Τσουκαλά Βασιλική-Διπλωματική εργασία

Click here to load reader

  • date post

    15-Apr-2017
  • Category

    Documents

  • view

    98
  • download

    1

Embed Size (px)

Transcript of Τσουκαλά Βασιλική-Διπλωματική εργασία

  • / ( / )

    :

    -1

    : o

    : (ITE-EIXHM) (-)

  • .........................................................................................................................................3 1. ..................................................................................................................................4 2. ............................................................................................................................6

    2.1. .....................................................................................6 2.2. .............................................................................................................................8 2.3. ...........................................................................................................................10 2.4. ..............................................................................................................................10 2.5. ...................................................................................................................................11 2.6. ..........................................................................................13

    2.6.1. 13 2.6.2. 13 2.6.3. 13 2.6.4. 15

    3. ...............................................................................................................................19 3.1. ............................................................................................................................19 3.2. .................................................................................................................19 3.3. ..................................................................................................................................21 3.4. ...........................................................................................................................23

    3.4.1. 23 3.4.2. 23 3.4.3. 24 3.4.4. 25

    3.5. ..............................................................................................................................25 3.5.1. 25 3.5.2. 26 3.5.3. 26 3.5.4. 29 26 3.5.5. 27 3.5.6. 27 3.5.7. 27 3.5.8. 27 3.5.9. 28

    3.6. ...........................................................................................28 -1 3.7. ........................................................................................................29 X

    4. ............................................................................................................................31 5. .......................................................................................35

    5.1. ............................................................................35 5.2. .....................................................................................................37 -

    5.2.1. - 37 5.2.2. Bragg 37

    1

  • 5.2.3. - 38 5.3. .................................................................................................43 RAMAN

    5.3.1. 43 5.3.2. Raman 46 5.3.3. 49 5.3.4. Raman 54

    5.4. ..............57 -5.4.1. 57 5.4.2. 58 5.4.3. 59 5.4.4. 60 5.4.5. 62

    6. .........................................................................................64 6.1. ....................................................................................................64 -16.2. .....................................................................................65 6.3. ................................................................................66 (PVD)6.4. ............................................................................................72

    7. ..................................................................................................................73 7.1. .....................................................................................................73 -7.2. ..............................................................75 (SEM)7.3. ...........................................................................................77 FT-RAMAN7.4. ......................................84 (DRS)

    8. ..................................................................................................................88 9. ....................................................................................89

    2

  • -

    .

    - ( )

    / - .

    .

    , -1.

    -1 (

    )

    (Physical Vapor Deposition, PVD).

    PVD (150-500C).

    Raman, -

    . Raman

    .

    PVD .

    PVD 300C

    .

    .

    .

    ( ).

    (bulk).

    3

  • 1.

    . ,

    .

    .

    , .

    ,

    .

    .

    -1

    .

    , 2 .

    .

    .

    3,

    , .

    -1

    .

    4. ,

    , , Fermi

    p n.

    5. (Scanning Electron Microscopy, SEM), -

    4

  • (X-Ray Diffraction, XRD), Raman

    / (Ultraviolet/Visible Diffuse reflectance

    Spectroscopy, UV/Vis DRS).

    6. , -1

    .

    .

    7

    8.

    5

  • 2.

    ( IUPAC : Se) 16

    4 , p-bock

    34 78,96.

    .

    ( ) .

    1817 Jns Jakob Brezelies (

    , ,

    ) Gahn ( )

    .

    ,

    , , ,

    , ,

    .

    2.1. 1 , : 74Se,

    76 77 78 80 82Se, Se, Se, Se. Se

    . 78 80Se Se

    73,3% . 24

    .

    .

    .

    () ().

    2 :

    1. ( )

    (tSe).

    (Se3). Se-Se 2.373

    103.1.

    3 21 : a=4.368 1

    6

  • , c=4.958

    3.72 2.1.

    4,82g/cm-3

    .

    103.1

    2.37 3.72

    3 2.1 H

    2. () (mSe) : - - -

    (Se8). ,

    Se8 -

    - Se8 ( )

    -. : a=9.054 ,

    b=9.083 , c=11.60 =90.81. 2.2

    -. 4.39

    g/cm3.

    7

  • 3 2.2: -

    3. (rSe) (Se6)

    4.

    , :

    .

    2.2.

    ,

    16,42 cm3 , 221 C (494 ), 685 C (958

    ) 1493 C (1766 ).

    2.1.

    8

  • 5 2.1

    (Se)

    , 16, 4

    78.96 gmol1

    34

    [Ar] 3d10 4s2 4p4

    685 C

    221 C

    1493 C

    16.45 cm3/mol

    1.22

    Van der Waals 1.9

    0.5

    (221 C) 0.695 Pa

    6.69 kJmol1

    26.3 kJmol1

    (25C) 25.363 Jmol1K1

    2, 4, 6

    2.55 Pauling

    20 S/cm -12 10 106/cm

    0.0204 W/cm K

    (

    ) (

    ) . -

    p,

    .

    . ,

    , SeO -2, ( ) 4

    9

  • -2 , SeO3 , ( ). ,

    , (

    ).

    ( )

    6. , ,

    . , ,

    , ,

    pH, .

    2.3.

    7.

    . , ,

    ,

    .

    .

    .

    .

    .

    .

    .

    2.4.

    .

    . ,

    10

  • . ,

    ,

    .

    , . ,

    ,

    . 2.2

    20048.

    .

    9 .

    10 2.2 2004

    50%

    15%

    (SeO) 13%

    10%

    ( ...) 2%

    .

    102.5.

    . , Se

    , ,

    .

    , Keshan

    Kashin-Beck, ()

    ( ) . 30

    11

  • 40 g / (WHO, World Health

    Organization, 1996), ,

    Se . ,

    .

    , ,

    , .

    Se .

    .

    12

  • 2.6.

    2.6.1.

    ,

    . ,

    .

    .

    , ,

    .

    .

    2.6.2.

    .

    . 30-50%

    11. ,

    ,

    .

    .

    2.6.3.

    .

    -

    13

  • (

    ), , ,

    .

    .

    . ,

    ,

    , . ,

    (CdSe)12

    - (Ag 13Se) . 2 , t-Se

    a-Se

    .

    14. ,

    ,

    , - , .

    .

    . ,

    Raman Se

    .

    Raman .

    14

  • 2.6.4.

    Bogomolov15 ,

    (, ) - ( A (LT) (FAU)).

    . 16 Parise

    , , , AlPO-5 .

    . ,

    .

    .

    . 19 Nozue , Si/Al

    (, ) .

    Si/Al

    (AlO4)- 17 (Na, Mg, H) .

    15

    .

    Si/Al,

    . Si/Al

    ,

    .

    L

    ,

    .

    Poborchii 20.

    (

    15

  • Nozue)

    18.

    ,

    . 21 13 Lei He

    * 19.

    (~ 0.07eV)

    . 13

    ,

    t-Se Raman,

    .

    Matsuishi 22.

    20. ,

    .

    . , -

    , -a

    -Ca .

    Demkov

    LTA

    3.

    Se , Se Se . 6 8 12

    . Goldbach

    .L. Saboungi25.

    16

  • ,

    .

    Cu21 22, La, Ca , Sr23 24 25, Nd Rb , .

    ,

    .

    ,

    . ,

    .

    Se-Se

    ,

    .

    Se -2 Nd3+ La3+, Se3 Ca2+ 2+ +, Se8 Sr Rb , Sex Cu2+.

    Bichara28,

    , -1. : (200C)

    -1,

    (650C)

    26. -

    (pseudo-wetting) ( 200C

    650C)

    .

    ,

    .

    ,

    . , Se-Se

    17

  • .

    . ,

    . ,

    .

    18

  • 3.

    3.1.

    4 (

    , Basic Building Unit, BBU).

    , Al Si.

    ( )

    ,

    27.

    .

    ,

    28.

    ,

    .

    , + + .

    Brnsted ( )

    .

    29.

    :

    M2/nO. . .Al O YSiO wH O 2 3 2 2 2 , n , w

    29.

    3.2.

    Axel Fredrik Cronstedt

    .

    19

  • , .

    48 160

    .

    (framework type)

    ,

    (International Zeolite Association, I.Z.A.)30

    (..

    MFI ZSM-5, Zeolite Socony Mobil-Five, FU faujasite, LT Linde Type A, ). 3.1

    .

    4

    , ,

    . , MFI

    ( ) ZSM-5 ( ).

    FAU / (

    FAU-X Si/Al2)29.

    ) ) )

    3.1: ) MFI, ) FAU )LTA

    20

  • 3.3.

    , 4,

    .

    29.

    , 8- 4,1

    ( , LTA), 10-

    5,5 ( ZSM-5,

    FI) 12- 7,4

    ( , FAU). ,

    ,

    . ,

    : KA ,Na A ,CaA31.

    ,

    , , ,

    .

    (-, -

    , ..). 3.2

    .

    .

    3.2 :

    Double 4-ring Double 6-ring (-) D4R D6R

    21

  • ,

    .

    . , (-)

    ( 3.3): (SOD), (LTA), (FAU)

    (emt).

    3.3

    ,

    . , 5-

    , (crankshaft)

    , 3-

    4-

    . -

    , Al Si ( Si/Al = 1),

    22

  • Al P Ga P

    , 29.

    3.4.

    3.4.1.

    . Eichorn 1858

    , ,

    .

    ,

    .

    , : ,

    ,

    ,

    31. ,

    Si/Al,

    29.

    3.4.2.

    ,

    . (SiO2)

    ,

    ,

    , Na+, K+, Ca2+, Mg2+ +,

    .

    32.

    ,

    Brnsted (

    )

    (H+

    Na+)

    33.

    23

  • ,

    34 :

    ,

    () .

    . ,

    .

    .

    ,

    .

    .

    , ,

    :

    . ,

    ,

    .

    3.4.3.

    : , , ,

    , , ..

    , ,

    ,

    .

    . -

    24

  • 1250 C

    29.

    ,

    ,

    .

    .

    ,

    .

    ,

    . ,

    . ,

    31.

    3.4.4.

    ,

    ,

    29.

    .

    ,

    ,

    , 29.

    ,

    , , .

    3.5.

    3.5.1.

    , .

    25

  • . 1,44

    199229.

    3.5.2.

    (

    )

    29. ,

    H O, CO SO2 2 2

    . : , ,

    .

    3.5.3.

    35,

    .

    .

    ,

    ,

    , . 293.5.4.

    .

    ,

    .

    .

    . ,

    , , ,

    ,

    .

    .

    26

  • 3.5.5.

    ( )

    . ,

    ,

    29. ,

    50%

    .

    . 12%

    .

    3.5.6.

    1% ,

    , ,

    80%,

    29.

    3.5.7.

    , ,

    .

    "" .

    , 5%

    . ,

    : "QuikClot" "Hemosorb"35. ,

    ,

    .

    3.5.8.

    29.

    , .

    ,

    ( ),

    . ,

    27

  • ,

    .

    ,

    , , , .

    3.5.9.

    .

    90

    .

    ,

    ,

    29. , ,

    , ,

    ,

    .

    , .

    3.6. -1 (Silicalite-1)

    -1 MFI ( |Nax (H O) )| [Al Si2 16 x 96-

    x36O ] MFI, x=0)192 . .

    MFI , 10-

    5.3 x 5.6 ( b ) , 10-

    5.1 x 5.5 ( a ).

    8.937.

    -1

    (Pnma) 3.4. : a =

    20.07 , b = 19.92 , c = 13.42 = = = 90.000.

    17.9 - / 1000 3 0.1

    cm3/gr32.

    3.5

    b a - .

    28

  • 38 3.4 : MFI

    i) ii)

    3.5 : MFI i)

    b- ii) a-39

    3.7. X

    FAU (|(Na)x(H2O)240 | [AlxSi192-xO ] x

  • ,

    6- , (2.4 )

    3.5.

    (12,3 ), ,

    , 12- , (7.4 ),

    40.

    .

    (Fd3m).

    : a=b=c=24.74 ===90.000.

    12.7 -/10003

    0.34-0.36 cm3/gr 32.

    3.5 FAU

    30

  • 414. , ,

    . ,

    :

    - -

    -

    .

    , ,

    .

    (band gap).

    ,

    .

    .

    .

    - ,

    eV ( 4.1).

    31

  • ,

    ( 4.1).

    5 eV

    1 eV.

    .

    - -

    ,

    Pauli

    .

    ( 4.1).

    4.1

    -

    . .

    ,

    .

    , .

    32

  • .

    .

    .

    Pauli,

    .

    Fermi (

    ).

    F = 2/2m(32 2/3n)

    n =

    H

    :

    f(E) = 1/(e (E- ) k/TEF +1)

    Fermi

    = 0 F .

    .

    , ,

    ,

    , ,

    .

    ,

    33

  • .

    n. ,

    ,

    .

    , .

    p.

    34

  • 5.

    5.1. (Scanning Electron Microscopy,

    SEM) ,

    . o 5.1

    .

    5.1

    .

    ,

    ,

    .

    ,

    .

    ,

    .

    .

    35

  • , ,

    . ,

    .

    5.2

    , (SEM-EDXS, JEOL JSM-

    5200 Scanning Microscope, LEO SUPRA 35 VP).

    5.2

    36

  • 425.2. -

    5.2.1. -

    -X

    100 eV - 100 keV.

    -X (

    -X) angstroms 0,1 (1 keV - 120 keV).

    -X ,

    . -X

    .

    -X -X

    (synchrotron).

    -X, -X

    , -X

    .

    ,

    -X ,

    Bremsstrahlung.

    .

    , -X,

    , .

    -X Cu M,

    -X 8 keV 14 keV 1,54 0.8 ,

    .

    5.2.2. Bragg

    -,

    -,

    .

    ,

    , .

    37

  • ,

    .

    5.3 Bragg

    Bragg, 5.3,

    ,

    :

    .nB = 2..sin

    :

    :

    n :

    : nB : .

    5.2.3. -

    -, XRD (X-Ray Diffraction)

    .

    , ,

    .

    ,

    ( ).

    38

  • ""

    .

    ( ) .

    ,

    .

    .

    ,

    5.4

    , .

    5.4

    XRD K2Ta2O6

    (. 5.5)

    2 -. ,

    ,

    .

    39

  • 5.5 XRD K2Ta2O6

    -

    5.6. -

    .

    ( )

    , ,

    .

    .

    Bragg .

    40

  • 5.6 -

    , . ,

    ,

    .

    ,

    .

    - D8

    Adadvance Bruker CuKa (=1,5405 ).

    .

    41

  • 5.7 -

    42

  • 435.3. Raman

    5.3.1.

    Raman

    .

    Raman ,

    .

    :

    () ,

    ()

    () .

    .

    (.. laser)

    :

    h= (1) , h Planck (h=6.6262 10-34 J s) .

    , ,

    = , (2)

    ,

    (

    ).

    (1) Raman

    . ,

    .

    :

    43

  • .

    .

    .

    .

    .

    Raman .

    .

    . ,

    ,

    . ,

    .

    .

    1100 cm-1 ( ).

    ~() , , , ,

    /~ cc == , c .

    .

    (Hz s-1) (cm-1) (m)

    3x1014 104 1

    3x1013 103 10

    3x1012 102 102

    44

  • . , ( )

    102 4 -110 cm .

    ,

    104 -1 cm .

    5.8. . (

    ,

    .)

    5.8

    .

    45

  • .

    , . ,

    .

    5.3.2. Raman

    Raman .

    ( ) ,

    (3) )cos(0 tEE =

    ,

    (4) EP =)(t

    , ( 5.9).

    5.9. .

    ,

    .

    .

    qi

    , )( iq = .

    qi

    q =0: i

    +

    += ii

    i qqq

    00)(

    (5)

    46

  • 0

    0)/( iq

    q . i i

    ,

    )cos(0 tqq iii = (6)

    (3)-(6) :

    ( ) ttqq

    t iii

    coscos)( 000

    0 EP

    += =

    ( )[ ] ( )[ ]tqq

    tqq

    t iii

    iii

    +

    +

    += cos21cos

    21cos 00

    000

    000 EEE (7)

    (7) .

    , ( Rayleigh).

    .

    +i ( anti-Stokes) ,

    - ( Stokes). i

    0)/( iq (7)

    . , Raman, .

    . , , . Rayl. Raman

    ,

    Raman ( ),

    : -3./ Rayl. / Raman 1 / 10 / 10-7,

    10 . Raman.

    .. laser.

    .

    P ,

    47

  • .

    . Raman

    -

    ,

    2

    0

    4)(

    i

    iRaman

    qI (8)

    i

    Stokes (-) antiStokes (+). ,

    Boltzmann, Stokes antiStokes

    ,

    Tkh BieII

    i

    iS

    aS /4

    4

    )()(

    +

    = . (9)

    z

    5.10 .

    y

    Ez

    z Ex

    y

    x

    48

  • .

    0)/ iq( ,

    .(**)

    .

    , xy 3.

    (z)

    (y),

    z

    y

    II

    = . (10)

    .

    0 3/4.

    0 < 3/4,

    =3/4 .

    5.3.3.

    .

    .

    .

    (

    )

    (**) .

    49

  • .

    .

    .

    36,

    (3) (3)

    . 35

    .

    , .. CO2. 3x35=4

    5.11.

    .

    2, .

    .

    5.11 3x36=3

    .

    - - +

    1

    2

    2b

    3

    C O O

    1

    2

    3

    5.11 CO 2 2. ( +

    , .

    50

  • Raman.

    .

    , :

    - - +

    = 0 = 0 0

    NAI OXI OXI Raman

    51

  • 0 0 0

    NAI NAI Raman

    Raman.

    , 5

    Raman 6

    .

    52

  • -900 -600 -300 0 300 600 9000

    10

    20

    30

    40

    X100

    Stokes anti-Stokes

    3

    4 2

    1

    342 1

    Raman [cm -1]

    5.12 Raman CCl . 4

    5.12 3 anti-Stokes

    100 . Stokes

    . Raman Stokes

    ( Boltzmann) Raman anti-Stokes

    Raman Stokes

    .

    1 2

    43

    5.13 .

    53

  • 5.3.4. Raman

    Raman (. . 5.14)

    :

    ( LASER

    ).

    , .

    (

    ).

    .

    ,

    .

    5.14 Raman.

    Raman.

    ,

    LASERs. LASERs (Ar+ Kr+)

    54

  • .

    ( ) .. LASER Ar+

    488.0 514.5 nm, .

    ,

    : (i)

    . (ii)

    LASER. 500 nm

    1.5 cm 10 cm

    4x10-3 cm. 1000

    . (iii)

    .

    LASERs .

    (,

    , )

    . ,

    Raman

    (, )

    , (

    ).

    .

    .

    ,

    ,

    1800 /mm.

    () .

    55

  • ,

    .

    (

    )

    (CCD)

    .

    ,

    .

    Bruker (D) FRA-106/S Equinox 55

    ( 5.15). laser Nd:YAG 1064 nm ~20

    mW .

    Rayleigh

    CaF2 Ge ( )

    (Stokes Anti-

    Stokes) 1 cm-1.

    5.15 Equinox 55 Bruker (D) FRA-106/S

    56

  • 5.4. -

    5.4.1.

    :

    , , , 44.

    ,

    . ,

    .

    Planck:

    c

    = h = h

    : (J) -34h : Planck (6,62610 Js)

    : ( )

    45.

    ( 5.16).

    ,

    200-780 nm.

    Near UV

    Far UV

    (nm)

    3104 3103 780 380 200

    10 3105

    3109

    Visible Near infrared

    Middle

    infrared

    Far infrared

    Microwave

    5.16

    57

  • 5.4.2.

    .

    ,

    .

    Beer-

    Lambert,

    .

    , C , , , Beer-Lambert :

    -kC eI = Io

    :

    :

    k :

    (dm3 -1cm mol-1) -3C : (moldm )

    : (cm)

    (

    ) .

    g/l

    (specific absorptivity).

    58

  • Beer-Lambert

    -

    46. ()

    ( = / ),

    () :

    = log10(1 / T) = C

    2,303k = ,

    Beer-Lambert

    48:

    i) .

    ii) , .

    iii)

    ( ).

    iv)

    .

    v) .

    5.4.3. (Reflection spectroscopy)

    ()

    . :

    (specular), (diffuse) 46.

    , ,

    (reflectivity, 5.17). , ,

    (reflectance, 5.17 ).

    59

  • )

    )

    5.17

    5.4.4.

    (diffuse reflectance

    spectroscopy)

    ,

    , 47.

    .

    Mie, .

    , 52.

    ( R ) (

    ).

    Kubelka-Munk48.

    (1 ) a( )2

    Rf RR s

    = =

    R :

    a : (= C)

    s :

    60

  • . ,

    ( 50'R ) .

    0,2-0,6

    .

    ,

    ()49. ,

    .

    Kubelka-Munk

    .

    ,

    .

    1,5 mm

    . ,

    , 0,2-0,6.

    Kubelka-Munk, 50 :

    i) H .

    ii) , .

    iii)

    .

    iv) .

    ,

    ( ). , ,

    61

  • ( a = C).

    Beer-Lambert.

    5.4.5.

    5.18.

    52.

    , .

    ,

    .

    5.18

    Varian Cary 1E

    ( 5.19 ).

    , .

    -1 -Al O2 3

    .

    0,2-0,6.

    . 5.20

    .

    62

  • 5.19 / Cary 1E

    5.20 Cary 1E

    63

  • 6.

    , ,

    -1 (silicalite-1)

    (a, , SrY, BaY, CuY). -1

    .

    .

    6.1. -1

    500 ml

    : 25 ml H2O, 45 ml

    (TPAOH, 1) 26 ml --

    (TEOS).

    TEOS, ,

    . 1 h. moles

    , , : 25 SiO2 / 9 TPAOH (1M) /

    680 H O / 100 t. 2 , .2

    (Whatman)

    . 85C

    24 hrs.

    .

    ,

    35 15000

    . ,

    .

    . ,

    ,

    64

  • (sonication) 15

    . pH

    , , 8.

    ,

    (Structure directing Agent). ,

    , (calcination)

    420 C 6 hrs. ,

    .

    6.2.

    (Na Sigma-Aldrich).

    . ,

    (0,1 ) :

    : 0,303g KNO 30 ml H O 3 2

    : 0,635g Sr(NO) 30 ml H O 2 2

    : 0,694 g Ba(NO )3 2 30 ml H O 2

    : 0,698g Cu(NO ) 2,5 H O 30 ml H O 3 2 2 2

    , 0,4g

    85 oC 4 hrs. ,

    15000

    25 .

    .

    15 .

    . ,

    420 oC 6 hrs. ,

    .

    65

  • 6.3. (PVD)

    ,

    (Physical Vapor Deposition, PVD).

    , 221 C

    685 C.

    250 C. ,

    PVD 150 500 C

    ( 6.1 6.2).

    . ,

    .

    pyrex 1 cm

    40 cm.

    .

    .

    . ,

    mzeo, (porosity) zeo, :

    m = se se Vse 1,5 = se mzeo 1,5 zeo 1,5

    .

    pse = 4,2 g/cm3, = 0,35 cm3/g

    = 0,1 cm3/g.MFI

    66

  • 6.1

    6.2 -1

    Sample code T (C) Time (hrs) mSe (g) mMFI (g)

    S1 150 764 0,1043 0,1657

    S2 200 138 0,1075 0,1608

    S3 250 74 0,1015 0,1625

    S4 300 129 0,1034 0,1669

    S5 350 521 0,1056 0,1662

    S6 400 75 0,1031 0,1613

    S7 500 21 0,1242 0,1908

    , ,

    . ,

    .

    ,

    .

    .

    ,

    .

    Sample code T (C) Time (hrs) mSe (g) m (g) X

    NaX 250 74 0,2235 0,1621

    X 250 73 0,2306 0,1609

    CuX 250 75 0,2236 0,1611

    BaX 250 70 0,2147 0,1600

    SrX 250 74 0,3825 0,2700

    67

  • ,

    6.1.

    , 20 cm

    . 380 oC.

    . (0,05 mbar)

    (380 oC),

    , ( 6.1).

    6.1

    , ,

    . ,

    . ,

    ,

    ( 6.1).

    . 6.3 6.4

    68

  • (

    ) PVD (

    ). ,

    ( )

    .

    .

    69

  • 6.3

    Sample code Sample picture

    NaX

    X

    CuX

    BaX

    SrX

    70

  • 6.4 -1

    Sample code Sample picture

    S1

    S2

    S3

    S4

    S5

    S6

    S7

    71

  • 6.4.

    -1

    ,

    - (XRD).

    (SEM).

    .

    Raman.

    .

    .

    -Al O2 3

    1/117.

    72

  • 7.

    7.1. -

    -1

    (X-Ray Diffraction, XRD).

    7.1 XRD

    .

    -151

    52.

    .

    , .

    7.1

    -1.

    PVD

    . ,

    -1 ,

    -1.

    73

  • 7.1 - : -1, -1 PVD

    . -1

    t-Se .

    74

  • 7.2. (SEM)

    . SEM

    7.2

    120 nm

    .

    200 nm

    7.2 SEM

    SE

    -1. 7.3 ( PVD=250 C)

    .

    ,

    . ,

    .

    75

  • 200 nm

    7.3 SEM 250C

    76

  • 7.3. FT-Raman

    ,

    (Stber silica)

    -1. ,

    250C, (

    ) , 7.4.

    Raman. 7.4

    250 235

    .

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    1,6

    180 200 220 240 260 280 300

    Raman shift (cm -1)

    Inte

    nsity

    (a.u

    .)

    250

    235

    7.4 Raman Stber silica. PVD.

    77

  • , Stber silica

    , . ,

    ,

    .

    ,

    Raman

    Raman

    , .

    laser Nd:YAG 1064 nm (1.16 eV)

    (~2 eV)

    -

    Se.

    .

    PVD 7.5,

    (a-Se) (t-Se)

    .

    PVD 300C.

    PVD

    234 237cm-1.

    Se-Se

    1 ,

    53.

    ,

    -1.

    ,

    1 PVD.

    ,

    78

  • -1.

    PVD 300C. ,

    250cm-1.

    : 250cm-1

    (~260cm-1 54) Se . 8

    79

  • 0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    1,6

    1,8

    2

    2,2

    2,4

    2,6

    2,8

    3

    215 225 235 245 255 265 275Raman shift (cm -1)

    Inte

    nsity

    (a.u

    .)

    400

    350

    300

    7.5 FT-Raman , , PVD

    (bulk).

    250

    200

    150

    236.4233

    250

    a-Se

    t-Se

    80

  • 0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    1,6

    1,8

    2

    2,2

    215 225 235 245 255 265 275Raman shift (cm -1)

    Inte

    nsity

    (a.u

    .)

    400

    350

    300

    250

    150

    236.8233.6

    250

    500

    ,

    7.6 FT-Raman , , PVD

    ,

    Raman

    .

    7.6.

    1,

    .

    .

    81

  • Raman, laser He-Ne

    , 632 nm

    .

    7.7.

    100 200 300

    254

    129.9

    104.6

    46.6

    27

    27

    45.3

    75.5

    105.5

    129.5

    260.4

    254.1

    249.6

    261.7

    255.8

    247.5

    260.3

    118.2

    107.3

    73.3

    105.5

    ****

    **

    *

    73.8In

    tens

    ity (a

    .u)

    Raman Shift [cm-1]

    *

    **

    * * * *

    ******

    *

    ******

    *

    Na

    Sr

    K

    Ba

    7.7 Raman

    (NaY) (KY, BaY, SrY)

    82

  • (~200-300 cm-1),

    )

    .

    , ,

    ,

    (~25-130 cm-1) .

    .

    , (Na-FAU

    Na+ -1 + 73 107 cm . Na

    Ba2+ K+,

    Sr+, .

    ,

    .

    .

    Se-Se

    bulk a-Se.

    83

  • 7.4. (DRS)

    Kubelka-Munk,

    5.4,

    McLean55.

    7.8

    Kubelka-Munk.

    ,

    -Al O . 2 3

    0

    0,5

    1

    1,5

    2

    2,5

    3

    3,5

    4

    380 430 480 530 580 630 680 730 780

    Wavelength (nm)

    F(R

    ) (a

    .u)

    150

    200

    400

    300

    350

    500

    250

    7.8 Se/MFI PVD

    84

  • [hv(R)]2 vs. hv.

    (absorption edge), 56.

    . 7.9

    PVD.

    7.10

    [hv(R)]2 vs. hv Se/MFI 350C.

    0

    0,5

    1

    1,5

    2

    2,5

    3

    3,5

    4

    4,5

    1,6 1,8 2 2,2 2,4 2,6 2,8E (eV)

    [F (R

    )*E]

    **2

    150200

    250

    300

    350

    400

    500

    7.9 [hv(R)]2 vs. hv

    85

  • y = 14,566x - 26,064R2 = 0,9855

    0

    0,5

    1

    1,5

    2

    2,5

    3

    1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9E(eV)

    [F(R

    )*E]

    ^2

    Direct Band gap=1,79eV

    7.10 Se/MFI 350C

    [hv(R)]1/2 vs. hv.

    , .

    . 7.11

    [hv(R)]1/2 vs. hv Se/MFI

    350C.

    7.1

    PVD

    .

    , bulk

    () () 25

    . ,

    , .

    PVD (>300C), ,

    86

  • ,

    .

    y = 4,1126x - 7,1476R2 = 0,9917

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9E (eV)

    [F(R

    )*E]

    ^1/2

    Indirect Band gap=1,74eV

    7.11

    Se/MFI 350C

    7.1

    (ev)

    PVD (oC)

    150 2,11 -

    200 1,92 -

    250 1,59 -

    300 1,72 -

    350 1,79 1,74

    400 1,80 1,72

    500 1,58 1,49

    a-Se - 2,05

    t-Se 1,95 -

    87

  • 8.

    -1

    150-500C.

    Raman

    .

    -.

    Raman

    PVD .

    PVD 300C

    ( 300C)

    . Raman

    .

    -1, PVD,

    -,

    -1.

    ,

    ,

    Kubelka-

    Munk.

    . PVD

    ( )

    (bulk) .

    88

  • 9. 1 Criddle, A.J. and C.J. Stanley, Eds. (1993) Quantitative data file for ore minerals, 3rd ed. Chapman & Hall, London, 504 2 Amorphous inorganic materials and glasses, Adalbert Feltz,1993 3 A. Demkov, O. Sankey, Theory of zeolite supralattices: Se in zeolite LTA, J.

    Phys.: Condens. Matter 13 (2001) 1043310457 4 Miyamoto Y., 1980 Japan. J. Appl. Phys. 19 1813 5 Geochemical atlas of Europe Part 1, ethology and maps,R.Salminen, 2005 6 Lucovsky G., Physics of selenium and tellurium, edited by E. Gerlach and

    P. Grosse, Springer-Verlag, New York, 1979. 7 minerals.usgs.gov/minerals/pubs/commodity/selenium/830398.pdf 8 Source: British Geological Survey, World Mineral Statistics 9 Best, E.; Hinz, I.; Wendt, H. Selen. In Gmelin Handbuch der Anorganischen

    Chemie; Kugler, K. H., Ed.; Springer: Berlin, 1979;Vol. 10, pp 168-180 10 Barclay, Margaret N. I.; Allan MacPherson, James Dixon (1995). "Selenium content of a range of UK food". Journal of food composition and analysis 8:

    307-318. 0889-157511 Breck, D. W. Zeolite Molecular Sieves; Wiley: New York,1974 12 Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots.

    Science 1996, 271, 933-93 13 Xu, R.; Husmann, A.; Rosenbaum, T. F.; Saboungi, M. L.; Enderby, J. E.;

    Littlewood, P.B.Large magnetoresistance in nonmagnetic silver

    chalcogenides. Nature 1997, 390, 57-60. 14 Mott,N.F.; Davis, Electronic Processes in Non-Crystalline Semiconductors;

    Clarendon Press: Oxford, 1979. 15 Bogomolov V.M, 1978 Usp. Fiz. Nauk 124 171 (Engl. Transl. 1978 Sou. Phys.-Usp. 21 77) 16 John B. Parise, Characterization of Se-Loaded Molecular Sieves A, X, Y,

    AIPO-5, and Mordenite, Inorganic Chemistry, Vol. 27, No. 2, 1988 17 Y. Nozue, Absorption spectra of selenium clusters and chains incorporated

    into zeolites, J.Phys.:Cond.Mat. 2 (1990) 5209-5217

    89

  • 18 V.Poborchii, Raman and absorption spectra of the zeolites A and X

    containing Se and Te in the nanopores, Matter. Sc.Engin. A217/218 (1996) 129-134 19 L.He, Luminescence due to the indirect band gap transition activated by the

    inter-valence transition of Se clusters confined in 13X, Chem.Physi.Let. 300

    (1999) 504-508 20 K.Matsuishi, Optical properties of Se clusters/chains incorporated into

    porous materials, Phys.Sta.Sol.(b) 215,301(1999) 21 A.Goldbach, Approach to band gap alignment in confined semiconductors,

    J.Chem.Phys.,115,No24, 2001 22 A.Goldbach, Photoinduced formation of Se molecules in zeolites:A

    resonanta Raman study, J.Phys.Chem.B 1997,101,330-334 23 A. Goldbach and M.-L. Saboungi, Acc. Chem. Res. 2005, 38, 705-712 24 A. Goldbach, The Formation of Se2-: A New Resonance Raman Feature in

    the Photochemistry of Zeolite-Encapsulated Selenium, J. Am. Chem. Soc.

    1996, 118, 2004-2007 25 A. Goldbach, An Air-Stable Selenium/Zeolite Nanocomposite, Chem. Mater.

    2004, 16, 5107-5113 26 C.Bichara,J-Y. Raty, A thermodynamic investigation of Selenium confined

    in silicalite zeolite,Molec.Simul.,30(9), 2004,601-606 27 J. Cejka and H. van Bekkum (Editors),Zeolites and ordered mesoporous

    materials: progress and prospets, Elsevier,2005. 28 David R. Corbin,Designing zeolite catalysts for size and shape selective

    reactions, Journal of Molecular Catalysis, 86 (1994) 343-369 29 W.J. Mortier, Compilation of Extra-Framework Sites in Zeolites,

    Butterworths, London, 1982 30 www.iza-structure.org 31 G.Tasi et al.,Journal of Molecular Structure (Theochem), (2003) 6977 32 W.J. Mortier, Compilation of Extra-Framework Sites in Zeolites,

    Butterworths, London, 1982. 33 D.R. Corbin, C. Bon&z, L. Abrams, in J.W. Ward, Ed., Catalysis 1987, Elsevier, Amsterdam,1988, pp. 295-302; D.R. Corbin, L. Abrams, C. Bon&z,

    J. Catal., 115 (1989) 420

    90

  • 34 S.M. Csicsery, Zeolites 4 (1984) 202; (b) N.J. Turro, Pure Appl. Chem., 58

    (1986) 1219 35 www.z-medica.com 36 Van Koningveld, H., Van Bekkum, H. and Jansen, J.C. Acta Crystall., B43,

    127-132 (1987) 37 Olson, D.H., Kokotailo, G.T., Lawton, S.L. and Meier, W.M.J. Phys.

    Chem.,85, 2238-2243 (1981) 38 K.. YOON, Organization of Zeolite Microcrystals for Production of

    Functional Materials, Acc. Chem. Res. 2007, 40, 29-40 39 Chem. Mater., 16, 5226-5232, (2004) 40 Breck D.W., Zeolite molecular Sieves; Wiley:New York 1974 41 . . & . .

    , (1980). 42 Basics of X-ray Diffraction, 1999, Scintag Inc.43 Raman, .., 2001 44 Springsteen, A., 1998. Reflectance Spectroscopy: An Overview of Classifications and Techniques. In: Workman, J. and Springsteen, A. (Eds.),

    Applied Spectroscopy A Compact Reference for Practitioners, Academic

    Press, Chestnut Hill, MA, pp. 194-223. 45 Umland, J.B. and Bellama, J.M, 1996. General Chemistry, 2nd edition. Brooks/Cole Publishing Company, Pacific Grove, CA, pp. 224-234 46 H.Forster, UV/Vis spectroscopy, Mol.Sieves,(2004), 4:337-426 47 Clark, R.N., 1999. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy.In: N. Rencz (Editor), Remote Sensing for the Earth Sciences:

    Manual of Remote Sensing, 3 ed. John Wiley & Sons, New York. 48 W.W.Wendlandt and H.G.Hecht,(1966), Reflectance spectroscopy, p.298,Wiley Intersience, New York 49 Diffuse reflectance: Theory and applications, PIKE Technologies,2005 50 2004 F.C. Jentoft, Fritz-Haber-Institut der Max-Planck-Gesellschaft 51 Collection of Simulated XRD Powder Patterns for Zeolites, M.M.J. Treacy

    And J.B. Higgins, 4th edition, Elsevier, 2001 52 Wyckoff R. W. G., Crystal Structures, 2nd edition. Interscience Publishers,

    New York, 1963

    91

  • 53 G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright and R. C. Keezer, Solid

    State Commun., (1967) 113-117 54 S. N. Yannopoulos and K. S. Andrikopoulos, J. Chem. Phys. 121, 4747

    4758, 2004 55 T.P. McLean, The absorption edge spectrum of semiconductors. Progress

    in semiconductors,5, 55-102, 1960 56 P.D. Fochs , The measurement of the energy gap of semiconductors from

    their diffuse reflection spectra. Proceedings of the Physical Society. 69B, 70-

    75, 1956

    92

    1. 2. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.6.1. 2.6.2. 2.6.3. 2.6.4.

    3. 3.1. 3.2. 3.3. 3.4. 3.4.1. 3.4.2. 3.4.3. 3.4.4.

    3.5. 3.5.1. 3.5.2. 3.5.3. 3.5.4. 29 3.5.5. 3.5.6. 3.5.7. 3.5.8. 3.5.9.

    3.6. -1 (Silicalite-1) 3.7. X

    4. 5. 5.1. (Scanning Electron Microscopy, SEM) 5.2. - 5.2.1. - 5.2.2. Bragg 5.2.3. -

    5.3. Raman 5.3.1. 5.3.2. Raman 5.3.3. 5.3.4. Raman

    5.4. - 5.4.1. 5.4.2. 5.4.3. (Reflection spectroscopy) 5.4.4. 5.4.5.

    6. 6.1. -1 6.2. 6.3. (PVD) 6.4 -1 6.4.

    7. 7.1. - 7.2. (SEM) 7.3. FT-Raman 7.4. (DRS)

    8. 9.