AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf ·...

21
Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 is used in the half-wave rectifier voltmeter. The silicon diode (D1) must have a minimum (peak) forward current of 100 μA. When the measured voltage is 20% of FSD. The voltmeter is to indicate 50 V rms at full scale Calculate the values of R S and R SH . Known: FSD of I m R m Solution: AC Voltmeter: PMMC Based R S = 139.5 kR SH = 778 R s R SH D 1 D 2 R m V p V rms V av

Transcript of AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf ·...

Page 1: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ω is used in the half-wave rectifier voltmeter. The silicon diode (D1) must have a minimum (peak) forward current of 100 µA. When the measured voltage is 20% of FSD. The voltmeter is to indicate 50 Vrms at full scale Calculate the values of RS and RSH.

Known: FSD of Im Rm

Solution:

AC Voltmeter: PMMC Based

RS = 139.5 kΩ RSH = 778 Ω

Rs

RSH

D1

D2

RmVp

VrmsVav

Page 2: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Example The symmetrical square-wave voltage is applied to an average-responding ac voltmeter with a scale calibrated in terms of the rms value of a sine wave. If the voltmeter is the full-wave rectified configuration. Calculate the error in the meter indication. Neglect all voltage drop in all diodes.

T

Em

E

t

AC Voltmeter: PMMC Based

Solution 11%

Page 3: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Bridge Circuit

DC Bridge(Resistance)

AC Bridge

Inductance Capacitance Frequency

Schering Bridge Wien BridgeMaxwell BridgeHay BridgeOwen BridgeEtc.

Wheatstone BridgeKelvin BridgeMegaohm Bridge

Bridge Circuit

Bridge Circuit is a null method, operates on the principle of comparison. That is a known (standard) value is adjusted until it is equal to the unknown value.

Page 4: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Wheatstone Bridge and Balance Condition

V

R1

R3

R2

R4

I1 I2

I3 I4

The standard resistor R3 can be adjusted to null or balance the circuit.

A

B

C

D

Balance condition:No potential difference across the galvanometer (there is no current through the galvanometer)

Under this condition: VAD = VAB

1 1 2 2I R I R=And also VDC = VBC

3 3 4 4I R I R=

where I1, I2, I3, and I4 are current in resistance arms respectively, since I1 = I3 and I2 = I4

1 2

3 4

R RR R

= or 24 3

1x

RR R RR

= =

Page 5: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

1 Ω

2 Ω 2 Ω

1 Ω

12 V

1 Ω

2 Ω 20 Ω

10 Ω

12 V

1 Ω

2 Ω 10 Ω

10 Ω

12 V

1 Ω

1 Ω 1 Ω

1 Ω

12 V

(a) Equal resistance (b) Proportional resistance

(c) Proportional resistance (d) 2-Volt unbalance

Example

Page 6: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Sensitivity of Galvanometer

A galvanometer is use to detect an unbalance condition in Wheatstone bridge. Its sensitivity is governed by: Current sensitivity (currents per unit defection) and internal resistance.

Thévenin Equivalent Circuit

G

A

B

C DR3

R1 R2

R4

I1 I2

VS

Thévenin Voltage (VTH)

1 1 2 2CD AC ADV V V I R I R= − = −

where 1 21 3 2 4

and V VI IR R R R

= =+ +

Therefore 1 2

1 3 2 4TH CD

R RV V VR R R R

= = − + +

consider a bridge circuit under a small unbalance condition, and apply circuit analysis to solve the current through galvanometer

Page 7: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Sensitivity of Galvanometer (continued)

Thévenin Resistance (RTH)

R3

R1 R2

R4

A

B

C D 1 3 2 4// //THR R R R R= +

Completed Circuit

VTH

RTH

G

C

D

Ig=VTH

RTH+Rg THg

TH g

VIR R

=+

where Ig = the galvanometer currentRg = the galvanometer resistance

Page 8: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Example 1 Figure below show the schematic diagram of a Wheatstone bridge with values of the bridge elements. The battery voltage is 5 V and its internal resistance negligible. The galvanometer has a current sensitivity of 10 mm/µA and an internal resistance of 100 Ω. Calculate the deflection of the galvanometer caused by the 5-Ω unbalance in arm BC

SOLUTION The bridge circuit is in the small unbalance condition since the value of resistance in arm BC is 2,005 Ω.

G

A

C

B

R3

R1 R2

R4

100 Ω 1000 Ω

2005 Ω200 Ω

5 V

(a)

100 Ω A

B

C D200 Ω 2005 Ω

1000 Ω

(b)RTH= 734 Ω

G

C

D

Ig=3.34 µA

Rg= 100 ΩVTH

2.77 mV

(c)

D

Thévenin Voltage (VTH)

Thévenin Resistance (RTH)

100 // 200 1000 // 2005 734 THR = + = Ω

The galvanometer current2.77 mV 3.32 A

734 100 TH

gTH g

VIR R

µ= = =+ Ω + Ω

Galvanometer deflection10 mm3.32 A 33.2 mm

Ad µ

µ= × =

mV 2.77 20051000

1000200100

100 V 5

+−

+×=−= ACADTH VVV

Page 9: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Example 2 The galvanometer in the previous example is replaced by one with an internal resistance of 500 Ω and a current sensitivity of 1mm/µA. Assuming that a deflection of 1 mm can be observed on the galvanometer scale, determine if this new galvanometer is capable of detecting the 5-Ω unbalance in arm BC

Example 3 If all resistances in the Example 1 increase by 10 times, and we use the galvanometer in the Example 2. Assuming that a deflection of 1 mm can be observed on the galvanometer scale, determine if this new setting can be detected (the 50-Ω unbalance in arm BC)

Page 10: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Deflection Method

V

A

B

C D

R

R R

R+∆R

V

Consider a bridge circuit which have identical resistors, R in three arms, and the last arm has the resistance of R +∆R. if ∆R/R >>1

Small unbalance occur by the external environment

Thévenin Voltage (VTH)

Thévenin Resistance (RTH)

THR R≈

This kind of bridge circuit can be found in sensor applications, where the resistance in one arm is sensitive to a physical quantity such as pressure, temperature, strain etc.

RRRRVVV CDTH /24

/∆+

∆==

In an unbalanced condition, the magnitude of the current or voltage drop for the meter or galvanometer portion of a bridge circuit is a direct indication of the change in resistance in one arm.

Page 11: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

5 kΩ

Rv

6 V

Outputsignal5 kΩ

5 kΩ

(a)

0123456

0 20 40 60 80 100 120

Temp (oC)

Rv (

k Ω)

(b)

Example Circuit in Figure (a) below consists of a resistor Rv which is sensitive to the temperature change. The plot of R VS Temp. is also shown in Figure (b). Find (a) the temperature at which the bridge is balance and (b) The output signal at Temperature of 60oC.

4.5 kΩ

Page 12: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

AC Bridge: Balance Condition

D

Z1Z2

Z4Z3

A C

D

B

I1 I2

all four arms are considered as impedance (frequency dependent components)The detector is an ac responding device: headphone, ac meterSource: an ac voltage at desired frequency

General Form of the ac Bridge

Z1, Z2, Z3 and Z4 are the impedance of bridge arms

At balance point: orBA BC 1 1 2 2E = E I Z = I Z

and1 21 3 2 4

V V I = I =Z + Z Z + Z

V

1 4 2 3Z Z = Z Z

( ) ( )1 4 1 4 2 3 2 3Z Z =Z Zθ θ θ θ∠ + ∠ ∠ + ∠

Complex Form:

Polar Form: Magnitude balance:

Phase balance:

1 4 2 3Z Z =Z Z

1 4 2 3=θ θ θ θ∠ + ∠ ∠ + ∠

Page 13: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Example The impedance of the basic ac bridge are given as follows:o

1

2

100 80 (inductive impedance)250 (pure resistance)

= Ω ∠= Ω

ZZ

Determine the constants of the unknown arm.

o3

4

400 30 (inductive impedance)unknown

= ∠ Ω=

ZZ

Page 14: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Example an ac bridge is in balance with the following constants: arm AB, R = 200 Ωin series with L = 15.9 mH R; arm BC, R = 300 Ω in series with C = 0.265 µF; arm CD, unknown; arm DA, = 450 Ω. The oscillator frequency is 1 kHz. Find the constants of arm CD.

SOLUTION

The general equation for bridge balance states that

D

Z1Z2

Z4Z3

A C

D

B

I1 I2V 1

2

3

4

200 100 1/ 300 600 450

unknown

R j L jR j C jR

ωω

= + = + Ω= + = − Ω= = Ω=

ZZZZ

1 4 2 3Z Z = Z Z

Page 15: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

_

+

InvertingInput

VEE(-)

VCC(+)

Non-invertingInput

Output_

+

Operational Amplifier: Op Amp

(a) Electrical Symbol for the op amp (b) Minimum connections to an op amp

Ideal Op Amp Rules:1. No current flows in to either input terminal2. There is no voltage difference between the two input terminals

I1

I2

V-V+

Rule 1: I1 = I2 = 0; R+/- = ∞Rule 2: V+ = V-; Virtually shorted

Vout

Page 16: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Inverting Amplifier

_

+

Rf

R1

vout

+

-vin

KCL

A

Use KCL at point A and apply Rule 1:

1

0A in A out

f

v v v vR R− −

+ =

(no current flows into the inverting input)

Rearrange

1 1

1 1 0in outA

f f

v vvR R R R

+ − + =

Apply Rule 2: (no voltage difference between inverting and non-inverting inputs)

Since V+ at zero volts, therefore V- is also at zero volts too. 0Av =

1

0in out

f

v vR R

+ =1

fout

in

Rvv R

= −

Page 17: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Inverting Amplifier: another approach

Given vin = 5sin3t, R1=4.7 kΩ and Rf =47 kΩ

vout = -10vin = -50 sin 3t mV

_

+

Rf

R1

i

i

vout

+

-vin

No current flows into op amp

Since there is no current into op amp (Rule 1)

0f outV iR v−− + + =

From Rule 2: we know that V- = V+ = 0, and therefore

1

inviR

=1 0inv iR V −− + − =

0

0out fv iR= −

Combine the results, we get

1

fout

in

Rvv R

= −

1 2 3 4 5 6time

-60-40-20

204060

mV

vin

vout

Page 18: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Non-inverting Amplifier

Rf

R1

vout

+

-vin

KCL

A

Use KCL at point A and apply Rule 1:

1

0A outA

f

v vvR R

−+ =

Apply Rule 2:_

+in Av v=

1

1 fout

in

Rvv R

= +

Given vin = 5sin3t, R1=4.7 kΩ and Rf =47 kΩ

vout = 11vin = 55 sin 3t mV 1 2 3 4 5 6time

-60-40-20

204060

mV

vin

vout

Page 19: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Summing Amplifier: Mathematic Operation

Use KCL and apply Rule 1:

31 2 0A A outA A

f

v v v vv v v vR R R R

− −− −+ + + =

_

+

Rf

Ri1

vout

+

-v1

v2

v3

i2

i3

R

R

i

vA

vB

1 2 3i i i i= + +

Since vA = 0 (Rule 2)

( )1 2 3f

out

Rv v v v

R= − + +

Sum of v1, v2 and v3

Page 20: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

_

+

Difference Amplifier: Mathematic Operation

Use KCL and apply Rule 1:

1

1 4

0A outA v vv vR R

−−+ =

R1

vout

+

-v1v2

R2

vA

vB Since vA = vB (Rule 2) and

32

2 3A B

Rv v vR R

= = +

Substitute eq. (2) into eq. (1), we get

R3

R4

(1)

(2)

31 4 12

4 1 4 2 3 1

outv RR R vvR R R R R R

+= − +

If R1 = R2 = R and R3 = R4 = Rf ( )2 1f

out

Rv v v

R= −

Difference of v1and v2

Page 21: AC Voltmeter: PMMC Basedpioneer.netserv.chula.ac.th/~tarporn/2141375/HandOut/AnalogII.pdf · Example: A PMMC instrument has FSD of 100 µA and a coil resistance of 1700 Ωis used

Differentiator and Integrator: Mathematic Operation

_

+

_

+

Differentiator

Integrator

R

vin

C

C

R

vin

i

vout

+

-

vout

+

-

i

i

i

vc+ -

outv iR= −

But Cdvi Cdt

= in Cv v=and

inout

dvv RCdt

= −

out Cv v= −

But0

1( ) (0)t

C Cv t idt vC

= +∫ inv iR=and

0

1 (0)t

out in Cv v dt vRC

= − +∫