. Los quarks se unen mediante partículas llamadas gluones. Existen seis tipos diferentes de quarks (up, down, bottom, top, extraño y encanto). Los protones se mantienen unidos a los neutrones por el efecto de los piones, que son mesones compuestos formados por parejas de quark y antiquark (a su vez unidos por gluones). Existen también otras partículas elementales que son responsables de las fuerzas electromagnética (los fotones) y débil (los neutrinos y los bosones W y Z).Los electrones, que están cargados negativamente, tienen una masa 1/1836 de la del átomo de hidrógeno, proviniendo el resto de su masa del protón. El número atómico de un elemento es el número de protones (o el de electrones si el elemento es neutro). Los neutrones por su parte son partículas neutras con una masa muy similar a la del protón. Los distintos isótopos de un mismo elemento contienen el mismo número de protones pero distinto número de neutrones. El número másico de un elemento es el número total de protones más neutrones que posee en su núcleo.Las propiedades más interesantes de las 3 partículas constituyentes de la materia existente en la Tierra son:

Electrón: Se encuentra en la corteza. Su masa aproximadamente es de 9,1*10-31 kg. Tiene carga eléctrica negativa (-1.602*10-19 C).

Protón: Se encuentra en el núcleo. Su masa es de 1,6. 10 -27 kg. Tiene carga positiva igual en magnitud a la carga del electrón. El número atómico de un elemento indica el número de protones que tiene en el núcleo. Por ejemplo el núcleo del átomo de hidrógeno contiene un único protón, por lo que su número atómico (Z) es 1.

Neutrón: Se encuentra en el núcleo. Su masa es casi igual que la del protón. No posee carga eléctrica.El concepto de partícula elemental es hoy algo más oscuro debido a la existencia de cuasipartículas que si bien no pueden ser detectadas por un detector constituyen estados cuánticos cuya descripción fenomenológica es muy similar a la de una partícula real. Historia   [ editar ] En la Grecia clásica, un átomo era concebido como la parte más pequeña e indivisible constituyente de la materia.Fue el desarrollo de la química la que consiguió establecer un número determinado de constituyentes de toda la materia existente y medible en la Tierra. Sus hallazgos dieron su mayor fruto de la mano deMendeleiev, al concretar de una forma sencilla todos los posibles átomos (definiendo de hecho la existencia de algunos no descubiertos hasta tiempo después).Más adelante se descubrió que, si bien los recien definidos átomos cumplían la condición de ser los constituyentes de toda la materia, no cumplían ninguna de las otras dos condiciones. Ni eran la parte más pequeña ni eran indivisibles. Sin embargo se decidió mantener el término átomo para estos constituyentes de la materia.La electroquímica liderada por G. Johnstone Stoney, dio lugar al descubrimiento de los electrones (e-) en 1874, observado en 1897 por J. J. Thomson. Estos electrones daban lugar a las distintas configuraciones de los átomos y de las moléculas. Por su parte en 1907 los experimentos de Ernest Rutherford revelaron que gran parte del átomo era realmente vacío, y que casi toda la masa se concentraba en un núcleorelativamente pequeño. El desarrollo de la teoría cuántica llevó a considerar la química en términos de distribuciones de los electrones en ese espacio vacío. Otros experimentos demostraron que existían unas partículas que formaban el núcleo: el protón (p+) y el neutrón (n) (postulado por Rutherford y descubierto por James Chadwick en 1932). Estos descubrimientos replanteaban la cuestión de las partes más pequeñas e indivisibles que formaban el universo conocido. Se comenzó a hablar de las partículas subatómicas.Más tarde aún, profundizando más en las propiedades de los protones, neutrones y electrones se llegó a la conclusión de que tampoco estos (al menos los dos primeros) podían ser tratados como la parte más pequeña, ni como indivisibles, ya que los quarks daban estructura a los nucleones. A partir de aquí se empezó a hablar de partículas cuyo tamaño fuese inferior a la de cualquier átomo. Esta definición incluía a todos los constituyentes del átomo, pero también a los

Page 3: Átomo (1 Unidad)

constituyentes de esos constituyentes, y también a todas aquellas partículas que, sin formar parte de la materia, existen en la naturaleza. A partir de aquí se habla de partículas elementales.Historia reciente   [ editar ] En 1897 J. J. Thomson descubre el electrón. Albert Einstein interpreta el efecto fotoelétrico como una evidencia de la existencia real del fotón. Anteriormente, en 1905, Max Planck había postulado el fotón como unquantum de energía electromagnética mínimo para resolver el problema de termodinámica de la radiación del cuerpo negro.Por su parte Ernest Rutherford descubrió en 1907 en el famoso experimento de la lámina de oro que casi la totalidad de la masa de un átomo estaba concentrada en una muy pequeña parte de él, que posteriormente se llamaría  núcleo atómico, siendo el resto vacío. El desarrollo continuado de estas ideas llevó a la  mecánica cuántica, algunos de cuyos primeros éxitos incluyeron la explicación de las propiedades del átomo.Muy pronto se identificó una nueva partícula, el protón, como constituyente único del núcleo del hidrógeno. Rutherford también postuló la existencia de otra partícula, llamada neutrón, tras su descubrimiento del núcleo. Esta partícula fue descubierta experimentalmente en 1932 por James Chadwick. A estas partículas se sumó una larga lista:

Wolfgang Pauli postuló en 1931 la existencia del neutrino para explicar la aparente pérdida de la conservación de la cantidad de movimiento que se daba en la desintegración beta. Enrico Fermi fue quien inventó el nombre. La partícula no fue descubierta hasta 1956.

Fue Hideki Yukawa quién postuló la existencia de los piones para explicar la fuerza fuerte que unía a los nucleones en el interior del núcleo. El muón se descrubrió en 1936, pensándose inicialmente de forma errónea que era un pión. En la década de los 50 se descubrió el primer kaón entre los rayos cósmicos.

El desarrollo de nuevos aceleradores de partículas y detectores de partículas en esa década de los 50 llevó al descubrimiento de un gran número de hadrones, provocando la famosa cita de Wolfgang Pauli: «If I had foreseen this, I would have gone into botany» (= 'Si hubiera previsto esto me hubiera hecho botánico').

Junto con los hadrones compuestos aparecieron series de partículas que parecían duplicar las funciones y carácterísticas de partículas más pequeñas. Así se descubrió otro "electrón pesado", además del muón, el  tauón, así como diversas series de quarks pesados. Ninguna de las partículas de estas series más pesadas parece formar parte de los átomos de la materia ordinaria.

La clasificación de esos hadrones a través del modelo de quarks en 1961 fue el comienzo de la edad de oro de la física moderna de partículas, que culminó en la completitud de la teoría unificada llamada el modelo estándar en la década de los 70.La confirmación de la existencia de los bosones de gauge débil en la década de los 80 y la verificación de sus propiedades en los 90 se considera como la era de la consolidación de la física de partículas. Entre las partículas definidas por el modelo estándar, aun permanece sin descubrir el bosón de Higgs. Por ello este es el objetivo primordial del acelerador Large Hadron Collider (LHC) del CERN. El resto de partículas conocidas encaja a la perfección con el modelo estándar.Materias de estudio El estudio de estas partículas subatómicas, de su estructura y de sus interacciones, incluye materias como la  mecánica cuántica y la física de partículas. A veces, debido a que gran parte de las partículas que pueden tratarse como partículas subatómicas solo existen durante períodos de tiempo muy cortos y en condiciones muy extremas como los rayos cósmicos o los aceleradores de partículas, suele llamarse a esta disciplina física de altas energías.Por su parte el tratamiento que la teoría cuántica de campos (TCC) hace de las partículas difiere de la mecánica cuántica en un punto importante. En TCC las partículas no son entidades básicas, sino que sólo existen campos y posibles estados del espacio-tiempo (el que sean perceptibles un cierto número de partículas es una propiedad del estado cuántico del espacio tiempo). Así un campo es tratado como unobservable asociado a una región del espacio-tiempo, a su vez, a partir del observable de campo se puede definir un operador número que se interpreta como el número de partículas observables en el estado cuántico. Puesto que los autovalores del operador número son números enteros y las magnitudes extensivas son expresables en términos de este operador, razón por la cual los autovalores de ese operador se pueden interpretar como el número de partículas.

Teoría atómica

Page 4: Átomo (1 Unidad)

Varios átomos y moléculas según John Dalton, en su libro A New System of Chemical Philosophy (Nuevo Sistema de Filosofía Química, 1808).

En física y química, la teoría atómica es una teoría de la naturaleza de la materia, que afirma que está compuesta por pequeñas partículas llamadas átomos, en contraposición a la creencia antigua de que la materia se podía dividir en cualquier cantidad arbitrariamente pequeña.

La teoría atómica comenzó hace miles de años como un concepto filosófico, y fue en el siglo XIX cuando logró una extensa aceptación científica gracias a los descubrimientos en el campo de la estequiometría. Los químicos de la época creían que las unidades básicas de los elementos también eran las partículas fundamentales de la naturaleza y las llamaron átomos (de la palabra griega atomos, que significa "indivisible"). Sin embargo, a finales de aquel siglo, y mediante diversos experimentos con el electromagnetismo y laradiactividad, los físicos descubrieron que el denominado "átomo indivisible" era realmente un conglomerado de diversas partículas subatómicas (principalmente electrones,protones y neutrones), que pueden existir de manera separada. De hecho, en ciertos ambientes, como en las estrellas de neutrones, la temperatura extrema y la elevada presiónimpide a los átomos existir como tales. El campo de la ciencia que estudia las partículas fundamentales de la materia se denomina física de partículas.

Los filósofos griegos discutieron mucho sobre la naturaleza de la materia y concluyeron que el mundo era más sencillo de lo que parecía.En el siglo V a.C., Leucipo pensaba que sólo había un tipo de materia. Sostenía, además, que si dividíamos la materia en partes cada vez más pequeñas, acabaríamos encontrando una porción que no se podría seguir dividiendo. Un discípulo suyo, Demócrito, bautizó a estas partes indivisibles de materia con el nombre de átomos, término que en griego significa “que no se puede dividir”.

Empédocles estableció que la materia estaba formada por 4 elementos: tierra, agua, aire y fuego.Aristóteles negó la existencia de los átomos de Demócrito y reconoció la teoría de los 4 elementos, que, gracias al prestigio que tenía, se mantuvo vigente en el pensamiento de la humanidad durante 2000 años. Hoy sabemos que aquellos 4 elementos iniciales no forman parte de los 106 elementos químicos actuales

En 1808, John Dalton publicó su teoría atómica, que retomaba las antiguas ideas de Leucipo y Demócrito. Según la teoría de Dalton:1) Los elementos están formados por partículas discretas, diminutas e indivisibles, llamadas átomos, que no se alteran en los cambios químicos.2) Los átomos de un mismo elemento son todos iguales entre sí en masa, tamaño y en el resto de las propiedades físicas o químicas. Por el contrario, los átomos de elementos diferentes tienen distinta masa y propiedades.3) Los compuestos se forman por la unión de átomos de los correspondientes elementos según una relación numérica sencilla y constante. Por ejemplo, el agua está formada por 2 átomos del elemento hidrógeno y 1 átomo del elemento oxígeno.

Símbolos usados por Dalton para representar a los elementosHoy sabemos que ninguno de estos tres puntos es completamente cierto; sin embargo, Dalton contribuyó enormemente a entender cómo estaba formada la materia.

Page 5: Átomo (1 Unidad)

Teoría atómica modernaNacimiento de la teoría atómica moderna [editar]

En los primeros años del siglo XIX, John Dalton desarrolló su modelo atómico, en la que proponía que cada elemento químico estaba compuesto por átomos iguales y exclusivos, y que aunque eran indivisibles e indestructibles, se podían asociar para formar estructuras más complejas (los compuestos químicos). Esta teoría tuvo diversos precedentes.El primero fue la ley de conservación de la masa, formulada por Antoine Lavoisier en 1789, que afirma que la masa total en una reacción química permanece constante. Esta ley le sugirió a Dalton la idea de que la materia era indestructible.El segundo fue la ley de las proporciones definidas. Enunciada por el químico francés Joseph Louis Proust en 1799, afirma que, en un compuesto, los elementos que lo conforman se combinan en proporciones de masa definidas y características del compuesto.Dalton estudió y amplió el trabajo de Proust para desarrollar la ley de las proporciones múltiples: cuando dos elementos se combinan para originar diferentes compuestos, dada una cantidad fija de uno de ellos, las diferentes cantidades del otro se combinan con dicha cantidad fija para dar como producto los compuestos, están en relación de números enteros sencillos.En 1803, Dalton publicó su primera lista de pesos atómicos relativos para cierta cantidad de sustancias. Esto, unido a su rudimentario material, hizo que su tabla fuese muy poco precisa. Por ejemplo, creía que los átomos de oxígeno eran 5,5 veces más pesados que los átomos de hidrógeno, porque en el agua midió 5,5 gramos de oxígeno por cada gramo de hidrógeno y creía que la fórmula del agua era HO (en realidad, un átomo de oxígeno es 16 veces más pesado que un átomo de hidrógeno).

La ley de Avogadro le permitió deducir la naturaleza diatómica de numerosos gases, estudiando los volúmenes en los que reaccionaban. Por ejemplo: el hecho de que dos litros de hidrógeno reaccionasen con un litro de oxígeno para producir dos litros de vapor de agua (a presión y temperatura constantes), significaba que una única molécula de oxígeno se divide en dos para formar dos partículas de agua. De esta forma, Avogadro podía calcular estimaciones más exactas de la masa atómica del oxígeno y de otros elementos, y estableció la distinción entre moléculas y átomos.En 1784, el botánico británico Robert Brown, observó que las partículas de polvo que flotaban en el agua se movían al azar sin ninguna razón aparente. En 1905, Albert Einstein tenía la teoría de que este movimiento browniano lo causaban las moléculas de agua que "bombardeaban" constantemente las partículas, y desarrolló un modelo matemático hipotético para describirlo.El físico francés Jean Perrin demostró experimentalmente este modelo en 1911, proporcionando además la validación a la teoría de partículas (y por extensión, a la teoría atómica).

Descubrimiento de las partículas subatómicas [editar]

El tubo de rayos catódicos de Thomson, en el que observó la desviación de los rayos catódicos por un campo eléctrico.Hasta 1897, se creía que los átomos eran la división más pequeña de la materia,

cuando J.J Thomson descubrió el electrón mediante su experimento con el tubo de rayos catódicos.1 El tubo de rayos catódicos que usó Thomson era un recipiente cerrado de vidrio, en el cual los dos electrodos estaban separados por un vacío. Cuando se aplica una diferencia de tensión a los electrodos, se generan rayos catódicos, que crean un resplandor fosforescente cuando chocan con el extremo opuesto del tubo de cristal. Mediante la experimentación, Thomson descubrió que los rayos se desviaban al aplicar un campo eléctrico (además de desviarse con los campos magnéticos, cosa que ya se sabía). Afirmó que estos rayos, más que ondas, estaban compuestos por partículas cargadas negativamente a las que llamó "corpúsculos" (más tarde, otros científicos las rebautizarían como electrones).Thomson creía que los corpúsculos surgían de los átomos del electrodo. De esta forma, estipuló que los átomos eran divisibles, y que los corpúsculos eran sus componentes. Para explicar la carga neutra del átomo, propuso que los corpúsculos se distribuían en estructuras anilladas dentro de una nube positiva uniforme; éste era el modelo atómico de Thomson o "modelo del plum cake".2

Ya que se vio que los átomos eran realmente divisibles, los físicos inventaron más tarde el término "partículas elementales" para designar a las partículas indivisibles.

Descubrimiento del núcleo

Page 6: Átomo (1 Unidad)

El modelo atómico de Thomson fue refutado en 1909 por uno de sus estudiantes, Ernest Rutherford, que descubrió que la mayor parte de la masa y de la carga positiva de un átomo estaba concentrada en una fracción muy pequeña de su volumen, que suponía que estaba en el mismo centro.

En su experimento, Hans Geiger y Ernest Marsden bombardearon partículas alfa a través de una fina lámina de oro (que chocarían con una pantalla fluorescente que habían colocado rodeando la lámina).3 Dada la mínima como masa de los electrones, la elevada masa y momento de las partículas alfa y la distribución uniforme de la carga positiva del modelo de Thomson, estos científicos esperaban que todas las partículas alfa atravesasen la lámina de oro sin desviarse, o por el contrario, que fuesen absorbidas. Para su asombro, una pequeña fracción de las partículas alfa sufrió una fuerte desviación. Esto indujo a Rutherford a proponer el modelo planetario del átomo, en el que los electrones orbitaban en el espacio alrededor de un gran núcleo compacto, a semejanza de los planetas y el Sol.4

Descubrimiento de los isótopos En 1913, Thomson canalizó una corriente de iones de neón a través de campos magnéticos y eléctricos, hasta chocar con una placa fotográfica que había colocado al otro lado. Observó dos zonas incandescentes en la placa, que revelaban dos trayectorias de desviación diferentes. Thomson concluyó que esto era porque algunos de los iones de neón tenían diferentes masas; así fue como descubrió la existencia de los isótopos.5

Descubrimiento del neutrón En 1918, Rutherford logró partir el núcleo del átomo al bombardear gas nitrógeno con partículas alfa, y observó que el gas emitía núcleos de hidrógeno. Rutherford concluyó que los núcleos de hidrógeno procedían de los núcleos de los mismos átomos de nitrógeno.6 Más tarde descubrió que la carga positiva de cualquier átomo equivalía siempre a un número entero de núcleos de hidrógeno. Esto, junto con el hecho de que el hidrógeno —el elemento más ligero— tenía una masa atómica de 1, le llevó a afirmar que los núcleos de hidrógeno eran partículas singulares, consituyentes básicos de todos los núcleos atómicos: se había descubierto el protón. Un experimento posterior de Rutherford mostró que la masa nuclear de la mayoría de los átomos superaba a la de los protones que tenía. Por tanto, postuló la existencia de partículas sin carga, hasta entonces desconocidas más tarde llamadas neutrones, de donde provendría este exceso de masa.En 1928, Walther Bothe observó que el berilio emitía una radiación eléctricamente neutra cuando se le bombardeaba con partículas alfa. En 1932, James Chadwick expuso diversos elementos a esta radiación y dedujo que ésta estaba compuesta por partículas eléctricamente neutras con una masa similar la de un protón.7 Chadwick llamó a estas partículas "neutrones".

Evolución del modelo atómico

La concepción del átomo que se ha tenido a lo largo de la historia ha variado de acuerdo a los descubrimientos realizados en el campo de la física y la química. A continuación se hará una exposición de los modelos atómicos propuestos por los científicos de diferentes épocas. Algunos de ellos son completamente obsoletos para explicar los fenómenos observados actualmente, pero se incluyen a manera de reseña histórica.

Modelo de DaltonFue el primer modelo atómico con bases científicas, fue formulado en 1808 por John Dalton, quien imaginaba a los átomos como diminutas esferas.11 Este primer modelo atómico postulaba:

La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.

Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.

Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas. Los átomos, al combinarse para formar compuestos guardan relaciones simples.

Page 7: Átomo (1 Unidad)

Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.

Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.Sin embargo desapareció ante el modelo de Thomson ya que no explica los rayos catódicos, la radioactividad ni la presencia de los electrones (e-) o protones(p+).

Modelo de ThomsonLuego del descubrimiento del electrón en 1897 por Joseph John Thomson, se determinó que la materia se componía de dos partes, una negativa y una positiva. La parte negativa estaba constituida por electrones, los cuales se encontraban según este modelo inmersos en una masa de carga positiva a manera de pasas en un pastel (de la analogía del inglés plum-pudding model) o uvas en gelatina. Posteriormente Jean Perrin propuso un modelo modificado a partir del de Thompson donde las "pasas" (electrones) se situaban en la parte exterior del "pastel" (la carga positiva).

Detalles del modelo atómicoPara explicar la formación de iones, positivos y negativos, y la presencia de los electrones dentro de la estructura atómica, Thomson ideó un átomo parecido a un pastel de frutas. Una nube positiva que contenía las pequeñas partículas negativas (los electrones) suspendidos en ella. El número de cargas negativas era el adecuado para neutralizar la carga positiva. En el caso de que el átomo perdiera un electrón, la estructura quedaría positiva; y si ganaba, la carga final sería negativa. De esta forma, explicaba la formación de iones; pero dejó sin explicación la existencia de las otras radiaciones.

Modelo de RutherfordEste modelo fue desarrollado por el físico Ernest Rutherford a partir de los resultados obtenidos en lo que hoy se conoce como el experimento de Rutherford en 1911. Representa un avance sobre el modelo de Thomson, ya que mantiene que el átomo se compone de una parte positiva y una negativa, sin embargo, a diferencia del anterior, postula que la parte positiva se concentra en un núcleo, el cual también contiene virtualmente toda la masa del átomo, mientras que los electrones se ubican en una corteza orbitando al núcleo en órbitas circulares o elípticas con un espacio vacío entre ellos. A pesar de ser un modelo obsoleto, es la percepción más común del átomo del público no científico. Rutherford predijo la existencia del neutrón en el año 1920, por esa razón en el modelo anterior (Thomson), no se habla de éste.

Por desgracia, el modelo atómico de Rutherford presentaba varias incongruencias: Contradecía las leyes del electromagnetismo de James Clerk Maxwell, las cuales estaban muy

comprobadas mediante datos experimentales. Según las leyes de Maxwell, una carga eléctrica en movimiento (en este caso el electrón) debería emitir energía constantemente en forma de radiación y llegaría un momento en que el electrón caería sobre el núcleo y la materia se destruiría. Todo ocurriría muy brevemente.

No explicaba los espectros atómicos.

Modelo de BohrEste modelo es estrictamente un modelo del átomo de hidrógeno tomando como punto de partida el modelo de Rutherford, Niels Bohr trata de incorporar los fenómenos de absorción y emisión de los gases, así como la nueva teoría de la cuantización de la energía desarrollada por Max Planck y el fenómeno del efecto fotoeléctrico observado porAlbert Einstein.“El átomo es un pequeño sistema solar con un núcleo en el centro y electrones moviéndose alrededor del núcleo en órbitas bien definidas.” Las órbitas están cuantizadas (los e- pueden estar solo en ciertas órbitas)

Cada orbita tiene una energía asociada. La más externa es la de mayor energía. Los electrones no radian energía (luz) mientras permanezcan en órbitas estables. Los electrones pueden saltar de una a otra orbita. Si lo hace desde una de menor energía a una

de mayor energía absorbe un cuanto de energía (una cantidad) igual a la diferencia de energía

Page 8: Átomo (1 Unidad)

asociada a cada orbita. Si pasa de una de mayor a una de menor, pierde energía en forma de radiación (luz).El mayor éxito de Bohr fue dar la explicación al espectro de emisión del hidrógeno. Pero solo la luz de este elemento. Proporciona una base para el carácter cuántico de la luz, el fotón es emitido cuando un electrón cae de una orbita a otra, siendo un pulso de energía radiada. Bohr no puede explicar la existencia de órbitas estables y para la condición de cuantización. Bohr encontró que el momento angular del electrón es h/2π por un método que no puede justificar.

Modelo de Schrödinger: modelo actual

Después de que Louis-Victor de Broglie propuso la naturaleza ondulatoria de la materia en 1924, la cual fue generalizada por Erwin Schrödinger en 1926, se actualizó nuevamente el modelo del átomo.En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, que es una extrapolación de la experiencia a nivel macroscópico hacia las diminutas dimensiones del átomo. En vez de esto, Schrödinger describe a los electrones por medio de una función de onda, el cuadrado de la cual representa la probabilidad de presencia en una región delimitada del espacio. Esta zona de probabilidad se conoce como orbital. La gráfica siguiente muestra los orbitales para los primeros niveles de energía disponibles en el átomo de hidrógeno.

Modelo atómico moderno Modelo atómico de Thomson Modelo atómico de Rutherford

Modelo atómico de Bohr Densidad de probabilidad de ubicación de un electrón para los primeros niveles de energía.

Electrón e−

Page 9: Átomo (1 Unidad)

El electrón (del griego ἤλεκτρον, ámbar), comúnmente representado por el símbolo: e−, es una partícula subatómica o partícula elemental de tipo fermiónico. En un átomo los electrones rodean el núcleo, compuesto únicamente de protones y neutrones.Los electrones tienen una masa pequeña respecto al protón, y su movimiento genera corriente eléctrica en la mayoría de los metales. Estas partículas desempeñan un papel primordial en la química ya que definen las atracciones con otros átomos.

Propiedades El electrón tiene una carga eléctrica negativa de −1,6 × 10−19 coulombs y una masa de 9,1 × 10-31 kg (0,51

MeV/c2), que es aproximadamente 1800 veces menor que la masa del protón. El electrón tiene momento angular intrínseco o espín de 1/2 (en unidades de Planck). Dado que el espín es semientero los electrones se comportan como fermiones, es decir, colectivamente son descritos por la estadística de Fermi-Dirac.

Los electrones y los positrones pueden aniquilarse mutuamente produciendo un fotón. De manera inversa, un fotón de alta energía puede transformarse en un electrón y un positrón.

El electrón es una partícula elemental, lo que significa que no tiene una subestructura (al menos los experimentos no la han podido encontrar). Por ello suele representarse como un punto, es decir, sin extensión espacial. Sin embargo, en las cercanías de un electrón pueden medirse variaciones en su masa y su carga. Esto es un efecto común a todas las partículas elementales: la partícula influye en las fluctuaciones del vacío en su vecindad, de forma que las propiedades observadas desde mayor distancia son la suma de las propiedades de la partícula más las causadas por el efecto del vacío que la rodea.

Clasificación: Partículas elementalesFamilia:FermiónGrupo: LeptónGeneración:PrimeraInteracción:Gravedad, Electromagnetismo, Nuclear débilSímbolo(s):e−

Antipartícula: PositrónTeorizada: Richard Laming (1838–1851), G. Johnstone Stoney (1874) y otros.Descubierta: J. J. Thomson (1897)Masa: 9,10938215 × 10−31 kg 1/1822,88849 uma

Carga eléctrica: -1,602176487 × 10−19 CMomento magnético: −1.00115965218111 μBCarga de color: - Espín ±

ProtónEn física, el protón (en griego protón significa primero) es una partícula subatómica con una carga

eléctrica elemental positiva (1,602 176 487 × 10–19 culombios) y una masa de 938,272 013 MeV/c2 (1,672 621 637 × 10–

27 kg) o, del mismo modo, unas 1836 veces la masa de un electrón. Experimentalmente, se observa el protón como estable, con un límite inferior en su vida media de unos 1035 años, aunque algunas teorías predicen que el protón puede desintegrarse, es decir el que sus partículas pierdan la consistencia que poseen y como tal el átomo. El protón y el neutrón, en conjunto, se conocen como nucleones, ya que conforman el núcleo de los átomos.El núcleo del isótopo más común del átomo de hidrógeno (también el átomo estable más simple posible) es un único protón. Los núcleos de otros átomos están compuestos de nucleones unidos por la fuerza nuclear fuerte. El número de protones en el núcleo determina las propiedades químicas del átomo y quéelemento químico es.

Descripción Los protones están clasificados como bariones y se componen de dos quarks arriba y un quark abajo, los cuales también están unidos por la fuerza nuclear fuerte mediada por gluones. El equivalente en antimateria del protón es el antiprotón, el cual tiene la misma magnitud de carga que el protón, pero de signo contrario.Debido a que la fuerza electromagnética es muchos órdenes de magnitud más fuerte que la fuerza gravitatoria, la carga del protón debe ser opuesta e igual (en valor absoluto) a la carga del electrón; en caso contrario, la repulsión neta de tener un exceso de carga positiva o negativa causaría un efecto expansivo sensible en el universo, y, asimismo, en cualquier cúmulo de materia (planetas, estrellas, etc.)

Química y bioquímica En fisica y química, el término protón puede referirse al catión de hidrógeno (H+). En este contexto, un emisor de protones es un ácido, y un receptor de protones una base. Esta especie, H+, es inestable ensolución, por lo que siempre se encuentra unida a otros átomos. En soluciones acuosas forma el ion hidronio u oxonio (H3O+), donde el protón está

Page 10: Átomo (1 Unidad)

unido de forma covalente a una molécula de agua. En este caso se dice que se encuentra hidratado, pero también pueden existir especies de hidratación superior.

Antiprotón El antiprotón es la antipartícula del protón. Se conoce también como protón negativo. Se diferencia del protón en que su carga es negativa y en que no forma parte de los núcleos atómicos. El antiprotón es estable en el vacío y no se desintegra espontáneamente. Sin embargo, cuando un antiprotón colisiona con un protón, ambas partículas se transforman en mesones, cuya vida media es extremadamente breve (véaseRadiactividad). Si bien la existencia de esta partícula elemental se postuló por primera vez en la década de 1930, el antiprotón no se identificó hasta 1955, en el Laboratorio de Radiación de la Universidad de California, por Emilio Segre y Owen Chamberlain, razón por la cual les fue concedido el Premio Nobel de Física en 1959.

Teorizada William Prout (1815)Descubierta Ernest Rutherford (1919)

Masa 1,672 621 637(83)×10−27 kg --- 938,272 013(23)

MeV/c2Vida media 1035 años

Carga eléctrica 1,602 176 487 × 10–19 CRadio de carga 0,875(7) fm

Dipolo eléctrico <5,4×10−24 e cmPolarizabilidad 1,20(6)×10−3 fm3

Momento magnético 2,792847351(28) μNPolarizabilidad magnética 1,9(5)×10−4 fm3

Espín 1⁄2Isospín 1⁄2Paridad +1

Condensado I(JP) = 1/2(1/2+)

NeutrónUn neutrón es un barión neutro formado por dos quarks down y un quark up. Forma, junto con los protones, los núcleos atómicos. Fuera del núcleo atómico es inestable y tiene una vida media de unos 15 minutos (885.7 ± 0.8 s),2 emitiendo un electrón y un antineutrino para convertirse en un protón. Su masa es muy similar a la del protón.El neutrón es necesario para la estabilidad de casi todos los núcleos atómicos (la única excepción es el hidrógeno), ya que interactúa fuertementeatrayéndose con los protones, pero sin repulsión electrostática. Historia Ernest Rutherford propuso por primera vez la existencia del neutrón en 1920, para tratar de explicar que los núcleos no se desintegrasen por la repulsión electromagnética de los protones.En el año 1930, en Alemania, Walther Bothe y H. Becker descubrieron que si las partículas alfa del polonio, dotadas de una gran energía, caían sobre materiales livianos, específicamente berilio, boro o litio, se producía una radiación particularmente penetrante. En un primer momento se pensó que eran rayos gamma, aunque éstos eran más penetrantes que todos los rayos gammas hasta ese entonces conocidos, y los detalles de los resultados experimentales eran difíciles de interpretar sobre estas bases.

En 1932, en París, Irène Joliot-Curie y Frédéric Joliot mostraron que esta radiación desconocida, al golpear parafina u otros compuestos que conteníanhidrógeno, producía protones a una alta energía. Eso no era inconsistente con la suposición de que eran rayos gammas de la radiación, pero un detallado análisis cuantitativo de los datos hizo difícil conciliar la ya mencionada hipótesis.

Finalmente (a finales de 1932) el físico inglés James Chadwick, en Inglaterra, realizó una serie de experimentos de los que obtuvo unos resultados que no concordaban con los que predecían las fórmulas físicas: la energía producida por la radiación era muy superior y en los choques no se conservaba el momento. Para explicar tales resultados, era necesario optar por una de las siguientes hipótesis: o bien se aceptaba la no conservación del momento en las colisiones o se afirmaba la naturaleza corpuscular de la radiación. Como la primera hipótesis contradecía las leyes de la física, se optó por la segunda. Con ésta, los resultados obtenidos quedaban explicados pero era necesario aceptar que las partículas que formaban la radiación no tenían carga eléctrica. Tales partículas tenían una masa muy semejante a la del

Page 11: Átomo (1 Unidad)

protón, pero sin carga eléctrica, por lo que se pensó que eran el resultado de la unión de un protón y un electrón formando una especie de dipolo eléctrico. Posteriores experimentos descartaron la idea del dipolo y se conoció la naturaleza de los neutrones.Neutrón

Estructura interna de un neutrón formada por 3 quarks.Clasificación BariónComposición 1 quark arriba, 2 quark abajoFamilia FermiónGrupo HadrónInteracción Gravedad, Débil, Nuclear fuerte

Antipartícula AntineutrónTeorizada Ernest Rutherford1 (1920)Descubierta James Chadwick1 (1932)Masa 1,674 927 29(28)×10−27 kg -- 939,565 560(81) eV/c2 -- 1,008 664 915 6(6) umaVida media 885,7(8) sCarga eléctrica 0Dipolo eléctrico <2,9×10−26 e cm

Polarizabilidad 1,16(15)×10−3 fm3Momento magnético -1,9130427(5) μNPolarizabilidad magnética 3,7(20)×10−4 fm3Espín 1/2Isospín -1/2Paridad +1Condensado I(JP) = 1/2(1/2+)

Una unidad de masa atómica o Dalton (d), cuyo símbolo es u (antiguamente era uma), equivale a la duodécima (1/12) parte de la masa de un átomo de carbono-12.

Por ejemplo, cuando decimos que el Li tiene una masa de 6,94 u queremos decir que un átomo de litio tiene la misma masa que 6,94 veces la masa de 1/12 parte de un átomo de carbono-12.1 g equivale a la masa 1 mol (NA) de unidades de masa atómica. Así pues, un mol de átomos de carbono-12 tiene una masa de 12 g.

Las masas atómicas de los elementos químicos dadas en u son calculadas con la media ponderada de las masas de los distintos isótopos de cada elemento.Por ejemplo, la masa molecular del NO2 se calcula de la siguiente forma:Masa ponderada del átomo de N ≈ 14,00 u → 14×1=14 uMasa ponderada de la molécula diatómica de O2 , si O ≈ 16,00 u → 16×2=32 uMasa de una molécula de NO2 = 14 + 32 = 46 uEntonces, NA moléculas de NO2, los cuales componen un mol de moléculas de NO2, tendrían una masa de 46 g. Entonces la masa molecular del NO2 es 46 g/mol.Erróneamente se tiende a utilizar el término peso atómico o molecular, pero el término correcto es masa.El valor de 1 u en gramos se obtiene dividiendo 12 gramos entre 12 por el número de Avogadro: O lo que es lo mismo, la inversa del número de Avogadro 1/ (6,022 141 99 × 1023).De esta forma encontramos que:1 u = 1,660 538 86 × 10-27 kg = 931,494028 MeV/c2

El Número de Avogadro (símbolo NA), fue nombrado en honor al físico Amedeo Avogadro y es una constante que indica la cantidad de unidades elementales (átomos, moléculas, iones, electrones, u otras partículas o grupos específicos de éstas) existentes en un mol de cualquier sustancia. Un mol es el número de átomos que hay en 12 gramos de carbono-12.La mejor estimación de este número es:

El número de Avogadro también es el factor de conversión entre el gramo y la unidad de masa atómica (uma): 1 g = NA uma. La teoría cinética de los gases recibió su confirmación definitiva cuando pudo calcularse el número de moléculas existentes en un volumen dado de gas.]

El número de Avogadro es tan grande que difícilmente puede comprenderse, aunque algunos ejemplos pueden darnos cuenta de la enormidad de su magnitud:

Todo el volumen de la Luna dividido en bolas de 1 mm de radio daría, muy aproximadamente, el NA. NA neuronas habría al sumar 100 veces las de todos los humanos que había en la Tierra en el año 2000. Se tardaría aproximadamente 20.000.000.000 de años en contar NA partículas a razón de un millón por segundo.

Page 12: Átomo (1 Unidad)

Ejemplos [editar] ¿Cuántos átomos hay en 170 gramos de hierro? Masa atómica del hierro: 55,845 g/mol.

Por regla de tres simple calculamos cuántos átomos de hierro hay en 170 gramos:

Despejando x:

da como resultado:

átomos de hierro en 170 gramos de este elemento. ¿Cúal es la masa de un átomo de oxígeno? Masa atómica del oxígeno = 15,9994 g/mol.

Por regla de tres tenemos que:

despejando x:

realizadas las operaciones sale:

que es la masa de un solo átomo de oxígeno.

Números Cuánticos Los números cuánticos son valores numéricos que nos indican las características de los electrones de los átomos, esto esta basado desde luego en la teoría atómica de Neils Bohr que es el modelo atómico mas aceptado y utilizado en los últimos tiempos.

Número Cuántico Principal (n) El número cuántico principal nos indica en que nivel se encuentra el electrón, este valor toma valores enteros del 1 al 7.

Número Cuántico Secundario (d) Este número cuántico nos indica en que subnivel se encuentra el electrón, este número cuántico toma valores desde 0 hasta (n - 1), según el modelo atómico de Bohr - Sommerfield existen además de los niveles u orbitas circulares, ciertas órbitas elípticas denominados subniveles. Según el número atómico tenemos los números: l = 0 s sharp l = 1 p principal l = 2 d diffuse

l = 3 f fundamental l = 4 g l = 5 h

l = 6 i

Número Cuántico Magnético (m) El número cuántico magnético nos indica las orientaciones de los orbitales magnéticos en el espacio, los orbitales magnéticos son las regiones de la nube electrónica donde se encuentran los electrones, el número magnético depende de l y toma valores desde -l hasta l.

Número Cuántico de Spin (s) El número cuántico de spin nos indica el sentido de rotación en el propio eje de los electrones en un orbital, este número toma los valores de -1/2 y de 1/2.

De esta manera entonces se puede determinar el lugar donde se encuentra un electrón determinado, y los niveles de energía del mismo, esto es importante en el estudio de las radiaciones, la energía de ionización, así como de la energía liberada por un átomo en una reacción.

Principio de Exclusión de Pauli El mismo dice "En un mismo átomo no puede existir dos electrones que tengan

Page 13: Átomo (1 Unidad)

los mismos números cuánticos" de esta manera podemos entonces afirmar que en un mismo orbital no puede haber más de dos electrones y que los mismos deben tener distinto número de spin.

Regla de Hund Cuando se llena orbitales con un mismo nivel de energía o lo que es lo mismo que se encuentran en un mismo subnivel se debe empezar llenando la mitad del subnivel con electrones de spin +1/2 para luego proceder a llenar los subniveles con electrones de spin contrario (-1/2).

nombre símbolosignificado orbital

rango de valores valor ejemplo

número cuántico principal shell o capa

número cuántico secundario o azimutal (momento angular)

subshell o subcapa

para  :

número cuántico magnético, (proyección del momento angular)

energía shift

para

:

número cuántico proyección de espín

espín para un electrón, sea: 

PRINCIPIO DE INCERTIDUMBRE

Heisenberg había presentado su propio modelo de átomo renunciando a todo intento de describir el átomo como un compuesto de partículas y ondas. Pensó que estaba condenado al fracaso cualquier intento de establecer analogías entre la estructura atómica y la estructura del mundo. Prefirió describir los niveles de energía u órbitas de electrones en términos numéricos puros, sin la menor traza de esquemas. Como quiera que usó un artificio matemático denominado “matriz” para manipular sus números, el sistema se denominó “mecánica de matriz”.

Heisenberg recibió el premio Nobel de Física en 1932 por sus aportaciones a la mecánica ondulatoria de Schrödinger, pues esta última pareció tan útil como las abstracciones de Heisenberg, y siempre es difícil, incluso para un físico, desistir de representar gráficamente las propias ideas.

Una vez presentada la mecánica matriz (para dar otro salto atrás en el tiempo) Heisenberg pasó a considerar un segundo problema: cómo describir la posición de la partícula. ¿Cuál es el procedimiento indicado para determinar dónde está una partícula? La respuesta obvia es ésta: observarla. Pues bien, imaginemos un microscopio que pueda hacer visible un electrón. Si lo queremos ver debemos proyectar una luz o alguna especie de radiación apropiada sobre él. Pero un electrón es tan pequeño, que bastaría un solo fotón de luz para hacerle cambiar de posición apenas lo tocara. Y en el preciso instante de medir su posición, alteraríamos ésta.

Aquí nuestro artificio medidor es por lo menos tan grande como el objeto que medimos; y no existe ningún agente medidor más pequeño que el electrón. En consecuencia, nuestra medición debe surtir, sin duda, un efecto nada desdeñable, un efecto más bien decisivo en el objeto medido. Podríamos detener el electrón y determinar así su posición en un momento dado. Pero si lo hiciéramos, no sabríamos cuál es su movimiento ni su velocidad. Por otra parte, podríamos gobernar su velocidad, pero entonces no podríamos fijar su posición en un momento dado.Heisenberg demostró que no nos será posible idear un método para localizar la posición de la partícula subatómica mientras no estemos dispuestos a aceptar la incertidumbre absoluta respecto a su posición exacta. Es un imposible calcular ambos datos con exactitud al mismo tiempo.

Siendo así, no podrá haber una ausencia completa de energía ni en el cero absoluto siquiera. Si la energía alcanzara el punto cero y las partículas quedaran totalmente inmóviles, sólo sería necesario determinar su posición, puesto que la velocidad equivaldría a cero. Por tanto, sería de esperar que subsistiera alguna “energía residual del punto cero”, incluso en el cero absoluto, para mantener las partículas en movimiento y también, por así decirlo, nuestra incertidumbre. Esa energía “punto cero” es lo que no se puede eliminar, lo que basta para mantener liquido el helio incluso en el cero absoluto.

Page 14: Átomo (1 Unidad)

1930, Einstein demostró que el principio de incertidumbre (donde se afirma la imposibilidad de reducir el error en la posición sin incrementar el error en el momento) implicaba también la imposibilidad de reducir el error en la medición de energía sin acrecentar la incertidumbre del tiempo durante el cual se toma la medida. Él creyó poder utilizar esta tesis como trampolín para refutar el principio de incertidumbre, pero Bohr procedió a demostrar que la refutación tentativa de Einstein era errónea.

A decir verdad, la versión de la incertidumbre, según Einstein, resultó ser muy útil, pues significó que en un proceso subatómico se podía violar durante breves lapsos la ley sobre conservación de energía siempre y cuando se hiciese volver todo al estado de conservación cuando concluyesen esos períodos: cuanto mayor sea la desviación de la conservación, tanto más breves serán los intervalos de tiempo tolerables. Yukawa aprovechó esta noción para elaborar su teoría de los piones. Incluso posibilitó la elucidación de ciertos fenómenos subatómicos presuponiendo que las partículas nacían de la nada como un reto a la energía de conservación, pero se extinguían antes del tiempo asignado a su detección, por lo cual eran sólo “partículas virtuales”. Hacia fines de la década 1940-1950, tres hombres elaboraron la teoría sobre esas partículas virtuales: fueron los físicos norteamericanos Julian Schwinger y Richard Phillips Feynman y el físico japonés Sin-itiro Tomonaga. Para recompensar ese trabajo, se les concedió a los tres el premio Nobel de Física en 1965.

A partir de 1976 se han producido especulaciones acerca de que el Universo comenzó con una pequeña pero muy masiva partícula virtual que se expandió con extrema rapidez y que aún sigue existiendo. Según este punto de vista, el Universo se formó de la Nada y podemos preguntarnos acerca de la posibilidad de que haya un número infinito de Universos que se formen (y llegado el momento acaben) en un volumen infinito de Nada.

El “principio de incertidumbre” afectó profundamente al pensamiento de los físicos y los filósofos. Ejerció una influencia directa sobre la cuestión filosófica de “casualidad” (es decir, la relación de causa y efecto). Pero sus implicaciones para la ciencia no son las que se suponen por lo común. Se lee a menudo que el principio de incertidumbre anula toda certeza acerca de la naturaleza y muestra que, al fin y al cabo, la ciencia no sabe ni sabrá nunca hacia dónde se dirige, que el conocimiento científico está a merced de los caprichos imprevisibles de un Universo donde el efecto no sigue necesariamente a la causa. Tanto si esta interpretación es válida desde el ángulo visual filosófico como si no, el principio de incertidumbre no ha conmovido la actitud del científico ante la investigación. Si, por ejemplo, no se puede predecir con certeza el comportamiento de las moléculas individuales en un gas, también es cierto que las moléculas suelen acatar ciertas leyes, y su conducta es previsible sobre una base estadística, tal como las compañías aseguradoras calculan con índices de mortalidad fiables, aunque sea imposible predecir cuándo morirá un individuo determinado.

Ciertamente, en muchas observaciones científicas, la incertidumbre es tan insignificante comparada con la escala correspondiente de medidas, que se la puede descartar para todos los propósitos prácticos. Uno puede determinar simultáneamente la posición y el movimiento de una estrella, o un planeta, o una bola de billar, e incluso un grano de arena con exactitud absolutamente satisfactoria.

Respecto a la incertidumbre entre las propias partículas subatómicas, cabe decir que no representa un obstáculo, sino una verdadera ayuda para los físicos. Se la ha empleado para esclarecer hechos sobre la radiactividad, sobre la absorción de partículas subatómicas por los núcleos, así como otros muchos acontecimientos subatómicos, con mucha más racionabilidad de lo que hubiera sido posible sin el principio de incertidumbre.

El principio de incertidumbre significa que el Universo es más complejo de lo que se suponía, pero no irracional

Werner HeisenbergTeoría cuántica En 1925, Heisenberg inventa la mecánica cuántica matricial. Lo que subyace en su aproximación al tema es un

gran pragmatismo. En vez de concentrarse en la evolución de los sistemas físicos de principio a fin, concentra sus esfuerzos en obtener información sabiendo el estado inicial y final del sistema, sin preocuparse demasiado por conocer en forma precisa lo ocurrido en el medio. Concibe la idea de agrupar la información en forma de cuadros de doble entrada. Fue Max Born quien se dio cuenta de que esa forma de trabajar ya había sido estudiada por los matemáticos y no era otra cosa que la teoría de matrices. Uno de los resultados más llamativos es que la multiplicación de matrices no es conmutativa, por lo que toda asociación de cantidades físicas con matrices tendrá que reflejar este hecho matemático. Esto lleva a Heisenberg a enunciar el Principio de indeterminación.La teoría cuántica tiene un éxito enorme y logra explicar prácticamente todo el mundo microscópico. En 1932, poco antes de cumplir los 31 años, recibe elpremio Nobel de Física por «La creación de la mecánica cuántica, cuyo uso ha conducido, entre otras cosas, al descubrimiento de las formas alotrópicas del hidrógeno»

Page 15: Átomo (1 Unidad)

Principio de exclusión de PauliEl principio de exclusión de Pauli es un principio cuántico enunciado por Wolfgang Ernst Pauli en 1925 que

establece que no puede haber dos fermiones con todos sus números cuánticos idénticos (esto es, en el mismo estado cuántico de partícula individual). Hoy en día no tiene el estatus de principio, ya que es derivable de supuestos más generales (de hecho es una consecuencia del Teorema de la estadística del spin). Desarrollo El principio de exclusión de Pauli sólo se aplica a fermiones, esto es, partículas que forman estados cuánticos antisimétricos y que tienen espín semientero. Son fermiones, por ejemplo, los protones, los neutronesy los electrones, los tres tipos de partículas subatómicas que constituyen la materia ordinaria. El principio de exclusión de Pauli rige, así pues, muchas de las características distintivas de la materia. En cambio, partículas como el fotón y el (hipotético) gravitón no obedecen a este principio, ya que son bosones, esto es, forman estados cuánticos simétricos y tienen espín entero. Como consecuencia, una multitud de fotones puede estar en un mismo estado cuántico de partícula, como en los láseres.

"Dos electrones en la corteza de un átomo no pueden tener al mismo tiempo los mismos números cuánticos".Es sencillo derivar el principio de Pauli, basándonos en el artículo de partículas idénticas. Los fermiones de la misma especie forman sistemas con estados totalmente antisimétricos, lo que para el caso de dos partículas significa que:

(La permutación de una partícula por otra invierte el signo de la función que describe al sistema). Si las dos partículas ocupan el mismo estado cuántico |ψ>, el estado del sistema completo es |ψψ>. Entonces,

así que el estado no puede darse. Esto se puede generalizar al caso de más de dos partículas.Consecuencias El principio de exclusión de Pauli interpreta un papel importante en un vasto número de fenómenos físicos. Uno

de los más importantes es la configuración electrónica de los átomos. Un átomo eléctricamente neutroaloja a un número de electrones igual al número de protones en su núcleo. Como los electrones son fermiones, el principio de exclusión les prohíbe ocupar el mismo estado cuántico, así que tienen que ir ocupando sucesivas capas electrónicas.Como ejemplo, es ilustrativo considerar un átomo neutro de helio, que tiene dos electrones ligados. Estos dos electrones pueden ocupar los estados de mínima energía (1s), si presentan diferente espín. Esto no viola el principio de Pauli, porque el espín es parte del estado cuántico del electrón, así que los dos electrones están ocupando diferentes estados cuánticos (espínorbitales). Sin embargo, el espín sólo puede tomar dos valores propios diferentes (o, dicho de otra forma, la función que describe al sistema sólo puede tener dos estados diferentes que sean propios del operador

espín ). En un átomo de litio, que contiene tres electrones ligados, el tercer electrón no puede entrar en un estado 1s, y tiene que ocupar uno de los estados 2s (de energía superior). De forma análoga, elementos sucesivos producen capas de energías más y más altas. Las propiedades químicas de un elemento dependen decisivamente del número de electrones en su capa externa, lo que lleva a la tabla periódica de los elementos.El principio de Pauli también es responsable de la estabilidad a gran escala de la materia. Las moléculas no pueden aproximarse arbitrariamente entre sí, porque los electrones ligados a cada molécula no pueden entrar en el mismo estado que los electrones de las moléculas vecinas. Este es el principio que hay tras el término de repulsión r-12 en el Potencial de Lennard-Jones. Enunciado en palabras llanas, pero didácticas:En la astronomía se encuentran algunas de las demostraciones más espectaculares de este efecto, en la forma de enanas blancas y estrellas de neutrones. En ambos objetos, las estructuras atómicas usuales han sido destruidas por la acción de fuerzas gravitacionales muy intensas. Sus constituyentes sólo se sustentan por la "presión de degeneración" (que les prohíbe estar en un mismo estado cuántico). Este estado exótico de la materia se conoce como materia degenerada. En las enanas blancas, los átomos se mantienen apartados por la presión de degeneración de los electrones. En las estrellas de neutrones, que presentan fuerzas gravitacionales aún mayores, los electrones se han fusionado con los protones para producir neutrones, que tienen una presión de degeneración mayor.Otro fenómeno físico del que es responsable el principio de Pauli es el ferromagnetismo, en el que el principio de exclusión implica una energía de intercambio que induce al alineamiento paralelo de electrones vecinos (que clásicamente se alinearían anti paralelamente)

Page 16: Átomo (1 Unidad)

Orbital atómicoEn el modelo atómico surgido tras la aplicación de la Mecánica Cuántica al átomo de Bohr, y en general

en química, se denomina orbital atómico a cada una de las funciones de onda monoelectrónicas que describen los estados estacionarios de los átomos hidrogenoides (son las funciones de onda Ψ que se obtienen resolviendo laecuación de Schrödinger independiente del tiempo HΨ = EΨ, es decir, las funciones propias del Hamiltoniano, H). No representan la posición concreta de un electrón en el espacio, que no puede conocerse dada su naturaleza mecanocuántica, sino que representan una región del espacio en torno al núcleo atómico en la que la probabilidad de encontrar al electrón es elevada (por lo que en ocasiones al orbital se le llama Región espacio energética de manifestación probabilística electrónica o REEMPE).

El nombre de los orbitales es debido a sus lineas espectroscópicas (en inglés s sharp, p principal, d diffuse y f fundamental, el resto de los nombres siguen el orden alfabético g, h ).Introducción

En el caso del átomo de hidrógeno, Schrödinger pudo resolver la ecuación anterior de forma exacta, encontrando que las funciones de onda están determinadas por los valores de tres números cuánticos n, l, ml. Posteriormente se introdujo la necesidad de incluir el espín del electrón que viene descrito por otros dos números cuánticos s y ms.

El valor del número cuántico n (número cuántico principal, toma valores 1,2,3...) define el tamaño del orbital. Cuanto mayor sea, mayor será el volumen. También es el que tiene mayor influencia en la energía del orbital.El valor del número cuántico l (número cuántico del momento angular) indica la forma del orbital y el momento angular. El momento angular viene dado por

La notación (procedente de la espectroscopia) es la siguiente:Para l = 0, orbitales sPara l = 1, orbitales pPara l = 2, obitales dPara l = 3, orbitales fPara l = 4, orbitales g; siguiéndose ya el orden alfabético.

El valor de ml (número cuántico magnético) define la orientación espacial del orbital frente a un campo magnético externo. Para la proyección del momento angular frente al campo externo, se verifica:

El valor de s (número cuántico de espín) para el electrón es 1/2, mientras quems puede tomar los valores +1/2 ó -1/2 (cuando no se tiene en cuenta el espín se dice que el orbital es un orbital espacial mientras que si se considera el espín, se denomina espín orbital).

La función de onda se puede descomponer, empleando como sistema de coordenadas las coordenadas esféricas, de la siguiente forma:

dondeRn, l (r) representa la parte del orbital que depende de la distancia del electrón al núcleo yΘl, ml (θ) Φml (φ) la parte que depende de los ángulos (geometría) del orbital.

Para la representación gráfica del orbital se emplea la función cuadrado, |Θl, ml (θ)|² |Φml (φ)|², ya que ésta es proporcional a la densidad de carga y por tanto a la densidad de probabilidad, es decir, el volumen que encierra la mayor parte de la probabilidad de encontrar al electrón o, si se prefiere, el volumen o región del espacio en la que el electrón pasa la mayor parte del tiempo. Más allá del átomo de hidrógeno

En sentido estricto, los orbitales son construcciones matemáticas que tratan de describir, de forma coherente con la mecánica cuántica, los estados estacionarios de un electrón en un campo eléctrico central. (Dado que el núcleo no está descrito de forma explícita, ni siquiera describen de forma completa al átomo de hidrógeno). Estas construcciones matemáticas no están preparadas, por su origen monoelectrónico, para tener en cuenta ni la correlación entre electrones ni la antisimetría exigida por la estadística de Fermi (los electrones son fermiones).Sin embargo, saliéndose de su sentido estricto, han demostrado ser de enorme utilidad para los químicos, de forma que se utilizan no solo para sistemas polielectrónicos, sino también para sistemas polinucleares (como las moléculas). También más allá de su sentido estricto, los químicos se refieren a ellos como entes físicos más que como construcciones matemáticas, con expresiones como "en un orbital caben dos electrones".

Page 17: Átomo (1 Unidad)

Formas de los orbitales Por simplicidad, se recogen las formas de la parte angular de los orbitales, obviando los nodos radiales, que siempre tienen forma esférica.

Orbitals El orbital s tiene simetría esférica alrededor del núcleo atómico. En la figura siguiente se muestran dos formas alternativas de representar la nube electrónica de un orbital s: en la primera, la probabilidad de encontrar al electrón (representada por la densidad de puntos) disminuye a medida que nos alejamos del centro; en la segunda, se representa el volumen esférico en el que el electrón pasa la mayor parte del tiempo.

Orbital p La forma geométrica de los orbitales p es la de dos esferas achatadas hacia el punto de contacto (el núcleo atómico) y orientadas según los ejes de coordenadas. En función de los valores que puede tomar el tercer número cuántico ml (-1, 0 y 1) se obtienen los tres orbitales p simétricos respecto a los ejes x, z e y. Análogamente al caso anterior, los orbitales p presentan n-2 nodos radiales en la densidad electrónica, de modo que al incrementarse el valor del número cuántico principal la probabilidad de encontrar el electrón se aleja del núcleo atómico. El orbital "p" representa también la energía que posee un electrón y se incrementa a medida que se aleja entre la distancia del nucleo y el orbital.

Orbital d Los orbitales d tienen una forma más diversa: cuatro de ellos tienen forma de 4 lóbulos de signos alternados (dos planos nodales, en diferentes orientaciones del espacio), y el último es un doble lóbulo rodeado por un anillo (un doble cono nodal). Siguiendo la misma tendencia, presentan n-3 nodos radiales.

Orbital f Los orbitales f tienen formas aún más exóticas, que se pueden derivar de añadir un plano nodal a las formas de los orbitales d. Presentan n-4 nodos radiales.

Hibridación (química)

Page 18: Átomo (1 Unidad)

En química, se habla de hibridación cuando en un átomo, se mezcla el orden de los electrones entre orbitales creando una configuración electrónica nueva, un orbital híbrido que describa la forma en que en la realidad se disponen los electrones para producir las propiedades que se observan en los enlaces atómicos.La teoría fue propuesta por el químico Linus Pauling y tiende a describir con gran eficacia la estructura de ciertos compuestos orgánicos tales como los enlaces dobles de los alquenos.Orbitales 

Los electrones de un átomo tienen la tendencia de ubicarse en orbitales específicos alrededor del núcleo, lo cual se enuncia en la ecuación de Schrödinger. Los detalles sobre número y orientación de electrones en cada orbital depende de las propiedades energéticas descritas por los números cuánticos. El primer orbital, el más cercano al núcleo es el llamado 1s y solo puede ser ocupado por dos electrones. Un átomo con un solo electrón (hidrógeno) y uno con dos electrones (helio) ubican su(s) electrón(es) en este orbital.Un átomo con tres (litio) y cuatro (berilio) electrones tendrá que ubicar el tercer y cuarto electrón en el siguiente orbital, llamado 2s, el cual también solo acepta dos electrones.

Hibridación sp³ 

El átomo de carbono tiene seis electrones: dos se ubican en el orbital 1s (1s²), dos en el 2s (2s²) y los restantes dos en el orbital 2p (2p²). Debido a su orientación en el plano tridimensional el orbital 2p tiene capacidad para ubicar 6 electrones: 2 en el eje de las x, dos en el eje de las y y dos electrones en el eje de las z. Los dos últimos electrones del carbono se ubicarían uno en el 2px, el otro en el 2py y el orbital 2pz permanece vacío (2px¹ 2py¹). El esquema de lo anterior es (cada flecha un electrón):

Para satisfacer su estado energético inestable, un átomo de valencia como el del carbono, con orbitales parcialmente llenos (2px y 2py necesitarían tener dos electrones) tiende a formar enlaces con otros átomos que tengan electrones disponibles. Para ello, no basta simplemente colocar un electrón en cada orbital necesitado. En la naturaleza, éste tipo de átomos redistribuyen sus electrones formando orbitales híbridos. En el caso del carbono, uno de los electrones del orbital 2s es excitado y se ubica en el orbital 2pz. Así, los cuatro últimos orbitales tienen un electrón cada uno:

El estímulo para excitar al electrón del 2s al 2pz es aportado por el primer electrón en formar enlace con un átomo con este tipo de valencia. Por ejemplo, el hidrógeno en el caso del metano. Esto a su vez incrementa la necesidad de llenado de los restantes orbitales. Estos nuevos orbitales híbridos dejan de ser llamados 2s y 2p y son ahora llamados (sp3: un poco de ambos orbitales):

De los cuatro orbitales así formados, uno (25%) es proveniente del orbital s (el 2s) del carbono y tres (75%) provenientes de los orbitales p (2p). Sin embargo todos se sobreponen al aportar la hibridación producto del enlace. Tridimensionalmente, la distancia entre un hidrógeno y el otro en el metano son equivalentes e iguales a un ángulo de 109°.Forma y ángulos Las formas de las moléculas enlazadas por hibridaciones de sus orbitales es forzada por los ángulos entre sus átomos:

Sin hibridación: forma lineal Hibridación sp: forma lineal con ángulos de 180° Hibridación sp²: forma trigonal plana con ángulos de 120°. Por ejemplo BCl3. Hibridación sp³: forma tetraédrica con ángulos de 109.5°. Por ejemplo CCl4. Hibridación sp³d: forma trigonal bipiramidal con ángulos de 90° y 120°. Por ejemplo PCl5. Hibridación sp³d²: forma octaédrica con ángulos de 90°. Por ejemplo SF6.

Configuración electrónicaEn física, la configuración electrónica

otra estructura física, de acuerdo con la aproximación orbital en la cual la función de onda del sistema se expresa como un producto de orbitales antisimetrizado. Cualquier conjunto de electrones en un mismo estado cuántico deben cumplir el principio de exclusión de Pauli al ser partículas idénticas.

s p d f

n = 1 1s

n = 2 2s 2p

n = 3 3s 3p 3d

n = 4 4s 4p 4d 4f

n = 5 5s 5p 5d 5f

n = 6 6s 6p 6d

n = 7 7s 7p

Page 19: Átomo (1 Unidad)

Por ser fermiones (partículas de espín semientero) el principio de exclusión de Pauli nos dice que la función de onda total (conjunto de electrones) debe ser antisimétrica. Por lo tanto, en el momento en que un estado cuántico es ocupado por un electrón, el siguiente electrón debe ocupar un estado cuántico diferente.

En los átomos, los estados estacionarios de la función de onda de un electrón en una aproximación

no relativista (los estados que son función propia de la ecuación de Schrödinger en donde es el hamiltoniano monoelectrónico correspondiente; para el caso general hay que recurrir a la ecuación de Dirac de la mecánica cuántica de campos) se denominan orbitales atómicos, por analogía con la imagen clásica de los electrones orbitando alrededor del núcleo. Estos estados, en su expresión más básica, se pueden describir mediante cuatro números cuánticos: n, l, m y ms, y, en resumen, el principio de exclusión de Pauli implica que no puede haber dos electrones en un mismo átomo con los cuatro valores de los números cuánticos iguales.

De acuerdo con este modelo, los electrones pueden pasar de un nivel de energía orbital a otro ya sea emitiendo o absorbiendo un cuanto de energía, en forma de fotón. Debido al principio de exclusión de Pauli, no más de dos electrones pueden ocupar el mismo orbital y, por tanto, la transición se produce a un orbital en el cual hay una vacante.

En Física y Química se utiliza una notación estándar para describir las configuraciones electrónicas de átomos y moléculas. Para los átomos, la notación contiene la definición de los orbitales atómicos (en la forman l, por ejemplo 1s, 2p, 3d, 4f) indicando el número de electrones asignado a cada orbital (o al conjunto de orbitales de la misma subcapa) como un superíndice. Por ejemplo, el hidrógeno tiene un electrón en el orbital s de la primera capa, de ahí que su configuración electrónica se escriba 1s1. El litio tiene dos electrones en la subcapa 1s y uno en la subcapa 2s (de mayor energía), de ahí que su configuración electrónica se escriba 1s2 2s1 (pronunciándose "uno-s-dos, dos-s-uno"). Para el fósforo (número atómico 15), tenemos: 1s2 2s2 2p6 3s2 3p3.Para átomos con muchos electrones, esta notación puede ser muy larga por lo que se utiliza una notación abreviada, que tiene en cuenta que las primeras subcapas son iguales a las de algún gas noble. Por ejemplo, el fósforo, difiere del neón (1s2 2s2 2p6) únicamente por la presencia de la tercera capa. Así, la configuración electrónica del fósforo se puede escribir respecto de la del neón como: [Ne] 3s2 3p3. Esta notación es útil si tenemos en cuenta que la mayor parte de las propiedades químicas de los elementos vienen determinadas por las capas más externas.El orden en el que se escriben los orbitales viene dado por la estabilidad relativa de los orbitales, escribiéndose primero aquellos que tienen menor energía orbital. Esto significa que, aunque sigue unas pautas generales, se pueden producir excepciones. La mayor parte de los átomos siguen el orden dado por la regla de Madelung. Así, de acuerdo con esta regla, la configuración electrónica del hierro se escribe como: [Ar] 4s2 3d6. Otra posible notación agrupa primero los orbitales con el mismo número cuántico n, de tal manera que la configuración del hierro se expresa como [Ar] 3d6 4s2 (agrupando el orbital 3d con los 3s y 3p que están implicitos en la configuración del argón).El superíndice 1 de los orbitales ocupados por un único electrón no es obligatorio.3 Es bastante común ver las letras de los orbitales escritas en letra itálica o cursiva. Sin embargo, la Unión Internacional de Química Pura y Aplicada (IUPAC) recomienda utilizar letra normal, tal y como se realiza aquí.

Yahoo!: Es la manera en que los electrones de un átomo se distribuyen en el espacio.Se manejan los parametros de los 4 números cuánticos para poder describir esa distribución.El número cuantico principal (n) es una referencia de la DISTANCIA al núcleo y energía que posee un electron.

(En una configuración electronica es el número que aparece primero a la izquierda)El número cuantico secundario (l) indica la FORMA del espacio donde con hay mas probabilidad de encontrar un

electrón. (hay cuatro tipos de regiones probables)El número de Spin o giro (s) : indica si un electrón esta girando en un sentido u otro de las manecillas del reloj.El número Magnetico (m): que indica la orientación de un orbital o forma probabilistica de la región donde se

puede encontrar un electron.Cada electrón de un átomo es descrito mediante una combinación de esos cuatro números y ningun electron de

un mismo átomo tiene sus cuatro números iguales.La distribución electronica sirve para explicar porque un elemento tiene tales o cuales caracteristicas químicas;

por ejemplo si preferentemente gana electrones o los pierde, que tan reactivo es, etc.

Regla de HundLa 'regla de Hund' es una regla empírica obtenida por Friedrich Hund en el estudio de los espectros atómicos que

enuncia lo siguiente:

Page 20: Átomo (1 Unidad)

Al llenar por lampara orbitales de igual energía (los tres orbitales p, los cinco d, o los siete f) los electrones se distribuyen, siempre que sea posible, con sus spines paralelos, es decir, que no se cruzan. La particula mini atomica es mas estable (tiene menos energía) cuando tiene electrones desapareados (spines paralelos) que cuando esos electrones están apareados (spines opuestos o antiparalelos).

También se denomina así a la regla de máxima multiplicidad de HundCuando varios electrones están descritos por orbitales degenerados, la mayor estabilidad energética es aquella en

donde los espines electrónicos están desapareados (correlación de espines).Para entender la regla de Hund, hay que saber que todos los orbitales en una subcapa deben estar ocupados por lo

menos por un electrón antes de que se le asigne un segundo. Es decir, todos los orbitales deben estar llenos y todos los electrones en paralelo antes de que un orbital gane un segundo electrón. Y cuando un orbital gana un segundo electrón, éste deberá estar desapareado del primero (espines opuestos o antiparalelos). Por ejemplo: 3 electrones en el orbital 2p; px1 py1 pz1 (vs) px2 py1 pz0 (px2 py1 pz0 = px0 py1 pz2 = px1 py0 pz2= px2 py0 pz1=....)

Así, los electrones en un átomo son asignados progresivamente, usando una configuración ordenada con el fin de asumir las condiciones energéticas más estables. El principio de Aufbau explica las reglas para llenar orbitales de manera de no violar la Regla de Hund.

Tambien se puede decir de otra forma : al existir orbitales equivalentes, primero se completa con electrones el máximo posible de los mismos y luego se emparejan.

La tabla periódica de los elementos es la organización que, atendiendo a diversos criterios, distribuye los distintos elementos químicos conforme a ciertas características.Suele atribuirse la tabla a Dimitri Mendeleiev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.

Triadas de Döbereiner Uno de los primeros intentos para agrupar los elementos de propiedades análogas y relacionarlo con los pesos atómicos se debe al químico alemán Johann Wolfgang Döbereiner(1780-1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación

(cloro, bromo y yodo; azufre, selenio y telurio; litio, sodio y potasio).

A estos grupos de tres elementos se les denominó triadas y hacia 1850 ya se habían encontrado unas 20, lo que indicaba una cierta regularidad entre los elementos químicos.Döbereiner intentó relacionar las propiedades químicas de estos elementos (y de sus compuestos) con los pesos atómicos, observando una gran analogía entre ellos, y una variación gradual del primero al último.En su clasificación de las triadas (agrupación de tres elementos) Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al peso atómico del elemento de en medio. Por ejemplo, para la triada Cloro, Bromo, Yodo los pesos atómicos son respectivamente 36, 80 y 127; si sumamos 36 + 127 y dividimos entre dos, obtenemos 81, que es aproximadamente 80 y si le damos un vistazo a nuestra tabla periódica el elemento con el peso atómico aproximado a 80 es el bromo lo cual hace que concuerde un aparente ordenamiento de triadas.

Triadas de Döbereiner

LitioLiClLiOH

CalcioCaCl2

CaSO4Azufre

H2SSO2

SodioNaClNaOH

EstroncioSrCl2

SrSO4Selenio

H2SeSeO2

PotasioKClKOH

BarioBaCl2

BaSO4Telurio

H2TeTeO2

Page 21: Átomo (1 Unidad)

Ley de las octavas de Newlands En 1864, el químico inglés John Alexander Reina

Newlands comunicó al Real Colegio de Química su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamados gases nobles no habían sido aún descubiertos.

Esta ley mostraba una cierta ordenación de los elementos en familias (grupos), con propiedades muy parecidas entre sí y en Periodos, formados por ocho elementos cuyas propiedades iban variando progresivamente.El nombre de octavas se basa en la intención de Newlands de relacionar estas propiedades con la que existe en la escala de las notas musicales, por lo que dio a su descubrimiento el nombre de ley de las octavas.

Como a partir del calcio dejaba de cumplirse esta regla, esta ordenación no fue apreciada por la comunidad científica que lo menospreció y ridiculizó, hasta que 23 años más tarde fue reconocido por la  Royal Society, que concedió a Newlands su más alta condecoración, la medalla Davy.

Johann Wolfgang Döbereiner Químico alemán (1780-1849) , fue  profesor de la Universidad de Jena.Encontró que, para algunas familias, las masas atómicas de cualquier elemento eran aproximadamente iguales a la media aritmética de las masas de sus vecinos inmediatos.  En 1817 Döbereiner realizo el primer intento de establecer una ordenación en los elementos químicos, haciendo notar en sus trabajos las similitudes entre los elementos cloro, bromo y yodo por un lado y la variación regular de sus propiedades por otro. Una de las propiedades que parecía variar regularmente entre estos era el peso atómico.Pronto estas similitudes fueron también observadas en otros casos, como entre el calcio, estroncio y bario. Una de las propiedades que variaba con regularidad era de nuevo el peso atómico. Ahora bien, como el concepto de peso atómico aún no tenía un significado preciso y Döbereiner no había conseguido tampoco aclararlo y como la había un gran número de elementos por descubrir, que impedían establecer nuevas conexiones, sus trabajos fueron desestimados.

Mendeleiev: Algunos años más tarde, Mendeleiev presentó su esquema basado ya no tan sólo en el orden creciente de los pesos atómicos sino también en las valencias de los elementos. Introdujo periodos largos después de los dos periodos de 8 elementos y sobre todo, dejó huecos por rellenar en aquellos casos en donde no se conocía el elemento si bien fue capaz de anticipar sus propiedades de acuerdo a conclusiones extrapoladas de su tabla.Este químico inglés encontró que, si ordenaba los elementos según el orden creciente de sus pesos atómicos y los numeraba empezando por el hidrógeno, las propiedades de elementos semejantes se repetían periódicamente. El hecho fue descrito por Newlands en estos término: “los números de los elementos análogos no son consecutivos, sino que difieren de siete en siete, o en múltiplos de siete”. De acuerdo con el principio establecido, Newlands ordenó los elementos de la siguiente manera: 

Indicando que el octavo elemento (F) era semejante al primero (H), y así sucesivamente. No obstante el avance que significaron las octavas de Newlands (por cuanto contenían los conceptos de periocidad y de número atómico), su sistema adoleció del error fundamental de establecer correlaciones sólo entre los elementos conocidos y no dejar huecos disponibles para elementos no conocidos. Por ejemplo, las propiedades de Mn y Fe son completamente diferentes de las que presentan P y S, respectivamente.

El error fue reparado en los sistemas periódicos propuestos, independientemente en 1869, por Lothar Meyer, químico alemán, y por uso Dimitri Mendeleev. Este último desarrolló el concepto de periocidad de Newlands en la forma de una ley, la ley periódica, que postula que las propiedades de los elementos son función periódica de sus pesos

Ley de las octavas de Newlands

1 2 3 4 5 6 7

Li6,9

Na23,0

K39,0

Be9,0

Mg24,3

Ca40,0

B10,8

Al27,0

C12,0

Si28,1

N14,0

P31,0

O16,0

S32,1

F19,0

Cl35,5

Page 22: Átomo (1 Unidad)

atómicos. Usando este principio, mendeleev pudo organizar los elementos conocidos en una ordenación que lleva el nombre de “tabla periódica”. Esta consiste en disponer los elementos en períodos recurrentes, según sus pesos atómicos crecientes.

Los elementos que caen en una columna vertical dad (grupo) tienen propiedades comunes. Para establecer los grupos o familias de elementos, Mendeleev debió dejar huecos en su tabla, los cuales tendrían que ser ocupados por aquellos elementos que pudieran descubrirse y cuyas propiedades había fijado en conformidad a las regularidades observadas en los elementos del correspondiente grupo. De esta manera se facilitó el descubrimiento de nuevos elementos, uno de ésos fue el germanio, al cual Mendeleev llamó “ekasilico” (que significa “mas alla del silicio”).Las propiedades del ekasilicio, predichas por Mendeleev, con las del germanio determinadas por su descubridor, el químico alemán Wnkler (1886)

PESO ESPECÍFICO: Es el peso de la unidad de volumen γ= Peso/ Volumen. Unidades: T/m3 Kg/m3 Kg/cm3. ISOTROPÍA: La isotropía es la característica de poseer iguales propiedades en cualquier dirección. Cuando la propiedad elasticidad se manifiesta en igual medida cualquiera sea la dirección en la que se ha producido la deformación o la dirección en la que se deforma, el material se denomina isótropo. HOMOGENEIDAD: Si un cuerpo tiene en todos sus puntos igual estructura molecular o idénticas propiedades físicas se lo denomina homogéneo. ELASTICIDAD: Propiedad de los cuerpos deformados de recuperar su posición inicial, una vez desaparecida la fuerza deformante. Es la capacidad de un cuerpo deformado de devolver el trabajo de deformación. PROPIEDADES FÍSICAS: Abarca el estudio y conocimiento de las formas y dimensiones en que pueden obtenerse los materiales. PESO ESPECÍFICO: Se refiere al peso por la unidad de volumen, Y=P V. Sus unidades de medida son: tn/m3 Kg/m3. POROSIDAD: refiere a la cantidad de poros o huecos que hay dentro de la masa. Queda expresada por un número absoluto. Valdrá 0 (cero) cuando el material no tenga poros y tendera a valer 1(uno) como máximo. P=E P=porosidad Va Va=volumen aparente (se considera al de un sólido con poros o vacíos). COMPACIDAD: Es la inversa de la porosidad. Se refiere al grado de densidad. HIGROSCOPICIDAD: Propiedad de algunos materiales de absorber el agua y variar su Peso. PERMEABILIDAD: Capacidad de ciertos materiales para dejarse atravesar por los Líquidos. Puede hacerse por capilaridad, por presión o por ambas cosas a la vez. La Cantidad de líquido que penetra en el cuerpo por capilaridad mide su capacidad de absorción y está vinculado con la porosidad. Depende de la cantidad, forma y grado de comunicación de los espacios vacios del material. IMPERMEABILIDAD: Es la inversa de la permeabilidad. HOMOGENEIDAD: Si un cuerpo tiene en todos sus puntos igual estructura molecular se lo denomina homogéneo, en caso contrario, será heterogéneo. PROPIEDADES QUÍMICAS: COMPOSICIÓN QUÍMICA: Su conocimiento es importante porque la presencia o ausencia de ciertos compuestos o elementos en los materiales puede definir algunas de sus características o propiedades.

ESTABILIDAD QUÍMICA: Interesa la resistencia que opone un material al ataque de los agentes agresivos que pudieran alterar sus propiedades. PROPIEDADES MECÁNICAS: RESISTENCIA: Se refiere al grado de oposición que presenta un material a las fuerzas que tratan de deformarlo. Este depende de la cohesión molecular. TENACIDAD: Propiedad de admitir una deformación considerable antes de romperse. FRAGILIDAD: Es la inversa de la tenacidad. Propiedad de romperse con poca deformación. ELASTICIDAD: Propiedad de los cuerpos deformados de recuperar su forma inicial una vez desaparecida la fuerza deformante. PLASTICIDAD: Es la inversa de la elasticidad. Propiedad de experimentar y mantener la deformación después de haber desaparecido la carga. ISOTROPÍA: Cuando la propiedad de elasticidad se manifiesta en igual medida, cualquiera sea la dirección en que se ha producido la deformación. Los materiales fundidos, tales como el acero se consideran isótropos. ANISOTROPÍA: Es la inversa de la isotropía. Si las condiciones de elasticidad varían según la dirección en que se produzcan las deformaciones, los cuerpos o materiales se califican como anisótropos.

El radio atómico representa la distancia que existe entre el núcleo y la capa de valencia (la más externa). Por medio del radio atómico es posible determinar el tamaño del átomo. Dependiendo del tipo de elemento existen diferentes técnicas para su determinación como la difracción de neutrones, de electrones o de rayos X. En cualquier caso no es una propiedad fácil de medir ya que depende, entre otras cosas, de la especie química en la que se encuentre el elemento en cuestión.En los grupos, el radio atómico aumenta con el número atómico, es decir hacia abajo.

Page 23: Átomo (1 Unidad)

En los períodos disminuye al aumentar Z, hacia la derecha, debido a la atracción que ejerce el núcleo sobre los electrones de los orbitales más externos, disminuyendo así la distancia núcleo-electrón.El radio atómico puede ser o covalente o metálico. El radio covalente es la distancia entre átomos "vecinos" en moléculas. El radio metálico es la mitad de la distancia entre núcleos de átomos "vecinos" en cristales metálicos. Usualmente, cuando se habla de radio atómico, se refiere a radio covalente.

Energía de ionización: Es la energía requerida para remover un electrón de un átomo neutro. Aumenta con el grupo y diminuye con el período.

Electronegatividad: Es la intensidad o fuerza con que un átomo atrae los electrones que participan en un enlace químico. Aumenta de izquierda a derecha y de abajo hacia arriba.

Potencial de ionización (PI):Es la energía que hay que suministrar a un átomo neutro, gaseoso y en estado fundamental, para arrancarle el electrón más débil retenido. Podemos expresarlo así:

Afinidad electrónica:Es la energía desprendida de un átomo, Eaf, al agregarle un electrón a su estructura, es decir, cuando un átomo capta un electrón.átomo + e ion - + Eaf Esta tendencia la manifiestan especialmente los átomos con el nivel externo casi completo (no metales). A veces la afinidad electrónica es negativa, es decir, se precisa energía para que se forme el ion.La afinidad electrónica es una propiedad en cierto modo inversa a la energía de ionización. En un período aumenta hacia la derecha, por regla general, y en un grupo o familia aumenta al disminuir el radio (hacia arriba), ya que así el núcleo manifiesta con mayor poder su fuerza atractiva.Cuando un átomo capta un electrón, el ion negativo resultante siempre posee mayor volumen que el átomo neutro, pues el electrón capturado se ve sometido a las repulsiones de los que ya estaban en el último nivel, lo que se traduce en que éste, y con él todo el ion, se ensanche, aumente.La afinidad electrónica depende del tamaño del átomo y de la carga nuclear efectiva.Electronegatividad

La electronegatividad de un átomo mide la mayor o menor atracción y por tanto desplazamiento que un átomo ejerce sobre el par de electrones de un enlace con otro átomo.Las electronegatividades varían periódicamente. En un período aumentan hacia la derecha y en un grupo hacia arriba. Los metales poseen pequeñas electronegatividades y los no metales, las electronegatividades mayores.La electronegatividad es la propiedad que suele tomarse como base para establecer el carácter metálico ó no metálico de un elemento con relación a otro. Cuanto mayor sea la electronegatividad de un elemento, más no metálico será, y viceversa, cuanto menor sea la electronegatividad de un elemento será más metálico o electropositivo.En general, los diferentes valores de electronegatividad de los átomos determinan el tipo de enlace que se formará en la molécula que los combina. Así, según la diferencia entre las electronegatividades de éstos se puede determinar (convencionalmente) si el enlace será, según la escala de Linus Pauling:

Iónico (diferencia superior o igual a 1,7) Covalente polar (diferencia entre 1,7 y 0,4) Covalente no polar (diferencia inferior a 0,4)

La fuerza iónica , I, de una disolución es una función de la concentración de todos los iones presentes en ella, definida como:

Page 24: Átomo (1 Unidad)

donde cB es la concentración molar de iones B, zB es la carga de cada ion, y el sumatorio se refiere a cada una de las especies iónicas presentes en el medio.

A la vista de la definición mostrada, se puede comprobar cómo la multivalencia de los electrolitos presentes en el medio contribuye en gran medida a aumentar la fuerza iónica con respecto a la concentración. Así, para una disolución formada por cloruro de sodio, NaCl, la fuerza iónica es igual a la concentración, dado que en el medio hay iones Na+ y Cl -, ambos de igual carga (1) pero signo contrario. Sin embargo en una disolución de sulfato de

magnesio, MgSO4, la fuerza iónica es cuatro veces mayor que la concentración, dado que existen iones Mg+2 y SO4

-2 con una carga el doble que la del cloruro sódico.Dado que en las disoluciones no ideales los volúmenes no son estrictamente aditivos, es

aconsejable trabajar con molalidad como unidad de concentración. En este caso, la fuerza iónica quedaría definida como:

Un enlace de hidrógeno es la fuerza atractiva entre un átomo electronegativo y un átomo de hidrógeno unido covalentemente a otro átomo electronegativo. Resulta de la formación de una fuerza dipolo-dipolo con un átomo de hidrógeno unido a un átomo de nitrógeno, oxígeno o flúor (de ahí el nombre de "enlace de hidrógeno", que no debe confundirse con un enlace covalente a átomos de hidrógeno). La energía de un enlace de hidrógeno (típicamente de 5 a 30 kJ/mol) es comparable a la de los enlaces covalentes débiles (155 kJ/mol), y un enlace covalente típico es sólo 20 veces más fuerte que un enlace de hidrógeno intermolecular. Estos enlaces pueden ocurrir entre moléculas (intermolecularidad), o entre diferentes partes de una misma molécula (intramolecularidad).2 El enlace de hidrógeno es una fuerza de van der Waals dipolo-dipolo fija muy fuerte, pero más débil que el enlace covalente o el enlace iónico. El enlace de hidrógeno está en algún lugar intermedio entre un enlace covalente y una simple atracción electrostática intermolecular. Este tipo de enlace ocurre tanto en moléculas inorgánicas tales como el agua, y en moléculas orgánicas como el ADN.El enlace de hidrógeno intermolecular es responsable del punto de ebullición alto del agua (100°C). Esto es debido al fuerte enlace de hidrógeno, en contraste a los otros hidruros de calcógenos. El enlace de hidrógeno intramolecular es responsable parcialmente de la estructura secundaria, estructura terciaria yestructura cuaternaria de las proteínas y ácidos nucleicos.

Redes cristalinas La red cristalina está formada por iones de signo opuesto, de manera que cada uno crea a su alrededor un campo eléctrico que posibilita que estén rodeados de iones contrarios. Los sólidos cristalinos mantienen sus iones prácticamente en contacto mutuo, lo que explica que sean prácticamente incompresibles. Además, estos iones no pueden moverse libremente, sino que se hallan dispuestos en posiciones fijas distribuídas desordenadamente en el espacio formando retículos cristalinos o redes espaciales. Los cristalógrafos clasifican los retículos cristalinos en siete tipos de poliedros llama sistemas cristalográficos. En cada uno de ellos los iones pueden ocupar los vértices, los centros de las caras o el centro del cuerpo de dichos poliedros. El más sencillo de éstos recibe el nombre de celdilla unidad. Uno de los parámetros básicos de todo cristal es el llamado índice de coordinación que podemos definir como el número de iones de un signo que rodean a un ion de signo opuesto. Podrán existir, según los casos, índices diferentes para el catión y para el anión. El índice de coordinación, así como el tipo de estructura geométrica en que cristalice un compuesto iónico dependen de dos factores:• Tamaño de los iones. El valor del radio de los iones marcará las distancias de equilibrio a que éstos se situarán entre sí por simple cuestión de cabida eni espacio de la red.• Carga de los iones. Se agruparán los iones en la red de forma que se mantenga la electroneutralidad del cristal.

Un dipolo eléctrico es un sistema de dos cargas de signo opuesto e igual magnitud cercanas entre sí.Los dipolos aparecen en cuerpos aislantes o dieléctricos. A diferencia de lo que ocurre en los

materiales conductores, en los aislantes los electrones no son libres. Al aplicar un campo eléctrico a un material dieléctrico este se polariza dando lugar a que los dipolos eléctricos se reorienten en la dirección del campo disminuyendo la intensidad de éste.

Es el caso de la molécula de agua. Aunque tiene una carga total neutra (igual número de protones que de electrones), presenta una distribución asimétrica de sus electrones, lo que la convierte en una molécula polar, alrededor del oxígeno se concentra una densidad de carga negativa, mientras que los núcleos de hidrógeno quedan desnudos,

Page 25: Átomo (1 Unidad)

desprovistos parcialmente de sus electrones y manifiestan, por tanto, una densidad de carga positiva. Por eso en la práctica, la molécula de agua se comporta como un dipolo.

Así se establecen interacciones dipolo-dipolo entre las propias moléculas de agua, formándose enlaces o puentes de hidrógeno. La carga parcial negativa del oxígeno de una molécula ejerce atracción electrostática sobre las cargas parciales positivas de los átomos de hidrógeno de otras moléculas adyacentes.Aunque son uniones débiles, el hecho de que alrededor de cada molécula de agua se dispongan otras cuatro moléculas unidas por puentes de hidrógeno permite que se forme en el agua (líquida o sólida) una estructura de tipo reticular, responsable en gran parte de su comportamiento anómalo y de la peculiaridad de sus propiedades fisicoquímicas.

Las fuerzas de dispersión de London, denominadas así en honor al físico germano-americano Fritz London, son fuerzas intermoleculares débiles que surgen de fuerzas interactivas entre multipolos temporales en moléculas sin momento multipolo permanente. Las fuerzas de dispersión de London también son conocidas como fuerzas de dispersión, fuerzas de London o fuerzas dipolo-dipolo inducido.Las fuerzas de London pueden ser exhibidas por moléculas no polares debido a que la densidad electrónica se mueve alrededor de la molécula de una manera probabilística (ver teoría mecánico cuántica de las fuerzas de dispersión). Hay una gran probablidad de que la densidad electrónica no esté distribuida por igual en una molécula apolar. Cuando los electrones están desigualmente distribuidos, existe un multipolo temporal. Este multipolo interactuará con otros multipolos cercanos e inducirá a las moléculas, pero sólo son una pequeña parte de la fuerza de interacción total.La densidad electrónica en una molécula puede ser redistribuida por la proximidad de otro multipolo. Los electrones se acumularán en el lado de la molécula que encara a la carga positiva y se retirarán de la carga negativa. Entonces, puede producirse un multipolo transiente por una molécula polar cercana, o incluso por un multipolo transiente en otra molécula apolar.En el vacío, las fuerzas de London son más débiles que otras fuerzas intermoleculares tales como las interacciones iónicas, el enlace de hidrógeno, o las interacciones permanentes dipolo-dipolo.Este fenómeno es la única fuerza intermolecular atractiva a grandes distancias, presente entre átomos neutros (vg. un gas noble), y es la principal fuerza atractiva entre moléculas no polares (vg. dinitrógeno o metano). Sin las fuerzas de London, no habría fuerzas atractivas entre los átomos de un gas noble, y no podrían existir en la forma líquida.Las fuerzas de London se hacen más fuertes a la vez que el átomo o molécula en cuestión se hace más grande. Esto es debido a la polarizabilidad incrementada de moléculas con nubes electrónicas más grandes y dispersas. Este comportamiento puede ejemplificarse por los halógenos (del más pequeño al más grande: F2, Cl2, Br2, I2). El diflúor y el dicloro son gases a temperatura ambiente, el dibromo es un líquido, y eldiyodo es un sólido. Las fuerzas de London también se hacen fuertes con grandes cantidades de superficie de contacto. Una mayor área superficial significa que pueden darse más interacciones cercanas entre diferentes moléculas.