Σημειώσεις ΤΣΥΠ
-
Upload
panagiotis-dimas -
Category
Documents
-
view
334 -
download
0
Embed Size (px)
description
Transcript of Σημειώσεις ΤΣΥΠ
-
4 :
[]:,,
[]:()
[]:,/
[]:,/,,
: (!):2.
-
1::,,,,.(:Rippl &Sequent Peak).
2::,,
3::(Markov,Fiering ).().:
4:/.(/)
-
5:(.).6:
7:/.:
8::/Kuhn Tucker
-
9: 10: 11::
12:/
13:/
-
,.(2007).,. (ebook)
Loucks,D.P.,E.vanBeek,J.R.Stedinger,J.P.M.Dijkman,WaterResources Systems Planning andManagement,AnIntroduction to Methods,Models andApplications,StudiesandReports in Hydrology,UNESCOPublishing,680pages,Paris,2005(ebook)
Mays,L.W.,andY.K.Tung,Hydrosystems Engineering andManagement,McGrawHill,New York,1992.
Grigg,N.S.,WaterResources Management,McGrawHill,NewYork,1996.
-
https://mycourses.ntua.gr/
online mycourses (,/)
Email:[email protected]
-
2012
-
- (DEDUCTION INDUCTION)
( , 2, 23)
Deduction
Induction
(, )
(, , )
Deduction
Induction
Deduction
Induction
-
Xt=k*xt-1*(1-xt-1) Xt :
X1o=0.660001 X2o=0.66
t
1t, X2t
1t-X2t
-
- -
-
:
(, )
, ,
.
-
( < )
-
(0.5)
(0.75)
(0.25)
(0.75-0.25)
1.5*(0.75-0.25)
3* (0.75-0.25)
> 3* (0.75-0.25)
-
-
n
Xx
n
ii
1
sX x
nxi
i
n
( )2
1
1
sx2
sx
x
xi
i
nX x
n( )
( )3 1
3
x
ii
nX x
n( )
( )4 1
4
Cn
n nsx
xx
( )
( ) /( ) ( ) ( )
3 2
2 3 2 1 2
C nn n nk
x
xx
3 4
21 2 3*
( ) * ( ) * ( ) *
( )
( )
},...,,{max.. 211 nn
iXXXTM
E T X X Xi
n
n. . min{ , ,..., } 1 1 2
1..n : n :
-
010
20
30
40
5-10 10-15 15-20 20-25 25-30 30-35 (m3/s)
(
%
)
0
20
40
60
80
100
5 10 15 20 25 30 (m3/s)
(
%
)
0
10
20
30
40
0 5 10 15 20 25 30 ()
(
m
3
/
s
)
0
2
4
6
8
10
12
5-10 10-15 15-20 20-25 25-30 30-35
(m3/s)
-
1 < 2 1 = 2 1 = 2 = 0 1 = 2
1 = 2 1 < 2 1 = 2 = 0 1 = 2
1 = 2 1 = 2 1 = - 2 1 = 2
>0
-
1)()()(0)()(
XXX
X
FxFFxXPxF
dxxdFXf
xFxXPF
XX
XX
)()(
)(1)(1
H x
H x
FFT 1
11
1
x
-
NnxF xX )(
: nx: o
0
200
400
600
800
1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
(
m
m
)
0
200
400
600
800
1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
(
m
m
)
Fx(800)=18/25=0.72=72%F1(800)=7/25=0.28=28%
:
Fx(1000)=25/25=1=100%F1(1000)=0/25=0=0%
:
1)( N
nxF xX
-
020
40
60
80
100
5 10 15 20 25 30 35
(m3/s)
(
%
)
0
10
20
30
40
0 20 40 60 80 100 (%)
(
m
3
/
s
)
0
10
20
30
40
0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45
0
20
40
60
80
100
5 10 15 20 25 30 35 40 45
-
010
20
30
40
0 20 40 60 80 100 (%)
(
m
3
/
s
)
-
16
Weibull Normal LogNormal Galton Exponential GammaPearsonIII LogPearsonIII Gumbel Max EV2-Max Gumbel Min WeibullGEV Max GEV Min Pareto GEV-Max (k spec.) GEV-Min (k spec.)
(%) - : 9
9
,
9
5
%
9
9
,
9
%
9
9
,
8
%
9
9
,
5
%
9
9
%
9
8
%
9
5
%
9
0
%
8
0
%
7
0
%
6
0
%
5
0
%
4
0
%
3
0
%
2
0
%
1
0
%
5
%
2
%
1
%
,
5
%
,
2
%
,
1
%
,
0
5
%
1.200
1.150
1.100
1.050
1.000
950
900
850
800
750
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
(Gauss)K Gumbel
-
010
20
30
40
-4 -3 -2 -1 0 1 2 3 4 Gauss
(
m
3
/
s
)
(%)
(%)
()
0.2% 2.3% 16% 50% 84% 97.7% 99.8%
99.8% 97.7% 84% 50% 16% 2.3% 0.2%
1.002 1.02 1.2 2 6.2 43.5 500
-
i z=(Xi-)/ =0, =1
(0,1)z=1, F=0,8413
i=15
z=(15-10)/5=1
z=1
=10, =5
F=84,1%
=1(1-0,8413)=6
i = 1.5
F=1-(1/1.5)=0,333
z=-0.43
(0,1) F=1-0.333 z=0.43 F=0.333 z=-0.43
F=33.3%
(Xi-10)/5=-0.43 Xi=7.8
-
020
40
60
80
100
-3 -2 -1 0 1 2 3
F(x) (%) -3 3
0
1
2
3
4
-3 -2 -1 0 1 2
F(x) (%)
68.3%
95.4%
99.7%
-
:
200 hm3 : 10 hm3
: 20 hm3 :
100 hm3 : 30 hm3
: 10 hm3 :
110 hm3 : 40 hm3
1000 .
110
94
85
65
130
...
130
100
30
. 105
90
80
80
110
...
120
110
40
1
2
3
4
5
...
1000
200
190
210
170
160
...
220
200
10
+++->=0
20+10+110+105-200=+55
20+10+94+90-190=+24
20+10+85+80-210=-15
20+10+65+80-170=+5
20+10+130+110-150=+120
............................................
20+10+110+110-220=+30
.........
: 180
: 180/1000=18%
-
1 101 201 301 401 501 601 701 801 9010
100
200
300
400
500
1 101 201 301 401 501 601 701 801 9010
100
200
300
400
500
1 101 201 301 401 501 601 701 801 9010
100
200
300
400
500
m (hm3) s (hm3)Q 100 30Q 100 40 200 10 30
m (hm3) s (hm3) P (%)(QA,QB)=1 Q+Q 200 70 29(QA,QB)=0 Q+Q 200 50 23(QA,QB)=-1 Q+Q 200 10 7
-
R n
: F=1-F1=(1-1/)
n : (1-1/)n
n (): R=1-(1-1/)n
=10 n=10
R=1-(1-1/10)10=0.65=65%
-
xdxexFx x
2)(
21
21)(
2)(*5.0
21)(
x
exf
H
T
T
SzxxSzxx
2/1min
2/1max
)()()()(
TS
Z1+/2 %
ST xT
N
2)(1
2T )/11()( TZTK
-
H
2)ln(
21
*21)(
x
YX ex
xf2
)ln(21
0
*21)(
s
Y
x
X esxF
x
x
Sxxz
ln
lnln xx xzSx lnlnln xx xzSex lnln
( )
22ln /1ln( xSS xx 2/ln
2lnln xx Sxx
Z
-
GUMBEL
)(
)(cxae
X exF
( )
)()()(cxaecxa
X aexf
xSa /282,1xSxc 45,0
aTc
aFcTx x ))/11ln(ln()lnln()(
xSTkxTx *)()(
))/11ln(ln(*78.045.0)( TTk
22,1 )(*1.1)(*1396.11)()( TkTkn
STxTx x
-
GUMBEL
)(
1)(cxae
X exF
( )
)()()(cxaecxa
X aexf
xSa /282,1xSxc 45,0
aTc
aFcTx x ))/1ln(ln()1ln(ln()(
-
WEIBULL
kcxX exF
)/(1)(
( )
kcxkX ec
xckxf )/(1)(*)(
)11(k
c
22
2
)11(
)21(1
k
k
kkx TcFcTx /1/1 )/1ln(*)1ln(*)(
, c, Weibull(x)
-
LOG PEARSON III
)(ln1)ln(*)(
)( cxX ecxxxf
dsecsx
xFx
e
csX
c )(ln1)(ln*)()(
lnx
x
x
Sxxz
ln
lnln xx xzSx lnlnln xx xzSex lnln
-
: 250*106 m3
: 50*106 m3
: m= 2 m3/s, s=1 m3/s
: m= 8 m3/s, s=3 m3/s
:(1) (2) 50% (3)
786 m ,
(4)
(5) .
787 m 300*106 m3 25 km2
50*106 m3
-
: 250*106 m3
: 50*106 m3
: 63*106 m3
: 252*106 m3
A : 300+252=552 *106 m3
A B: 50+63=113 *106 m3
:(1) =552-50=502*106 m3(2) 50% =502-250*0.5=377*106 m3(3) 786 786 m : 300*106 m3-(787-786) m* 25 km2=275*106 m3(4) (3) (5) 125*106 m3 275*106m3 377-275=102*106 m3 125-102=23 *106 m3 =275*106 m3 =113-23=90*106 m3
-
=1.1
: 250*106 m3
: 50*106 m3
:
21*106 m3
:
126*106 m3
A : 300+126=426 *106 m3
A B: 50+21=71 *106 m3
:(1) =426-50=376*106 m3(2) 50% =376-250*0.5=251*106 m3< 275*106 m3 =275*106 m3 =71-(275-251)*106 m3=47 *106 m3(3) 786 786 m : 300*106 m3-(787-786) m* 25 km2 =275*106m3(4) (3) (5) 125*106 m3 47 *106 m3 =275*106 m3 =0
-
0 =1.04
: 250*106 m3
: 50*106 m3
:
7.5*106 m3
:
0*106 m3
A : 300*106 m3 A B: 50+7.5=57.5 *106 m3
:(1) =300-50=250*106 m3(2) 50% =57.5-57.5=0*106 m3 =250-(250*0.5-57.5)*106 m3=182.5 *106 m3(3) 786 786 m : 300*106 m3-(787-786) m* 25 km2 =275*106m3(4) (3) (5) =182.5*106 m3 =0
-
, , .
:() (),
()
() ( )
, .
(flash floods) . . .
-
-
. , .
:
Q = 0.278 * C * i * A :
Q (m3/sec): C : i (mm/hr): A (km2) :
, .
-
: km2 : c
=100
: t (hr)
=10
1.
3.
2.
1**
b
b
taitah
1
10
1 10 100
T=2
T=5
T=10T=20T=50T=100T=200
i=a*tb-1
, t hr
,
i
m
m
/
h
r
4. :
ic (mm/hr)=*tb-1
5.
Q (m3/s)=0.278*c* ic*A
-
( , )
i1 i2 i3i1 i2 i3
0
100
200
300
0 1 2 3 4 5 6
(
m
3
/
s
)
0
100
200
300
0 1 2 3 4 5 6
(
m
3
/
s
)
1
10
1 10 100
T=2
T=5
T=10T=20T=50T=100T=200
=100 =10
i1 i2 i3i1 i2 i3
0
100
200
300
400
0 1 2 3 4 5 6 7 8
(
m
3
/
s
)
0
100
200
300
400
0 1 2 3 4 5 6 7 8
(
m
3
/
s
)
-
1
10
100
1000
10000
100000
1 10 100 1000 10000 100000 1000000 10000000
(min)
(
m
m
)
Gouadeloupe26/11/1970
38 mm
Mongolia3/7/1975401 mm
o Cherrapunji, India
1-31/7/18619300 mm
o Cherrapunji, India
8/1860-7/186126461 mm
Reunion
6-7/1/19661825 mm
-
05
10
15
20
1
1
0
m
i
n
r
a
i
n
f
a
l
l
(
m
m
)
21/10/1994 10:00
21/10/1994 19:30
21-22/10/1994
19:30-20:30 67.7 mm
: 17.5 mm : 29.9 mm : 82.3 mm
21/10/1994 16:00
21/10/1994 22:00
22/10/1994 04:00
-
110
100
1000
0 1 10 100
Rainfall duration (hr)
M
a
x
i
m
u
m
i
n
t
e
n
s
i
t
y
(
m
m
/
h
r
T=10 YEARS
T=50 YEARS
T=500 YEARS
max 10 min 17.5 mm
max 20 min 29.9 mm
max 30 min 36.3 mm
max 1 h 67.7 mm
max 2 h82.3 mm
max 3 h 93.7 mm
max 6 h 100.0 mm
max 12 h 162.1 mm
max 24 h 167.1 mm
21-22/10/1994
-
110
100
1000
0.1 1.0 10.0 100.0
(hr)
T = 50
T = 10
21/10/1994
20/11/1993
T = 2
13/1/1997
11/1993, 10/1994 1/1997
-
Weibull Gumbel Max
(%) - : Gumbel (Max)
9
9
,
9
%
9
9
,
5
%
9
8
%
9
5
%
9
0
%
8
0
%
7
0
%
6
0
%
5
0
%
4
0
%
3
0
%
2
0
%
1
0
%
5
%
2
%
1
%
,
5
%
,
2
%
,
1
%
,
0
5
%
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
Weibull Gumbel Max
(%) - : Gumbel (Max)
9
9
,
9
%
9
9
,
5
%
9
8
%
9
5
%
9
0
%
8
0
%
7
0
%
6
0
%
5
0
%
4
0
%
3
0
%
2
0
%
1
0
%
5
%
2
%
1
%
,
5
%
,
2
%
,
1
%
,
0
5
%
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
Weibull Gumbel Max
(%) - : Gumbel (Max)
9
9
,
9
%
9
9
,
5
%
9
8
%
9
5
%
9
0
%
8
0
%
7
0
%
6
0
%
5
0
%
4
0
%
3
0
%
2
0
%
1
0
%
5
%
2
%
1
%
,
5
%
,
2
%
,
1
%
,
0
5
%
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
Weibull Gumbel Max
(%) - : Gumbel (Max)
9
9
,
9
%
9
9
,
5
%
9
8
%
9
5
%
9
0
%
8
0
%
7
0
%
6
0
%
5
0
%
4
0
%
3
0
%
2
0
%
1
0
%
5
%
2
%
1
%
,
5
%
,
2
%
,
1
%
,
0
5
%
105
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
Weibull Gumbel Max
(%) - : Gumbel (Max)
9
9
,
9
%
9
9
,
5
%
9
8
%
9
5
%
9
0
%
8
0
%
7
0
%
6
0
%
5
0
%
4
0
%
3
0
%
2
0
%
1
0
%
5
%
2
%
1
%
,
5
%
,
2
%
,
1
%
,
0
5
%
14013513012512011511010510095908580757065605550454035302520151050
Weibull Gumbel Max
(%) - : Gumbel (Max)
9
9
,
9
%
9
9
,
5
%
9
8
%
9
5
%
9
0
%
8
0
%
7
0
%
6
0
%
5
0
%
4
0
%
3
0
%
2
0
%
1
0
%
5
%
2
%
1
%
,
5
%
,
2
%
,
1
%
,
0
5
%
15014514013513012512011511010510095908580757065605550454035302520151050
1 h 2 h 6 h
12 h 24 h 48 h
-
This image cannot currently be displayed.
tbaitaitbahtah
b
b
ln*)1(lnln*ln*lnln*
1
)ln(*ln*lnln*)(* dtbTcahTdtah cb
)ln(*ln*lnln*)(* 11 dtbTcaiTdtaicb
,
h (mm)
t (hr)
T ()
20
1
2
30
1
5
60
1
50
40
1
10
80
1
100
30
2
2
40
2
5
70
2
50
50
2
10
90
2
100
80
24
2
100
24
5
120
24
50
140
24
10
170
24
100
........
........
........
-
V10 mm
10 mm/h MY 1h
V
5 mm/h MY 2h
V
3.33 mm/h MY 3h
D (hr)
D+1 (hr)
D+2 (hr)
V=10mm* A
-
1
tp hrQp m3/stb hrA km2
m
3
/
s
, hr
tp
Qp
tb
tb =2.52*tp10 mm*A km2=0.5*tb hr*Qp m3/sQp m3/s =0.01 m *A*106 m2/(0.5*2.52*tp*3600 s) Qp=2.2*A/tp
tb =7 hr A =100 km2
V=10 mm*100 km2= 1 *106 m3
V=0.5*tb hr*Qp m3/s Qp m3/s = 1 *106 m3 /(0.5*7*3600 s) Qp= 79.4 m3/s
-
kt)(exp)f(fff c0c
f
f
0
c
-
,
i
(
m
m
/
h
r
)
(hr)
,
Q
(
m
3
/
s
)
(hr)
V=Q*t
V=A*(i-)*tA:
-
0
100
200
300
0 1 2 3 4 5 6
(
m
3
/
s
)
0
100
200
300
0 1 2 3 4 5 6
(
m
3
/
s
)
0
100
200
300
0 1 2 3 4 5 6
(
m
3
/
s
)
0
100
200
300
400
500
600
0 1 2 3 4 5 6 7 8
(
m
3
/
s
)
0
100
200
300
0 1 2 3 4 5 6
(
m
3
/
s
)
U*i3/10
Qt=Ut*i1/10+Ut-1*i2/10+Ut-2*i3/10
U*i1/10
U*i2/10
Q1=U1*i1/10+U0*i2/10Q2=U2*i1/10+U1*i2/10+U0*i3/10Q3=U3*i1/10+U2*i2/10+U1*i3/10Q4=U4*i1/10+U3*i2/10+U2*i3/10Q5=U5*i1/10+U4*i2/10+U3*i3/10Q6=U6*i1/10+U5*i2/10+U4*i3/10Q7=U6*i2/10+U5*i3/10Q8=U6*i3/10
i1 i2 i3
Q0=U0*i1/10
0
100
200
300
0 1 2 3 4 5 6
(
m
3
/
s
)
0
100
200
300
0 1 2 3 4 5 6
(
m
3
/
s
)
0
100
200
300
0 1 2 3 4 5 6
(
m
3
/
s
)
0
100
200
300
400
500
600
0 1 2 3 4 5 6 7 8
(
m
3
/
s
)
0
100
200
300
0 1 2 3 4 5 6
(
m
3
/
s
)
U*i3/10
Qt=Ut*i1/10+Ut-1*i2/10+Ut-2*i3/10
U*i1/10
U*i2/10
Q1=U1*i1/10+U0*i2/10Q2=U2*i1/10+U1*i2/10+U0*i3/10Q3=U3*i1/10+U2*i2/10+U1*i3/10Q4=U4*i1/10+U3*i2/10+U2*i3/10Q5=U5*i1/10+U4*i2/10+U3*i3/10Q6=U6*i1/10+U5*i2/10+U4*i3/10Q7=U6*i2/10+U5*i3/10Q8=U6*i3/10
i1 i2 i3
Q0=U0*i1/10
-
-
1
(,)
(2000/60)://(riverbasins)
()
(GameTheory):(nash equilibrium)(pareto optimal)
-
2 ,
,
(
) (z=(Xi-
)/) :R
n
)()( xXPxFX
dxxdFXf
xFxXPF
XX
XX
)()(
)(1)(1
FFT 1
11
1
0
200
400
600
800
1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
(
m
m
)
NnxF xX )(
z=1
-
;
();
-
: ,,!
,
Rt
KQt
St
-
.
().
.
,()
-
;
()
/ ()
-
:(VN)
, .().
.
-
:,(V)
() . .
() , .
-
:(V)
.
. (free board) .
-
:,(),
:,,,
-
:Rippl
(massdiagramanalysis)
:
,.
: ==
-
( ):
tt dIC 0
t
iit tIC
1,
-
=(R(t,s))
: Qt == I
t: s:
-
Rt,s : ().
-
1(Rippl)
Inflows SUM[I] R SUM[R]SUM(I)SUM(R)
7 7 4 4 33 10 4 8 25 15 4 12 31 16 4 16 02 18 4 20 25 23 4 24 16 29 4 28 13 32 4 32 04 36 4 36 0
MaxSur 3MaxDef 2Storage: 5
0
5
10
15
20
25
30
35
40
1 2 3 4 5 6 7 8 9 10
S[I]
S[R]
-
2(Rippl)I R RI SUM(RI)**
7 4 3 03 4 1 15 4 1 01 4 3 32 4 2 55 4 1 46 4 2 23 4 1 34 4 0 3
0
1
2
3
4
5
6
1 2 3 4 5 6 7 8 9 10
S(RI)**
S(RI)**
: -
-
(Rippl)(.1),.
.
:()/() ()()
H
TT
t
dtI
dtQa
0
0
/
-
:Sequent Peak
:(t):tR(t):(release) tQ(t):t
(0)=0:(t)=R(t) Q(t) +(t1) ((t)>0,0)
(t)
-
:
:[1,3,3, 5,8,6,7,2,1]:3.5()
:()10;
(0)=0
-
:[1,3,3, 5,8,6,7,2,1]a) ;b) 7,5;
(b)(a);
70%(: FF1)?
-
()
(F1):p=m/(n+1)m: n:
():8 1:1/(9+1)=1/10=0.1=10%7 26 35 43 53 62 71 81 9:9/(9+1)=9/10=0.9 =90%
:F=1 F1 ;
0
200
400
600
800
1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
(
m
m
)
;
-
(storageyield)
(.SequentPeak)
() Sequent
Peak
:[1,3,3, 5,8,6,7,2,1]
()K=10;
-
(1) t,;(!)
!!()
R(t,s), ().
-
(2) Rt,ss.
sRs
Rt,s (/). 7.53.5(!)
-
;
/; .
-
:
:Xt[X(t)]t
:, x(t)X(t),t.
-
(/).
(discrete) (continuous).
-
.
.
-
().
.
/.
,.
-
,.
, : =365
-
:
.
-
=208.6 /182.06 =/
1 196 188 192 164 140 120 112 140 160 168 192 200 1972 164,332 200 188 192 164 140 122 132 144 176 168 196 194 2016 168,003 196 212 202 180 150 140 156 144 164 186 200 230 2160 180,004 242 240 196 220 200 192 176 184 204 228 250 260 2592 216,00
208,5 207 195,5 182 157,5 143,5 144 153 176 187,5 209,5 221 2185 182,08 1,15 1,14 1,07 1,00 0,86 0,79 0,79 0,84 0,97 1,03 1,15 1,21 12
-
(persistence) ,
()
,
.
:
Hurst (1965),1050
(variability),
,
-
.,
;
-
(!)
..,,
:xt =a0+a1t+a2t2++aptp()
-
:()
():(movingaverages)
-
2100 2250 2180
3 :
2176 3218022502100
-
(MovingAverageMA)
750
800
850
900
950
1000
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81
Days
V
a
l
u
e
DataMA(5)MA(10)MA(30)
-
(40)
-
; ()
.
(stationary)(nonstationary).
,.
-
:
1 )x(P t n
n .
!
-
:
:
-
..
:X = E[X(t)]()2 = Var[X(t)](:)
t
-
Markov()
t+1 () t
X1 X2 X3 X4 X5
:,
(.k=1)
-
Markov
Markov (Markovchains):Markov.
()
-
(t) 40%(t+1)
60% (t+1)
(t) 20%(t+1)
80% (t+1)
Markov:
8.02.06.04.0
P:(.(i) 1)
-
: :[,,,]
:[,?,,]
10;(simulation &!)
-
90%
80%
8.02.01.09.0
P: , ;
-
Pr[? ]=Pr[ ]+ Pr[ ]=0.2 * 0.9 + 0.8 * 0.2 = 0.34
66.034.017.083.0
8.02.01.09.0
8.02.01.09.02P
8.02.01.09.0
P
-
;
.,;
562.0438.0219.0781.0
66.034.017.083.0
8.02.01.09.03P
-
2( 3) 0 20
0 11
1 5
2 03
2
BA
1 1 = 1 , 1
:
63
0 12
1
2 0 2 0 0 1
15
0
BA
12=1,2
-
t,
:
P p
-
55
week - i
P
r
[
X
i
=
]
2/3
31323132 8.02.01.09.0
-
3 (
) Rippl (massdiagram),
SequentPeak(!)
. Excel(sequent
peak)
()(): p=m/(n+1)
;
;
-
3
: ;
:,(!),,,
Markov(
)
750
800
850
900
950
1000
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81
Days
V
a
l
u
e
DataMA(5)MA(10)MA(30)
-
Markov()
t+1 () t
X1 X2 X3 X4 X5
:,
(.k=1)
-
Markov
Markov (Markovchains):Markov.
()
-
(t) 40%(t+1)
60% (t+1)
(t) 20% (t+1)
80% (t+1)
Markov:
8.02.06.04.0
P:(.(i) 1)
-
:
:[,,,]
10;(simulation &!)
-
90%
80%
8.02.01.09.0
P: , ;
-
Pr[? ]=Pr[ ]+ Pr[ ]=0.2 * 0.9 + 0.8 * 0.2 = 0.34
66.034.017.083.0
8.02.01.09.0
8.02.01.09.02P
8.02.01.09.0
P
-
;
.,;
562.0438.0219.0781.0
66.034.017.083.0
8.02.01.09.03P
-
t,
:
P p
-
13
week - i
P
r
[
X
i
=
]
2/3
31323132 8.02.01.09.0
-
: .
( :,)
.
-
:
: R(p) (q) R(p,q)(BoxJenkins)
: R(p,d,q),().
FFGN (fastfractionalgaussiannoises),.
-
(),.
(,)
: M:
(Box Jenkins,1970).
ttt xxx 1:xt:x1,x2,...,xn,:
,
-
:
!
-
AutoregressiveMarkovModels(AR)
R(1)Fiering qi ( ;):
iii )q(q 11 i qi
. qi i
.
-
Fiering ti
(.),:
)1()( 2111 iii tqq
,, 1,.
-
Fiering
Markov(AutoregressiveModel):.:.
qi., 0.
-
,:, .
q(0)= ti:=0=1
2111 1 (t)q(q iii
-
m m:m ().
m:mm+1 .
qm,y=my..
ti:=0=1
)1())(( 21,11,1 mmimymm
mmmym tqq
-
...
::q=ln(Q)q()qQ=eq
-
Excelrand() [0,1]
Hnormsinv(rand()) (0,1).
. Seeds, Box-Buller
-
:()
Lag= (>50)
n
tt
n
ttt
xx
xxxxr
1
2
1
)(
))((
-
Excel
EXCEL,CORREL(S1,S1).
2,(Lag).
1
-
,()
,..50100.
().
-
;
(100),!!
.
-
,..Fiering 15
m ,..100100
Vi,(.SequentPeak).
-
:()
m Vi,i=1,2,...,m (),:
%Vi =v=
T, P,:
: m=. =
;
1NmP%
-
(.) .
(=20%),.
(=90%).
; //
/ .
VV2V1
1
2
-
:
VV2V1
1
2
V
?
-
.
Vm , 11Hurst .
(
-
, ',%.
() ,.
-
;;(97%)
;(99%,97%,95%)
VV2V1
1
2
=1
VV2V1
1
2
=2=1
-
(V)
; ; ; ;
-
:
-
, (!)
:
, ,, :,
() ,,
..
,,
,,
-
(sedimentyield):()(/)
(sedimentdischarge): (/)
.
(soilloss): .,().(/)
http://www.bcb.uwc.ac.za/Envfacts/facts/erosion.htm
Tech. Chron. A, Greece, 1987, Vol. 7, No 3
-
:
:,
-
/
(Lane(1941),Einstein(1964), Kennedy (1895))
, () (
()) (DuBoys (1879),Schoklitsch (1934),Einstein(1942,1950),MeyerPeter Mller (1948))
-
:,
:
: (,,)
, . , . II: . ,2006.
!!! 525%
-
( )
([])
/(,)
1. :
Bryce Canyon National Park, US
-
. . ,
2.
-
3.
:~100
-
(:!!)
[(),(/,)]
,/.
-
(..,, )
-
1. ():()()
(,1960)().
USLE:,.
,.
, .
-
(UniversalSoilLossEquation USLE)
:[kg/m2] R: K: (
) L: S: C: [0,011(
-
2. :
.
( ,1987):
PeG 315
G: [t/km2] P: [m] : i: pi: ,
332211 ppp 1=1 ()2=0,5()3=0,1()
-
; ()
: (3) ()
19621989
Q(m3/sec) M(kg/sec)
20/11/1965 35,47 23
24/11/1965 37,94 29,26
30/11/1965 61,31 50
3/12/1965 63,24 25,63
27/12/1965 71,03 30,78
18/1/1966 61,56 30
20/1/1966 183,87 190
24/1/1966 94,34 54,09
26/1/1966 72,75 10,43
12/2/1966 118,06 65,25
14/2/1966 141,31 147,25
16/2/1966 110,87 46,01
7/3/1966 221,76 320
8/3/1966 167,72 146,96
10/3/1966 149,5 69,49
26/3/1966 106,71 69,7
28/4/1966 69,23 48,91
30/4/1966 107,24 80,93
2/5/1966 92,92 28,72
-
Disclaimer: !
y=12.166e0.0145xR=0.7667
0
50
100
150
200
250
300
350
0 50 100 150 200 250
M
(
k
g
/
s
e
c
)
Q(m3/sec)
QSCurve
M(kg/sec)
Expon.(M(kg/sec))
;
-
:,..
-
()
: (tn/m3):
(tn/y) (m3))
:i),,, ii)
II (.. ) III ( ) IV
-
)(lb/ft3)
=WcPc +WmPm +WsPs
) W T (lb/ft3)
K=cc+mm+ss
c,m,s :% (clay), (silt) (sand)Wc,Wm, Ws,c,m,s :,
)(ft3)
VN =(G/WT) G (lb/yr)
1143430 )T(lnTTK,WT
Wc Wm Ws c m s
26 70 97 16 5.7 0 35 71 97 8.4 1.8 0 40 72 97 0 0 0IV 60 73 97 - - -
1lb = 0,454kg1kg = 2,2 lb1 tn = 2200 lb1ft=0,305m1ft3=0,0284m3
1lb/ft3=16kg/m3=0.016t/m3
-
():1.
(.,)
2. ()(..)
3. (,...),,.
4. ()
:
-
()
( II), 35% , 45% 20% .
:1.
=50 106 tn/yr
2. O 10 20%
3. 10 20% .
-
II :
1. =WcPc +WmPm +WsPs =35*0,2+71*0,45+97*0,35=72,9lb/ft31,166tn/m3
K=cc+mm+ss =8,4*0,2+1,8*0,45+0*0,35=2,49
W 50:=76,14lb/ft31,218tn/m3
2. G =0,9*1060,8*106VN(50) =36,9*106 m3 VN(50) =32,8*106
3. G =0,9*1060,8*106VN(50) =41*106 m3 =56W56 =1,22tn/m3 =63W63 =1,222tn/m3
1)50(ln1505049,2*4343,09,7250W
36
3
6
)50( 10*4150218,1
10myr
mtnyrtn
TWGVT
-
V;(!)
(): 12
13
-
Morris,GregoryL.andFan,Jiahua.1998.ReservoirSedimentationHandbook,McGrawHillBookCo.,NewYork
-
6
-
: http://greek-energy.blogspot.com
-
: http://kpe-kastor.kas.sch.gr/energy1/alternative/hydrauliki.htm
1
CO2, SO2 /
( ) / CO2, NOx
/ CO2
1
/
-
: http://greek-energy.blogspot.com/2008/09/blog-post_07.html
-
(W)
(GWh)
: , 1985, , 2006, , ,
-
05
10
15
20
25
30
35
1
9
5
8
1
9
6
0
1
9
6
2
1
9
6
4
1
9
6
6
1
9
6
8
1
9
7
0
1
9
7
2
1
9
7
4
1
9
7
6
1
9
7
8
1
9
8
0
1
9
8
2
1
9
8
4
1
9
8
6
1
9
8
8
1
9
9
0
1
9
9
2
1
9
9
4
1
9
9
6
1
9
9
8
2
0
0
0
2
0
0
2
2
0
0
4
2
0
0
6
2
0
0
8
2
0
1
0
(
%
)
`
-
1961-1983 1984-2005
: , 1985, , 2006, , ,
-
, .
.
.
, .
: http://kpe-kastor.kas.sch.gr/energy1/alternative/hydrauliki.htm
-
, . ()
: , , 2011
-
;
: http://kpe-kastor.kas.sch.gr/energy1/alternative/hydropower.htm
.
, .
() . .
( ).
.
-
;
: http://kpe-kastor.kas.sch.gr/energy1/alternative/hydropower.htm
, .
.
-
: ..,
( )
-
. . :
: . (Pelton): (Francis Kaplan). .
Francis (10-150 m) . O Kaplan .
-
Pelton ( > 150 m)
: . , , , .: ( 20 22), , . : .
-
Jostedal, Sogn og Fjordane (GE Hydro)
Pelton ( > 150 m)
-
Kaplan ( < 15 m)
( 315 m) . , , . , .
-
Francis ( < 150 m)
. 10 150 m. , . , . .
-
()
I: (W) : 1000 kg/m3g: 9.81 m/s2
I = * g * Q * H * n
Q: m3/sH: m n: 85%
I (kW) = 9.81 * Q (m3/s) * H (m) * n: , , 2011
-
. . .
:
_ (KW), Q = ( .)
: = 8760 (KWh)
)(81.9 HQI
-
. () . :
= 20 30%
( ) ( , .. ). 0
0 20 80% 5 25%
-
(0) , , 0 ( ) ( ) .
0
-
() 0 . .
Q , . n (n < 100 %) :
I = 9.81 QH n (KW)
t :
E = 9.81 QH n t (KWh)
n , .
-
Q= 50 m3/s, . 100 m 3000 hr.
I: (W) : 1000 kg/m3g: 9.81 m/s2
I = * g * Q * H * nQ: m3/sH: m, n: 90 %
I = 1000 * 9.81 * 50 * 100 * 0.9= 44.145.000 W = 44.1 MW
E= 44.145.000 W * 3.000 hr = 132.4 GWh
-
-
1. ( ) .
2. ( , ).
3. , . .
-
(firm) () .
( .). .
W, .
: .
Vmin . .
: ( ). ( ).
-
(W,E).
: W, E , . : W, E ( ).
Markov
(.. 50 100 ) 1 2 ( )
50-100 ( , )
-
: t = (.. )Vt = t = t = Rt = ETt = W = () at = Wqt = Nt= .
tttttttt1t NqWaETRPIVV
12
1)1(
tta
tmax,tmin VVV maxttmin QqWaQ
tt EEb Et = KQt H{(Vt + Vt+1)/2} t
:
12
1)1(
ttb :
Markov
-
t , t : n Rt , ETt , Nt , qt : (W,) (Vt, Et) . (W,E). (W,E).
tttttttt1t NqWaETRPIVV
(W*,E*) .
, (.. ) .
Mimikou, M. and Kanelopoulou, S., 1987
-
.
Q D
Q.
, .
-
- () : Q = abD+cD2-dD3 11 5 :
4
-Mimikou, M. and Kaemaki, S., 1985
-
:
:
-
, ( )
( ) ( )
-
, (~0,5% ) ( 35% ) (, , , , ) , ,
: , , 2011
-
: , , , , , , .
: ( ), , ( , ).
, : - , , .
: , , 2011
-
.
(.. / ).
.
: http://kpe-kastor.kas.sch.gr/energy1/alternative/hydrauliki.htm
-
(MW)
(km2)
Three Gorges 2011 18.300-22.500
632
Itaipu
2003 14.000 1350
Guri (Simn Bolvar)
1986 10.200 4250
Tucurui 1984 8.370 3014
4
-
Tucurui dam Guri (Simn Bolvar)
Itaipu Three Gorges
: , , 2011
-
(553,9 MW)
(925,6 MW)
(500 MW)
(879,3 MW)
(129,9 MW)
(70 MW)
: , , 2011
3.060 MW 4.000-5.000 GWh 8-10% . (437 MW), (384 MW) (375 MW) .
-
25
(1954-0,035) (1954- 3,8) (1955- 46,2) (1960- 300) (1966- 2805) (1969- 53) (1969- 0,46) (1974- 1020) (1981- 303) (1985-10) (1985-16) (1989-11) (1990-145) (1997-570) (1999- 3,6) (1999- 12)
(1927) (1929) (1929) (1931) . (1931) (1988) (1988) (1992) . (2008) (2008) (2010)
16 ( -
hm3)11
-
: , , 2011
(16) , 3.060 W ( 22% ). , , 6.400 GWh . , 4.000 5.000 GWh ( 10% ). : 5.300 m3. 30% , o , , .
-
4 109.3 Francis 437.2 848 22
4 80 Francis 320 598 21
2 75 Francis 150 237 17
1 6.2 Tube-S type 6.2 16
3 43.3 Pelton 129.9 198 17
3 125 Francis 375 420 13
() 3 105 Francis-pump 315 380 14
2 54 Francis 108 130 14
3 3.6 Caplan 10.8 30 32
2 0.75 Francis 1.5 6 46
2 25 Francis 50 35 8
1 19 Francis 19 25 15
(MW)
I (MW) (GWh)
(%)
: , , 2011
-
2 105 Pelton 210 165 9
3 100 Francis 300 235 9
2 16 bulb
1 1.6 S units 33.6 45 15
2 2.5 Francis
1 5.3 Francis 10.3 50 55
() 3 128Francis-pump 384 440 13
2 58 Francis 116 240 24
2 35 Francis 70 260 42
1 8.5 Francis 8.5 40 54
1 1.3 Pelton
1 2.4 Francis 3.7 11.4 35
(MW)
I (MW) (GWh)
(%)
: , , 2011
-
YHE
( ), (
)
-
0500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
65001
9
5
0
1
9
5
5
1
9
6
0
1
9
6
5
1
9
7
0
1
9
7
5
1
9
8
0
1
9
8
5
1
9
9
0
1
9
9
5
2
0
0
0
2
0
0
5
2
0
1
0
(
M
W
)
,
(
G
W
h
)
-
, 2020 ( 2001/77)
()
-
() (, , ,
)
: , , , ,
( )
,
-
(< 20 m) (20 - 150 m) (> 150 m)
micro (< 0.1 W)mini (0.1-1 W) (1-10 W)
-
( )- (intake) (desilter) (forebay)
(penstock). (, , , , , )
(power house). (/) (, , )
: , , 2011
-
: Project
-
: Project
-
( )
-
: Project
-
( )
-
(Kalmoni - 200 kW in Assam, India)
-
- ()
-
02
4
6
8
10
12
14
0 10 20 30 40 50 60 70 80 90 100 (%)
(
m
3
/
s
)
0
2
4
6
8
10
12
14
0 365 730 1095 1460 1825 2190 2555 2920 3285 3650
(1/10/1971-30/9/1981)
(
m
3
/
s
)
-
. , ..., , , ( ): 30% - 50% 30 lt/sec .
, 2008
: ,
: ( )
-
. (900 kW)
-
(, 2009)
53,2 (31)9 (11)
14,9 (9) .+3 (4)
5,0 (3) 7 (9)
96,9 (57)61 (76)
MW (%) (%)170,1 (100)80 (100)31,5 (19)10 <
-
(, 2009)
157,7 (100)110 (100)
0 (0)10 <
-
-
: , , 2011
-
0500
1.0001.5002.0002.5003.0003.5004.0004.5005.0005.5006.0006.500
1
9
8
5
1
9
9
0
1
9
9
5
2
0
0
0
2
0
0
5
2
0
1
0
(
G
W
h
)
0
5
10
15
20
25
30
35
40
1
9
8
5
1
9
9
0
1
9
9
5
2
0
0
0
2
0
0
5
2
0
1
0
:
[
/
]
(
%
)
: , , 2011
-
- (315 W) ( ) 266 GWh 394 GWh
- (384 MW) ( ) 440 GWh 615 GWh
~ 30%
: , , 2011
-
0100
200
300
400
01-86 07-86 01-87 07-87 01-88 07-88 01-89 07-89 01-90 07-90 01-91 07-91 01-92 07-92 01-93 07-93 01-94 07-94 01-95 07-95
h
m
3
0
10
20
30
40
50
60
01-86 07-86 01-87 07-87 01-88 07-88 01-89 07-89 01-90 07-90 01-91 07-91 01-92 07-92 01-93 07-93 01-94 07-94 01-95 07-95
G
W
h
(GWh) (GWh)
(1986-1995)
-
- Kazunogawa
2001 Yamnashi-Ken , 1600 MW. 2 19.2 18.4 hm3 685 m. 500 m 5 3 km.
: , , 2011
-
1999 Okinawa . T - . 30 MW 140 m 26 m3/s.
- Okinawa
: , , 2011
-
- Okinawa
:
: , , 2011
-
, .
: , , 2011
-
. : 1 hm3 2 ( ) , (0.08 hm3)2 , 1050 3100 kW 4 2400 kW 4 1835 kW 2000 kW : , , 2011
-
:
-
:
-
, . , . , , . , . 4MW 10 MW . . : () () , . 23 EURO 11 GWh.
: , , 2011
-
,
( )
: , , 2011
-
:(system):,: ,
(),
(Mays&Tung,1992).
-
(systemsanalysis): , .
-
?
,,
,,...
;
-
,I ,Q
,
,
Q(t) = (, ) * I(t)
-
-
(,?,) (,,) (,,,)
-
/
-
()[Hall Fagan,1956][Flood Jackson,1993].
,,[Ashby,1953]
,(whole)[von Bertalanffy,1968]
-
:,,.
.
: . :
:
-
:,.
/:,:
:
:.
-
:
,.
.
.
,.
The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.
-
().
.
-
:
E.
.
.
, ,.
-
.
,.
:., .
-
.
.
,.
-
:
DownwardCausation
.
(whole) ()
UpwardCausation ,
(.)
-
().
This image cannot currently be displayed.
-
()
()(): (stateequations), (parameters) .
()()
(),,,,...(constraints)..
-
: .Heisenberg,,.
-
:OckhamsRazor
WilliamofOckham(12901349):(),
-
;
???
-
Ockham:
!
-
...
-
(.)
-
()
-
dayDuFRE n 2m
kg *)(**
Penman ( )
daynSrSn 20 m
kj )*55.0cos*29.0(**)1(
Sn
ChPa
)3.237(*4098
o2 Tes
dayneLn 2
5.04
mkj )*9.01.0(*)*09.056.0(**
Ln
es:
hPa 718.2*11.6 237.3T17.27*Tse
ChPa 67.0 o
dayuuF 22 m
kg )*54.01(*26.0)(
F(u)
dayLSR nnn 2mkj
Rn
hPa eeD s
D
u2: 2 m (m/sec): (
oC)
hPa 100
* Uee se:
U: (%)
dayk 426
mkj 10*9.4
: Stefan-Bolzmann
r: (lbedo)
0
-
y=12.166e0.0145xR=0.7667
0
50
100
150
200
250
300
350
0 50 100 150 200 250
M
(
k
g
/
s
e
c
)
Q(m3/sec)
QSCurve
M(kg/sec)
Expon.(M(kg/sec))
-
(, )
/
)
-
()
():i.
(!)
ii.
-
:1
)(
)
-
:2
)
-
()
-
:,
:,
0: ,
-
;
: :
;
()
(;..)
-
:.
,!(./)
-
()
.
-
..
()
,().
-
(extrapolation)
,
y=0,000000193x2,652796317R=0,735585973
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
0 100 200 300 400 500 600t
n
/
s
m3/s
(): 19621982. 19621992
-
:
-
(,) (.) (
)
-
Xt=k*xt1*(1xt1)Xt:
X1o=0.660001 X2o=0.66
:
1t,X2t
1tX2t
-
...
;
();
;
GCMs;
();
-
,().
()[,],.,.
: Vollenweider
P(mg/m3), L(mg/m2a),q(m/a),z(m).
-
()L = 680
mg/m3, q=10.6m/a,z=84m,P=16.8mg/m3. P10mg/m3.
20mg/m3.
tornado
-
(.)
,.
2(()()).
.[][] V
=1
- MonteCarlo a b a
-
MonteCarlo
K.
(1000;)
...
-
:LatinHypercubeSampling
.
.
()
.
.
-
:
-
( ) :
1. ;2.
3.
( )
-
1
p(xa+xb+30=
-
23;
excel
-
=RAND()
=IF(C14+D14
-
=RAND()
=NORMINV(B14;$B$4;$C$4)
=IF(C14+D14
-
=RAND()
-
=RAND()
=1-B14
( )
-
;a)
;b)
c) ()
-
;
():Var[X+Y]=Var[X]+Var[Y]+2Cov[X,Y]
;
-
()
-
1
:
-
1
20.
: (Vmin)(Vmax)
.
-
2
SequentPeak
-
3
% (Fiering)10050.
-
ThomasFiering(1962)
Markov(AutoregressiveModel):.:.
qi., .
-
,:,.
q(0)= ti:=0=1
2111 1 (t)q(q iii
-
m m:m ().
m:mm+1 .
qm,y=my..
ti:=0=1
)1())(( 21,11,1 mmimymm
mmmym tqq
-
...
::q=ln(Q)q()qQ=eq
-
NORMINV()
NORMINV(probability,mean,standard_dev)
RAND()0and1 ()
RAND().
:NORMINV(RAND(),mean,standard_dev) mean,standard_dev
: (Box-Muller)=SQRT(-2*LN(RAND()))*SIN(2*PI()*RAND())
-
Lag= (>50)
n
tt
n
ttt
xx
xxxxr
1
2
1
)(
))((
-
EXCEL,CORREL(S1,S1).2,(Lag).
1
-
:
,..R(1)15
m ,..100100
Vi,(.SequentPeak)
-
()
T, P,:
: m=. =
1NmP%
-
(.) .
(=20%),.
(=90%).
.
VV2V1
1
2
-
4
;
VV2V1
1
2
Vc
?
-
(bonus!)
(excel(MATLAB))35%,10050 :V(t+1)=V(t)+QR.
;...
-
:2
,()
-
802000
11240001379000
1831000
2540000
3027000 30710003163000
0
50
100
150
200
250
300
350
400
450
500
1
9
2
7
2
8
1
9
3
1
3
2
1
9
3
5
3
6
1
9
3
9
4
0
1
9
4
3
4
4
1
9
4
7
4
8
1
9
5
1
5
2
1
9
5
5
5
6
1
9
5
9
6
0
1
9
6
3
6
4
1
9
6
7
6
8
1
9
7
1
7
2
1
9
7
5
7
6
1
9
7
9
8
0
1
9
8
3
8
4
1
9
8
7
8
8
1
9
9
1
9
2
1
9
9
5
9
6
1
9
9
9
0
0
2
0
0
3
0
4
2
0
0
7
0
8
(
h
m
3
)
//
()
()
-
(99%,).
() .
(=) (,) .
()().
(),()().
() 1.0 m3/s (,).
-
,
().(S)(V)V =a(S Smin)b,Smin .,.:L=L+(S S0).
400hm3,20hm3 ().
,19792008(excel)
0,086 0,074 0,073 0,074 0,074 0,077 0,075 0,088 0,091 0,103 0,093 0,092
(m) 320 40(m) 384 43,5(m) 435 79,8
0,00061,898
7
b 2,96721,559
5L0(hm3/) 0,07 26,6S0(hm3) 320 0 0,012 0,545(hm3/) 35 20(/m3) 0 0,05(m) 410 60
-
: ,
. (flowchart)/(pseudo
code),.
((%)),(,).
.
,:()()o
-
... 43,4,55
..
(.) (+/ 20%):Tornado
5: .(400hm3)
0.7%, 15%.
6./.
-
:
();
;
().;
-
().
-
:OckhamsRazor
WilliamofOckham(12901349)
-
()
-
()
():i.
(!)
ii.
-
()
.
-
:
-
.
().
-
: ( !)
.
()
(Loops)
-
VBA(Excel) MATLAB(www.mathworks.com) C,C#,Delphi,Fortran
-
:
(MATLAB?Fortran?)
(.,).
().
-
n
:n1 .:
fori:=1tonsum:=sum+list[i]product:=product*list[i]
end
-
,,,,
Begin/End
DataInitialization
Decision
Action
Connector
-
time=0fortime=1:10
ComputevelocityPrintvelocity
end
-
/
IFconditionStatement1Statement2
End
-
;
-
:
(.);
-
(.
) .
().
:,.
(),().
,,.
(Excel,1013).
-
: () (trialanderror) (
-
2: ()
()
2(2)
-
:..,x
:..,f(x)=3x+2 (.)
:..,5x24,x0 .
-
:,
Max(0.6x[]+0.4x[])100
;
;
x !!!
. 2042 km2, 278 hm3
-
424 km2, 17 hm3
/ /
+204.4 +223.0 m, 31 hm3
+43.5 +79.8 m, 585 hm3
120 km2, 14 hm3
+384.0 +435.0 m, 630 hm3
588 km2, 235 hm3
+458.5 +505.0 m, 112 hm3
352 km2, 278 hm3
-
(
< 27 m
3 /s)
Y
(
1
8
m
3
/
s
)
(7.5 m3/s)
. 2042 km2, 278 hm3
-
424 km2, 17 hm3
/ /
+204.4 +223.0 m, 31 hm3
+43.5 +79.8 m, 585 hm3
120 km2, 14 hm3
+384.0 +435.0 m, 630 hm3
588 km2, 235 hm3
+458.5 +505.0 m, 112 hm3
352 km2, 278 hm3
-
(
< 27 m
3 /s)
Y
(
1
8
m
3
/
s
)
(7.5 m3/s)
-
:
.
,.
.
-
:,,.
:,.
,(=,curseofdimensionality).
-
..
,,,,,.
302:230=109 (1sec=30)
.
-
maxf=0Forj=1ton
x2=rand[]x3=rand[]x1=10x2x3Calculate:f(x1,x2,x3)IFf(x1,x2,x3)>maxf
maxf=f(x1,x2,x3)maxx1=x1maxx2=x2maxx3=x3
endNextj
n:
( )
-
Shuffledcomplexevolution
-
()
-
1
:
-
1
20.
: (Vmin)(Vmax)
.
-
2
SequentPeak
-
3
% (Fiering)10050.
-
ThomasFiering(1962)
Markov(AutoregressiveModel):.:.
qi., .
-
,:,.
q(0)= ti:=0=1
2111 1 (t)q(q iii
-
m m:m ().
m:mm+1 .
qm,y=my..
ti:=0=1
)1())(( 21,11,1 mmimymm
mmmym tqq
-
...
::q=ln(Q)q()qQ=eq
-
NORMINV()
NORMINV(probability,mean,standard_dev)
RAND()0and1 ()
RAND().
:NORMINV(RAND(),mean,standard_dev) mean,standard_dev
: (Box-Muller)=SQRT(-2*LN(RAND()))*SIN(2*PI()*RAND())
-
Lag= (>50)
n
tt
n
ttt
xx
xxxxr
1
2
1
)(
))((
-
EXCEL,CORREL(S1,S1).2,(Lag).
1
-
:
,..R(1)15
m ,..100100
Vi,(.SequentPeak)
-
()
T, P,:
: m=. =
1NmP%
-
(.) .
(=20%),.
(=90%).
.
VV2V1
1
2
-
4
;
VV2V1
1
2
Vc
?
-
(bonus!)
(excel(MATLAB))35%,10050 :V(t+1)=V(t)+QR.
;...
-
:2
,()
-
(,Ockham!)
-
802000
11240001379000
1831000
2540000
3027000 30710003163000
0
50
100
150
200
250
300
350
400
450
500
1
9
2
7
2
8
1
9
3
1
3
2
1
9
3
5
3
6
1
9
3
9
4
0
1
9
4
3
4
4
1
9
4
7
4
8
1
9
5
1
5
2
1
9
5
5
5
6
1
9
5
9
6
0
1
9
6
3
6
4
1
9
6
7
6
8
1
9
7
1
7
2
1
9
7
5
7
6
1
9
7
9
8
0
1
9
8
3
8
4
1
9
8
7
8
8
1
9
9
1
9
2
1
9
9
5
9
6
1
9
9
9
0
0
2
0
0
3
0
4
2
0
0
7
0
8
(
h
m
3
)
//
()
()
-
(99%,).
() .
(=) (,) .
()().
(),()().
() 1.0 m3/s (,).
-
(Koutsoyiannis et al.)
-
1. 2. ;3.
;4. ;5. ;
;6.
;;7. ;
;8. ;
;9.
;;10. ;
;
-
,():
(),.
:,, (..,),(....=?).
; ;
-
:
-
:
-
;
-
:
; ( (. 2000/60);)
-
,
().(S)(V)V =a(S Smin)b,Smin .,.:L=L+(S S0).
400hm3,20hm3 ().
,19792008(excel)
0,086 0,074 0,073 0,074 0,074 0,077 0,075 0,088 0,091 0,103 0,093 0,092
(m) 320 40(m) 384 43,5(m) 435 79,8
0,00061,898
7
b 2,96721,559
5L0(hm3/) 0,07 26,6S0(hm3) 320 0 0,012 0,545(hm3/) 35 20(/m3) 0 0,05(m) 410 60
-
: ,
. (flowchart)/(pseudo
code),.
((%)),(,).
.
,:()()o
-
... 43,4,55
..
(.) (+/ 20%):Tornado
5: .(400hm3)
0.7%, 15%.
6./.
-
:
();
;
().;
-
FlowChart
-
: 2
, ( )
-
(, Ockham!)
-
802000
11240001379000
1831000
2540000
3027000 30710003163000
0
50
100
150
200
250
300
350
400
450
500
1
9
2
7
2
8
1
9
3
1
3
2
1
9
3
5
3
6
1
9
3
9
4
0
1
9
4
3
4
4
1
9
4
7
4
8
1
9
5
1
5
2
1
9
5
5
5
6
1
9
5
9
6
0
1
9
6
3
6
4
1
9
6
7
6
8
1
9
7
1
7
2
1
9
7
5
7
6
1
9
7
9
8
0
1
9
8
3
8
4
1
9
8
7
8
8
1
9
9
1
9
2
1
9
9
5
9
6
1
9
9
9
0
0
2
0
0
3
0
4
2
0
0
7
0
8
(
h
m
3
)
//
()
()
-
(99%,).
() .
(=) (,) .
()().
(),()().
() 1.0 m3/s (,).
-
(Koutsoyiannis et al.)
-
1. 2. ;3.
;4. ;5. ;
;6.
; ;7. ;
;8. ;
;9.
; ;10. ;
;
-
, () : () , . : , , (.. , ), ( .... = ?).
; ;
-
:
-
:
-
;
-
:
; ( (. 2000/60);)
-
,
(). (S) - (V) V = a(S Smin)b, Smin . , . - : L = L + (S S0).
400 hm3, 20 hm3 ().
, 1979 2008 ( excel)
0,086 0,074 0,073 0,074 0,074 0,077 0,075 0,088 0,091 0,103 0,093 0,092
(m) 320 40(m) 384 43,5(m) 435 79,8
0,00061,898
7
b 2,96721,559
5L0(hm3/) 0,07 26,6S0(hm3) 320 0 0,012 0,545(hm3/) 35 20(/m3) 0 0,05(m) 410 60
-
:
, . (flow-chart) /
(pseudo-code) , .
( (%)) , ( , ).
.
, : () () o
-
... 4 3, 4, 5 5
- . .
(. ) ( +/- 20%): Tornado
5 : . ( 400 hm3)
0.7% , 15%.
6. /.
-
: ( ) ;
;
( ) . ;
-
Flow Chart
-
1:
-
;
Maximum
Minimum
-
: 50% :
7000 km! ; ; ; ; ; ; ;
-
(scheduling)
; ; ;
Low Zone SR Levels
184.00
184.50
185.00
185.50
186.00
186.50
187.00
187.50
05:00
:0006
:30:00
08:00
:0009
:30:00
11:00
:0012
:30:00
14:00
:0015
:30:00
17:00
:0018
:30:00
20:00
:0021
:30:00
23:00
:0000
:30:00
02:00
:0003
:30:00
T
o
t
a
l
H
e
a
d
(
m
)
Peak Tariff
St Trinians Booster Pump
0.00
10.00
20.00
30.00
40.00
50.00
60.00
05:00
:0007
:00:00
09:00
:0011
:00:00
13:00
:0015
:00:00
17:00
:0019
:00:00
21:00
:0023
:00:00
01:00
:0003
:00:00
F
l
o
w
(
L
/
s
)
-
( )
0
20,000
40,000
60,000
80,000
100,000
120,000
Inc. pipediameter
Pipestorage
Nodestorage (2
nodes)
Baseline Nodestorage
SUDs SUDs (2nodes &swales)
Inc. pipediameter(3 pipes)
Pipestorage (3
pipes)
Mitigation Option
F
l
o
o
d
D
a
m
a
g
e
(
)
0246810121416
F
l
o
o
d
C
o
n
s
e
q
u
e
n
c
e
Flood DamageFlood Consequence
-
; ( ) :
-
: , ,
SC3
SC5
SC4
SC6
SC7
SC2
SC1
Activated Sludge Treatment:Primary Clarifier, Aerator,
Secondary Clarifier
Storm Tank
River
Sewer network
WastewaterTreatment
Plant
CSO
-
0 10 20 30 km
-
(,
, )
(, , )
-
/H
0 10 20 30 km
(, , )
(, )
-
()
( , )
,
. NashSutcliffe
-
:
(robust solution)
O
b
j
e
c
t
i
v
e
(
M
a
x
)
-
/
; (;)
John Snow: Broad StreetPump as a source of a water borne disease
Formulas: GP vs. EPR
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5
dimensionless Chzy resistance coefficient - formulas
d
i
m
e
n
s
i
o
n
l
e
s
s
C
h
z
y
r
e
s
i
s
t
a
n
c
e
c
o
e
f
f
i
c
i
e
n
t
-
o
b
s
e
r
v
e
d
(GP)(EPR)
)GP(6863.20ln0973.1ln534.01
SRhs
hs2R
gC hs
ds
)EPR(146.18ln100508.4ln39728.02ln6489.01
2
32
RdsS
dsS
dshs
hsds
dsRCad
-
-
-
:
min/max f(x) = f(x1, x2, , xn)s.t. gj(x1, x2, , xn) , , = 0, j = 1, , k
ximin xi ximax , i = 1, , n ( ) :
( ) ( ) (
) :
=
( )
-
x1
x2
x1min
x2min
x2max
x1max
,
x1
x2
x1
x2
x1
x2
,
,
,
-
(f(x))
-
0
.
0
5
0
.
0
5
0
.
1
5
0
.
2
5
0
.
3
5
0
.
4
5
0
.
5
5
0
.
6
5
0
.
7
5
0.04
0.18
0.33
0.48
0.63
0.78
-0.020
0.020.040.060.080.1
0.120.140.160.180.2
0.22
-
0
.
0
5
0
.
0
5
0
.
1
5
0
.
2
5
0
.
3
5
0
.
4
5
0
.
5
5
0
.
6
5
0
.
7
5
0.04
0.08
0.13
0.18
0.23
0.28
0.33
0.38
0.43
0.48
0.53
0.58
0.63
0.68
0.73
0.78
0.83
0.2-0.22
0.18-0.2
0.16-0.18
0.14-0.16
0.12-0.14
0.1-0.12
0.08-0.1
0.06-0.08
0.04-0.06
0.02-0.04
0-0.02
-0.02-0
x1x2
f(x1, x2)
-
( )
f(x) Rn . , x* :
f(x*) = grad f(x*) = 0 (stationary).
, f ( ). , (f(x*) = 0) , () x*. , , .
-
-
5
.
0
-
3
.
5
-
2
.
0
-
0
.
5
1
.
0
2
.
5
4
.
0
-5.0
-3.0
-1.0
1.0
3.0
5.0
05
1015202530354045
50
-0.05
0.15
0.35
0.55
0.75
0
.
0
4
0
.
1
3
0
.
2
3
0
.
3
3
0
.
4
3
0
.
5
3
0
.
6
3
0
.
7
3
0
.
8
3
f(x1, x2) = x12 + x22
f(x1, x2) = 0.5(1.1x1 x2)4 + 0.5(x1 0.5)(x2 0.5)
(x1*, x2*) = (0, 0), f* = 0
(x1*, x2*) =(0.314, 0.705), f* = -0.011
(x1*, x2*) =(0.618, 0.371), f* = -0.003
-
f(x), k g(x) := [g1(x), ..., gk(x)]T 0. x* f = (1, ..., k) :
, , Kuhn-Tucker. Kuhn-Tucker f, .
, :
(x, ) = f(x) + T g(x), x Rn i gi(x*) = 0 i, (x, ) f(x), (x*, *) = f(x*). x ( Lagrange).
i gi(x*) = 0 i = 1, , k df(x*)
dx + T dg(x
*)dx = 0
T
( )
-
, :
( Kuhn-Tucker) ,
x* * ( ) .
, (penalty functions). , , :
min (x) = f(x) + i = 1
k pi(x)
pi(x) 0 , pi(x) = 0 gi(x) 0, pi(x) > 0 gi(x) > 0. : pi(x) ( pi(x) 0
, pi(x) >> 0 ).
-
1:
-
;
Maximum
Minimum
-
:
(robust solution)
O
b
j
e
c
t
i
v
e
(
M
a
x
)
-
:
min/max f(x) = f(x1, x2, , xn)s.t. gj(x1, x2, , xn) , , = 0, j = 1, , k
ximin xi ximax , i = 1, , n ( ) :
( ) ( ) (
) :
=
( )
-
(x)
x1
x2
x1min
x2min
x2max
x1max
,
x1
x2
x1
x2
x1
x2
,
,
,
-
(f(x))
-
0
.
0
5
0
.
0
5
0
.
1
5
0
.
2
5
0
.
3
5
0
.
4
5
0
.
5
5
0
.
6
5
0
.
7
5
0.04
0.18
0.33
0.48
0.63
0.78
-0.020
0.020.040.060.080.1
0.120.140.160.180.2
0.22
-
0
.
0
5
0
.
0
5
0
.
1
5
0
.
2
5
0
.
3
5
0
.
4
5
0
.
5
5
0
.
6
5
0
.
7
5
0.04
0.08
0.13
0.18
0.23
0.28
0.33
0.38
0.43
0.48
0.53
0.58
0.63
0.68
0.73
0.78
0.83
0.2-0.22
0.18-0.2
0.16-0.18
0.14-0.16
0.12-0.14
0.1-0.12
0.08-0.1
0.06-0.08
0.04-0.06
0.02-0.04
0-0.02
-0.02-0
x1x2
f(x1, x2)
-
( )
f(x) Rn . , x* :
f(x*) = grad f(x*) = 0 (stationary).
, f ( ). , (f(x*) = 0) , () x*. , , .
-
-
5
.
0
-
3
.
5
-
2
.
0
-
0
.
5
1
.
0
2
.
5
4
.
0
-5.0
-3.0
-1.0
1.0
3.0
5.0
05
1015202530354045
50
-0.05
0.15
0.35
0.55
0.75
0
.
0
4
0
.
1
3
0
.
2
3
0
.
3
3
0
.
4
3
0
.
5
3
0
.
6
3
0
.
7
3
0
.
8
3
f(x1, x2) = x12 + x22
f(x1, x2) = 0.5(1.1x1 x2)4 + 0.5(x1 0.5)(x2 0.5)
(x1*, x2*) = (0, 0), f* = 0
(x1*, x2*) =(0.314, 0.705), f* = -0.011
(x1*, x2*) =(0.618, 0.371), f* = -0.003
-
f(x), k g(x) := [g1(x), ..., gk(x)]T 0. x* f = (1, ..., k) :
, , Kuhn-Tucker. Kuhn-Tucker f, .
, :
(x, ) = f(x) + T g(x), x Rn i gi(x*) = 0 i, (x, ) f(x), (x*, *) = f(x*). x ( Lagrange).
i gi(x*) = 0 i = 1, , k df(x*)
dx + T dg(x
*)dx = 0
T
( )
-
, :
( Kuhn-Tucker) ,
x* * ( ) .
, (penalty functions). , , :
min (x) = f(x) + i = 1
k pi(x)
pi(x) 0 , pi(x) = 0 gi(x) 0, pi(x) > 0 gi(x) > 0. : pi(x) ( pi(x) 0
, pi(x) >> 0 ).
-
:
. 10 hm3, , , 6 hm3. 2 hm3 1 hm3 .
, . :
-
: (x1), (x2) (x3).
(= , ):
: : x1 + x2 + x3 = 10 : x2 +
x3 6 :
: x1 2 : x2 1 : x3 1
-
, ?
, ;
-
; Pareto : (i)
/
(ii) /.
. - (. )
- : PARETO
-
.
(Random Search) , (hill
climbing) , .
, .
(.. ), .
-
(.. 1 hm3), .
, 113 = 1331 , .
, .
-
n = 10 = 0.001 hm3: 1040
: 103 104
-
maxf=0For j=1 to n
x2=rand[]x3=rand[]x1=10-x2-x3Calculate: f(x1,x2,x3)IF f(x1,x2,x3) > maxf
maxf= f(x1,x2,x3)maxx1=x1maxx2=x2maxx3=x3
endNext j
n:
( )
-
(gradient or hill-climbing methods)
,
-
3 ( ).
j= 1, 2 and 3 xj R ( )
; (jNBj(xj).
. NBj(xj), xj j, :
;
x1, x2, x3 R:
-
(- gradients)
( : df/dx=0)
dNB(x1)/dx1 =0 x1= 3 (x2=2.33, x3=8) : 13.33 6; ( 13.33
).
-
Hill Climbing . Q
Q Q
Q.
: .
-
hill climbing
R:
-
( Qmax=8, R=2)
Q,
dNB/dx
-
-
Q
-
;
?
-
Lagrange
Bj(xj), .
, . pj,
j xj, .
Pj(xj) , pj, j xj.
( : = xj, dPj(xj)/dxj, ).
-
:
-
:
-
() :
:
-
p1=3.2, p2=4.0, p3=3.9 8.77, 13.96, 18.23 155.75. x1=10.2, x2=13.6 x3=14.5 = 38.3 .
; :
-
Lagrange
, Kuhn-Tucker: i gi(x*) = 0 i, (x, ) f(x), (x*, *) = f(x*).
-
10 10 :
;
(f(x*)=0)
-
(. 1-2 ) Q
http://www.lindo.com/
-
:
( )
( df/dx=0),
-
, .
- (hill-climbing Lagrange).
( ) .
() .
-
() .
, .
.
().
.
.
. ( (Optimality Principle))
-
() , .
.
.
-
( ).
(coding)!
-
3 ( ).
j= 1, 2 and 3 xj.
; (j NBj(xj). Q = 10.
-
/ ( .
: ( ) ( )
x1=0:2, x2=3:5 x3=4:6
-
x1=0:2, x2=3:5 x3=4:6 ( !)
-
(backward dynamic programming, BDP)
-
: [1,4,5]
-
(forward dynamic programming, FDP)
FDP .
, Stage.
-
(state variables). 1: .
, .
. m , n (. ) mn (stage).
(curse of dimensionality).
-
3 xj, j :
R(x1) = (12x1 x12), R(x2) = (8x2 x22) R(x3) = (18x3 3x32). max
(TotalR(X)) () 3, () 4.
-
:
: , ,
: ;
-
C(st, xt) st, xt, t, (Dt). :
:
(.. )
-
() (t).
st+1 ( ).
.
ft (st+1) st+1 t
-
f0(s1) = 0
-
g(x, t) .
y x
-
() 23
;
;
;
-
Simplex
-
, .
-
: 10 20 3. 60 1 2. 10 2.
. 3
-
(GeneticAlgorithms)
(EvolutionaryProgramming)
(SimulatedAnnealing)
-
:;
()().
-
The Gene is by far the most sophisticated program around.
- Bill Gates, Business Week, June 27, 1994
-
(C.Darwin,1858) =
()
,():
-
:
*
-
.
. ( )
.
.
.
-
:
. ..
.
()
-
:;
()(fitnessevaluation )
: , (), .
.
.
-
:;
::
:.
:.
-
...:;
..:
-
:()
(11,6,9)101101101001
220
..100101 =[(1) 25]+[(0) 24]+[(0) 23]+[(1) 22]+[(0) 21]+[(1) 20]=37
1000=?10001=?
-
:
)()()Pr( j j
ii xf
xfx
-
1001111010110010 10111110
10010010
10011110 10011010
-
:
()
-
(Holland,1975) (Schema)=0,1
*(dontcare)
..
()
L 2L .,.
1 * * 01 1 1 01 1 0 01 0 1 01 0 0 0
-
:
F(x)=x2
x [1,31].
-
:
31,5 .
(32=?)
-
:
(4):
1 =01101 =13102 =11000 =24103 =01000 =8104 =10011=1910
-
:
F(1)=132 =169F(2)=242=576F(3)=82 =64F(4)=192=361
:1170:293
-
:
A1
A2 A3
A4
: .
P(A1) = 0.14
P(A2) = 0.49
P(A3) = 0.06
P(A4) = 0.31
-
:
:
1 =01101
2 =11000
3 =11000
4 =10011
:1=011012=110003=010004=10011
-
::1 2 43 4 2:
1 = 0 1 1 0 | 12 = 1 1 0 0 | 0
3 = 1 1 | 0 0 04 = 1 0 | 0 1 1
1 = 0 1 1 0 | 02 = 1 1 0 0 | 1
3 = 1 1 | 0 1 14 = 1 0 | 0 0 0
-
:
:
1 = 0 1 1 0 02 = 1 1 0 0 13 = 1 1 0 1 14 = 1 0 0 0 0
1 = 0 1 1 0 02 = 1 1 0 0 13 = 1 1 0 1 14 = 1 0 0 1 0
-
:
1 =01100=1210=>F(12)=1442 =11001=2510 =>F(25)=6253 =11011=2710 =>F(27)=7294 =10010=1810 =>F(18)=324
:1822(1170):455.5(293)
-
:peak
z=f(x,y)=3*(1x)^2*exp((x^2) (y+1)^2)10*(x/5 x^3 y^5)*exp(x^2y^2)1/3*exp((x+1)^2 y^2).
-
5 10
-
; :
:
P(mutation)0
-
.fitness().
.
()(). ().
.
:.
-
:
3 5 =6
-
()
[3,1,2]x1=3,x2=1,andx3=2.
[1,0,1] 2.
-
?
-
:
().
0.30.
30% .
312 101:302and111.
-
:
( 01).
,1()05,21).
112102.
312 101 301 102.
(30116.5&10219.0)
-
:
35.5. 30116.5/35.5= 0.4710219/35.5=0.53
[0to1],0to0.47 301.102.
.
-
(Genetic Programming - GP)
:
/() :
:(),,
:EPR(Giustolici andSavic,2006)
-
.(datafitting)
-
aij, (Wi), Cj,Qj,j.
Cj=iWiaij/Qj
;()
;
-
(SimulatedAnnealing)
(annealing) (..).,.,.,, .
: (dE),,Boltzman:
(k:)
-
(SimulatedAnnealing)
, .
,,,.
.,,,
-
Metropolis:
P(dx)=exp(dx/T)>r
:dx: T:r: [0,1]
.
.
=0,(: hillclimbing)
=
,
()
-
:
AntColonyOptimisation
ParticleSwarmOptimisation a
-
;
:,
,,.
: ,,.
:,,
:
,.
: ,.
:,.
-
: ,,.
-
:(),.
:,, (.)
:,(,),.
:,(.).
-
;
(Duanetal.,1992):
(effectiveness),()
(efficiency),(,).
(..,,(hillclimbing)).
. ,
.
Domi_Ma8hmatos.pdfLesson_2_Hydro-Statistics.pdfLesson_3_Reservoirs.pdfLesson_4_More_Reservoirs.pdfLesson_6_Hydroelectric_works.pdfLesson_6_Systems-Models-Simulation-Uncertainty_1.pdfLesson_6_Systems-Models-Simulation-Uncertainty_2.pdfLesson_7_Algorithms_Flowchart_Thema.pdfOptimisation_1_2013.pdfOptimisation_1_2013_PartB.pdfOptimisation_Advanced.pdf