Energy loss and energy straggling a presentation by Younes Sina

Post on 10-Jun-2015

1.680 views 1 download

description

Modern Ion Beam Analysis, Energy Loss and Energy StragglingA Presentation by Younes Sina, PhD student of MSE at The University of Tennessee, Knoxville

Transcript of Energy loss and energy straggling a presentation by Younes Sina

Energy Loss and

Energy Straggling

Younes Sina

The University of Tennessee, Knoxville

Nt

areal density

dE/dx Stopping power, stopping force, specific energy loss[MeV/mm] , [eV/μm]

ΔE/Δx=dE/dxΔx→0

εstopping cross section[eV/1015 atoms/cm2 ],[ KeV/mg/cm2 ]

ε=1/N(dE/dx)

ε=1/ρ(dE/dx)

[atoms/cm2]

Nvolume density [atoms/cm3]

ρ mass density (gr/cm3)

Nt=N .dx

Basic concepts & definitions

Incident particles Transmitted particles

E0

Z1

M1

E0 -ΔE

Δx

Nt

M2

Z1

Z1

M1

Basic concepts and definitions

Uni

t con

vers

ions

Multiply units by For units Example

MeV MeV/amu 4 MeV 4He ~ 1 MeV/amu

v/vo (MeV/amu) 1/2 v/vo =1~0.025 MeV/amu 1H

(MeV/amu)1/2 m/s 2 MeV 4He ~ vHE =9.82x 106 m/s

1015 atoms/cm2 nm 1018 Atoms/cm2 For Au~170nm

μg/cm2 nm 100 μg/cm2 For C~258 nm

μg/cm2 1015 atoms/cm2 100 μg/cm2

For Au~305x1015 atoms/cm2

eV cm2/1015 atoms MeV/(mg/cm2 ) 100 eV cm2/1015 atoms for Al2O3~2.95 MeV cm2/mg

[M2= (2MAl + 3 MO)/5; MAl=26.98, MO=16.00]

eV cm2/1015 atoms keV/μm 30eV cm2/1015 atoms for Si~150 keV/μm

][1

1

amuM

]3/[

][10661.1 22

cmg

amuM

]/[

103cmg

][661.110

1

3

amuM

1581.0

10389.1 7

][661.11

2 amuM

][661.1

]/[102

32

amuMcmg

Basic Physics

Important factors during interaction of ions and target:

Ion velocityCharge of the ionCharge of target atom

Energy loss of ions:3 regimes for ions:

Low velocityIntermediate velocityHigh velocity

In comparison to the orbital velocity of atomic electron

V (velocity of ions)<<< v0 (velocity of electron at orbital)

V0= Bohr velocity

elastic collision with target nuclei

Nuclear energy loss dominates

nuclear energy loss diminishes as 1/E

Electronic energy loss dominates (inelastic collisions with atomic electrons)

Low velocityIntermediate velocityHigh velocity

ΔE= ΔEn+ΔEe

The ion carries its electrons and tends to neutralize by electron capture

With increasing v

v≈ 0.1v0 to v≈Z12/3v0 ΔEe

v>>v0 : charge state of the ion increases ion becomes fully stripped of its electrons

In the low –ion-velocity range

E

In the high –ion-velocity range

v>>v0 ΔEe chargeion

dE/dx=N .Z2 .(Z1e2)2 f (E/M1) (E/M1) is a function of target (it is not a function of the projectile)

for most application of ion beam analysis, nuclear stopping is small. Above 200 keV/amu contribution of nuclear stopping <1%

For example for Zr (amu=90): at E≥2.22 keV contribution of nuclear stopping <1%

Bethe & Bloch formula for high- velocity regime

EHI= (mHI/mH)EH≈ mHIEH

The scaling rule

γ= fraction effective charge

higher energy of ion γ→1

εHI = εHγHI 2ZHI

2

ε = 1/N(dE/dx)

EH=EHe/mHe→EH =2MeV/4=0.5 MeV

Example

If γHe=1 EHe=2 MeVWhat is EH ?

EHI= (mHI/mH)EH≈ mHIEH

Example 2:

If γLi=1 Calculate εLi@2,5,and 10 MeV

EHI=mHIEHEH=ELi/mLi

EH=ELi/7EH=2000/7=285 keVEH=5000/7=714.28 keVEH=10000/7=1428.57 keV

εH@285 keV= 0.489εH@714 keV= 0.282εH@1428 keV= 0.177

εLi=9εH

εHI =εHγHI 2ZHI

2 εLi =εHγLi 2ZLi

2

εLi=4.40 Mev.cm2/mgεLi=2.54 Mev.cm2/mgεLi=1.60 Mev.cm2/mg

Effective charge (γ) as a function of Z1 &Z2

ai : fitting constant value

E/M1 [keV/amu]

M1 = 4.0026

a0=0.2865a1=0.1266a2=-0.001429a3=0.02402a4=-0.01135a5=0.001445

If E He=0.5 MeV :γHe

2ZHe2 = (γHe

2). (22)=2.88

If E He=1 MeV :γHe

2ZHe2 = (γHe

2). (22)=3.46

If E He=1.5 MeV :γHe

2ZHe2 = (γHe

2). (22)=3.75

If E He=2 MeV :γHe

2ZHe2 = (γHe

2). (22)=3.89

If E He=3 MeV :γHe

2ZHe2 = (γHe

2). (22)=3.99

If γHe=1 then:γHe

2ZHe2 = (12). (22)=4.00

1

5

0

exp1 )][ln(2

M

Ea

i

iiHe

γLi =A1-exp[-(B+C)]

Effective charge (γ) as a function of Z1 &Z2

A=1+ (0.007+5x10-5Z2)exp -[7.6-ln(ELi[keV/amu]2

B=0.7138+0.002797ELi[keV/amu]

C=1.348x10-6 (ELi[keV/amu]2)

Calculation of γLi ,stopping in carbon at 2,5 and 10 MeV

mLi=7 ELi= 2, 5, and 10 Mev

ELi/mLi = ELi/7= 2857151430

γLi =A1-exp[-(B+C)]A=1+ (0.007+5x10-5Z2)exp -[7.6-ln(ELi[keV/amu]2

B=0.7138+0.002797ELi [keV/amu]

C=1.348x10-6 (ELi[keV/amu]2)

γLi =0.80.971

εLi =εHγLi 2ZLi

2

εLi =εHγLi 2(3)2

εLi =9εHγLi 2 εLi = 2.81

εLi = 2.38εLi = 1.593

εLi =9εHγLi 2

εLi =9εHγLi 2

εLi =9εHγLi 2

From Example 2:εH@285 keV= 0.489εH@714 keV= 0.282εH@1428 keV= 0.177

Effective charge (γ) for heavy ions : Z > 3

γHI =1- exp (-A)[1.034-0.1777 exp(-0.08114 ZHI)]

A=B+0.0378 sin (π B/2)

B=0.1772 (EHI [keV/amu]) 1/2 ZHI -2/3

Bragg’s rule

Stopping cross section for compound

εAB =mεA+nεB

Example : 2.0 MeV ion 4He stopping in silicon SiO2

SRIM-2006 gives εSi(2.0 MeV)=46.88 eV cm2/1015 atoms and εO(2.0 MeV)=38.36 cm2/1015 atoms. For , SiO2 we then have εSiO2 =1εSi+2εO =41.02 cm2/1015

atoms

Stopping cross section and depth scale

ΔE=

x

dxdxdE0

)/(

X= 0

)/(

1E

E

dEdxdE

dE/dx Stopping power

εstopping cross section

ε=(1/N)(dE/dx)

εCan be evaluated either at E0 or at Eav=E0-ΔE/2

Thin targets

x

dxdxdE0

)/(ΔE=

ΔE= (dE/dx) (E0)

Δx

ΔE=ε(E0)Nt

ε=(1/N)(dE/dx)

ΔE=ε(Eav)Nt

ΔE= (dE/dx) (av)

Δx

Surface energy approximation Mean energy approximation

Thick targets

ΔEi= (dE/dx) (Ei-1)

Δxi

ΔEi=ε(Ei-1)(Nt)i

n

iiEE

1

E0

Energy loss evaluated at the energy of the ion at the ( i-1)

the slabStopping cross section evaluated at the energy of the ion at the ( i-1) the slab

Example: Proton depth scale in carbon

What is the 2.0 MeV proton energy lost in a carbon target for depth of (a) 1000 nm and (b) 20 μm?

From the unit conversion table:

1015 atoms/cm2=]3/[

][10661.1 22

cmg

amuM

nm

1000 nm= 17.6x 1018 atoms/cm2

20 μm= 353x 1018 atoms/cm2

ΔE=ε(E0)Nt

ε(E0=2MeV)=2.866 ev cm2/1015 atomsΔE=2.866x10-15x17.6x1018≈50 keV

ΔE=ε(E0)Nt

ε(E0=2MeV)=2.866 ev cm2/1015 atomsΔE=2.866x10-15x353x1018≈1000 keV

Surface energy approximation Thin targets

Example: Proton depth scale in carbon

What is the 2.0 MeV proton energy lost in a carbon target for depth of (a) 1000 nm and (b) 20 μm?

From the unit conversion table:

1015 atoms/cm2=]3/[

][10661.1 22

cmg

amuM

nm

1000 nm= 17.6x 1018 atoms/cm2

20 μm= 353x 1018 atoms/cm2

ΔE=ε(Eav)Nt Eav=E0-ΔE/2=2000-50/2 keV=1975 keVε(Eav=1975 keV)≈2.866 ev cm2/1015 atomsΔE=2.866x10-15x17.6x1018≈50 keV

ΔE=ε(Eav)Nt Eav=E0-ΔE/2=2000-1000/2 keV=1500 keVε(Eav=1500 keV)=3.506 ev cm2/1015 atomsΔE= 3.506 x10-15x353x1018≈1235 keV

Mean energy approximation Thin targets

Example: Proton depth scale in carbon

What is the 2.0 MeV proton energy lost in a carbon target for depth of (a) 1000 nm and (b) 20 μm?

Thick targets

ΔEi=ε(Ei-1)(Nt)i

i=6(Nt)i =(353/6)x1018 =58.83x1018 atoms/cm2

ΔE1= ε(E0)(Nt)1= 2.866x10-15x58.83x1018≈168.5 keVThe energy at the end of the first slab is then E1=E0-ΔE=2000-168.5 keV=1832 keVEnergy loss in the second slab at this energy: ΔE2= ε(E1)(Nt)2=3.051x10-15x58.83x1018≈179.5 keVE2=E1-ΔE2=1832-179.5keV=1652 keV …….E3= 193.0 , E4= 210.3 , E5=233.7 , E6= 268.1 keV

ΔE2=Σ ΔEi(i=1-6)=1253 keV

E0E1E2

electronic stopping for isotopes

Stopping (medium [ ,Z2]) =stopping (medium [Mav , Z2]).(Mav/ )M av

M av

Straggling

Nt[atoms/cm2]≥2x1020. 2Z

1)

Z]/[

(1

2

amuMeVE

Bohr’s theory:

When the energy transferred to target electrons in the individual collisions is small compare to the width of the energy loss distribution, the distribution is close to a Gaussian distribution.

In the limit of high ion velocity, the energy loss is dominated by electronic excitations.

ΩB2[keV2]=0.26Z1

2Z2Nt[1018 atoms/cm2]

Full width at half- maximum height(FWHM)=2.355Ω

Bohr value for the variance (standard deviation) of the average energy loss fluctuation

Example

ΩB2[keV2]=0.26Z1

2Z2Nt[1018 atoms/cm2]

From the following Equation, we obtain for 4He ions:

ΩB2[keV2]≈Z2Nt[1018 atoms/cm2]

Helpful for quick estimates of 4He ion Bohr straggling4% accuracy

Corrections to Bohr’s theory, other models

Ω2/ΩB2= 0.5 L(x), for E [keV/amu]< 75 Z2

1, for E [keV/amu] ≥ 75 Z2

L(x)=1.36 x1/2- 0.16 x3/2

225

]/[

Z

amukeVEx

Lindhard & Scharff Eq.:

Example

Straggling of 5.0 MeV helium ions in gold

From Bohr Eq.: ΩB2[keV2]=0.26Z1

2Z2Nt[1018 atoms/cm2]

we have: ΩB

2/Nt≈ 82 keV2 cm2/1018 atoms In a gold layer of 1018 atoms/cm2 (about 170 nm) ΩB≈ 9 keV Ω2/ΩB

2≈ 0.8 for He ions in gold at 5.0 MeV Ω=7 keV

Straggling in mixtures and compounds

For an compound (mixture) AmBn (m+n=1) with an atom density NAB[atoms/cm3]and the atomic densities NA and NB:

If mNAB=NA and nNAB=NB then:

(ΩAB)2=(ΩA)2+(ΩB)2

t is the thickness

tB

Bn

tA

Am

t NNNAB

AB

)))(222

((

Example

AmBn = SiO2

Bohr straggling of 4He ions in 1018 atoms/cm2 of SiO2

m=0.33 & n=0.67

Nsi t = 0.33NSiO2t = 0.33x1018 atoms/cm2

NO t = 0.33NSiO2t = 0.67x1018 atoms/cm2

ΩB2[keV2]=0.26Z1

2Z2Nt[1018 atoms/cm2] Bohr’s Eq.

(ΩBSi)2[keV2]=0.26x 0.33Z1

2Z2 = 4.80 keV2

(ΩBO)2[keV2]=0.26x 0.67Z1

2Z2 = 5.57 keV2

(ΩBSiO2)2=(ΩB

Si)2+(ΩBO)2

(ΩBSiO2)2=(4.80+5.57)keV2= 3.22 keV

Additivity of energy loss fluctuations

(ΩTOT)2=(ΩDET)2+(ΩSTR)2 +(ΩBEAM)2

Beam energy profile

Energy resolution

Energy straggling

Range

E

ESESN

dEER

ne0 )]()([)(

Kurdistan, Iran