DAC Architectures - lumerink.com...Vishal Saxena-4 Ideal DAC Transfer Curve –4 – V out 000 D in...

Post on 28-Jun-2020

10 views 0 download

Transcript of DAC Architectures - lumerink.com...Vishal Saxena-4 Ideal DAC Transfer Curve –4 – V out 000 D in...

Department of Electrical and Computer Engineering

Vishal Saxena -1-

DAC Architectures

Vishal Saxena

Vishal Saxena -2-– 2 –

Static Performance

of DACs

Vishal Saxena -3-

DAC Transfer Characteristics

– 3 –

Note: Vout (bi = 1, for all i) = VFS - Δ = VFS(1-2-N) ≠ VFS

N-1 N-1

i-Niout FS iN-i

i=0 i=0

bV = V =Δ b 2

2

D/Abn

Digital input

Vout

Analog output

b1

...

Vref

• N = # of bits

• VFS = Full-scale range

• Δ = VFS/2N = 1LSB

• bi = 0 or 1

Vishal Saxena -4-

Ideal DAC Transfer Curve

– 4 –

Vout

000Din

001 011 101010 100 110 111

VFS-Δ

VFS

2

Vishal Saxena -5-

Offset

– 5 –

Vout

000Din

001 011 101010 100 110 111

VFS

2

VFS-Δ

Vos

Vishal Saxena -6-

Gain Error

– 6 –

Vout

000Din

001 011 101010 100 110 111

VFS

2

VFS-Δ

Vishal Saxena -7-

Monotonicity

– 7 –

Vout

000Din

001 011 101010 100 110 111

VFS

2

VFS-Δ

Vishal Saxena -8-

Differential and Integral Nonlinearities

– 8 –

• DNL = deviation of an output step from 1 LSB (= Δ = VFS/2N)

• INL = deviation of the output from the ideal transfer curve

Vout

000Din

001 011 101010 100 110 111

VFS

2INL

VFS-Δ

th

i

i Step Size -ΔDNL =

Δ

Vishal Saxena -9-

DNL and INL

– 9 –

Vout

000Din

001 011 101010 100 110 111

VFS

2

VFS-Δ

i

i j

j=0

INL = DNL

INL = cumulative sum of DNL

Vishal Saxena -10-

DNL and INL

– 10 –

• DNL measures the uniformity of quantization steps, or incremental (local)

nonlinearity; small input signals are sensitive to DNL.

• INL measures the overall, or cumulative (global) nonlinearity; large input

signals are often sensitive to both INL (HD) and DNL (QE).

Vout

000Din

001 011 101010 100 110 111

VFS

2

VFS-Δ

Vout

000Din

001 011 101010 100 110 111

VFS

2

VFS-Δ

Smooth Noisy

Vishal Saxena -11-

Measure DNL and INL (Method I)

– 11 –

Vout

000Din

001 011 101010 100 110 111

VFS

2

VFS-Δ

Endpoints of the transfer characteristic are always at 0 and VFS-Δ

Endpoint

stretch

Vishal Saxena -12-

Measure DNL and INL (Method II)

– 12 –

Vout

000Din

001 011 101010 100 110 111

VFS

2

VFS-Δ

Least-square

fit and stretch

(“detrend”)

Endpoints of the transfer characteristic may not be at 0 and VFS-Δ

Vishal Saxena -13-

Measure DNL and INL

– 13 –

Method I (endpoint stretch)

Σ(INL) ≠ 0

Method II (LS fit & stretch)

Σ(INL) = 0

Vout

000Din

001 011 101010 100 110 111

VFS

2

VFS-Δ

Vout

000Din

001 011 101010 100 110 111

VFS

2

VFS-Δ

Vishal Saxena -14-– 14 –

DAC Architectures

Vishal Saxena -15-

DAC Architecture

– 15 –

• Nyquist DAC architectures

– Binary-weighted DAC

– Unit-element (or thermometer-coded) DAC

– Segmented DAC

– Resistor-string, current-steering, charge-redistribution DACs

• Oversampling DAC

– Oversampling performed in digital domain (zero stuffing)

– Digital noise shaping (ΣΔ modulator)

– 1-bit DAC can be used

– Analog reconstruction/smoothing filter

Vishal Saxena -16-– 16 –

Binary-Weighted DAC

Vishal Saxena -17-

Binary-Weighted CR DAC

– 17 –

• Binary-weighted capacitor array → most efficient architecture

• Bottom plate @ VR with bj = 1 and @ GND with bj = 0

Cu = unit capacitance

VX

2Cu Cu Cu8Cu 4Cu

VR

Vo

b3 b2 b1 b0

CP

Vishal Saxena -18-

Binary-Weighted CR DAC

– 18 –

• Cp → gain error (nonlinearity if Cp is nonlinear)

• INL and DNL limited by capacitor array mismatch

R

u

N

p

N

1j

u

jN

jN

RN

1j

u

jN

up

N

1j

u

jN

jN

o

VC2C

C2b

V

C2CC

C2b

V

N

1jj

j-N

R

u

N

p

u

N

o2

bV

C2C

C2V

VX

2Cu Cu Cu8Cu 4Cu

VR

Vo

b3 b2 b1 b0

CP

Vishal Saxena -19-

Stray-Insensitive CR DAC

– 19 –

VX

2Cu Cu

16Cu

8Cu 4Cu

VR

Vo

b3 b2 b1 b0

CP

A

N

1jj

j-N

R

uu

1N

p

u

N

u

N

o2

bV

A

CC2CC2

C2V

Large A needed

to attenuate

summing-node

charge sharing

Vishal Saxena -20-

MSB Transition

– 20 –

Largest DNL error occurs at the midpoint where MSB transitions, determined

by the mismatch between the MSB capacitor and the rest of the array.

R4

1j

j4

p

4o V

C2CC

C1000V

R4

1j

j4

p

321o V

C2CC

CCC0111V

δC,CCCCC :Assume u3214

uu

oo

CδCC

C

C

δC

1LSB1LSB0111V1000VDNL

Code 0111 Code 1000

Vishal Saxena -21-

Midpoint DNL

– 21 –

• δC > 0 results in positive DNL

• δC < 0 results in negative DNL or even nonmonotonicity

δC > 0 δC < 0

Di

Ao

00111 1000

+DNL

Di

Ao

00111 1000

-DNL

Vishal Saxena -22-

Output Glitches

– 22 –

• Glitches cause waveform distortion, spurs and elevated noise floors

• High-speed DAC output is often followed by a de-glitching SHA

• Cause: Signal

and clock skew

in circuits

• Especially

severe at MSB

transition where

all bits are

switching –

0111…111 →

1000…000

Time

Vo

Vishal Saxena -23-

De-Glitching SHA

– 23 –

Time

Vo

DAC...

b1

bN

VoSHA

SHA output must be smooth (exponential settling can be viewed as pulse

shaping → SHA BW does not have to be excessively large).

SHA samples the output

of the DAC after it settles

and then hold it for T,

removing the glitching

energy.

Vishal Saxena -24-

Frequency Response

– 24 –

f

|H(f)|

0 fs 2fs 3fs

SHA

ZOH

2ωT

2ωTsin

ejωH 2

ωTj

ZOH

3dB

SHA

ωωj1

1jωH

Vishal Saxena -25-

Binary-Weighted Current-Steering DAC

– 25 –

• Current switching is simple and fast

• Vo depends on Rout of current sources without op-amp

• INL and DNL depend on matching, not inherently monotonic

• Large component spread (2N-1:1)

VX

Vo

b3 b2 b1 b0 A

I/2 I/4 I/8 I/16

R

N

1jj

j-N

o2

bIRV

Vishal Saxena -26-

R-2R DAC

– 26 –

• A binary-weighted current DAC

• Component spread greatly reduced (2:1)

N

1jj

j-N

o2

bIRV

VX

Vo

b3 b2 b1 b0 A

R

R R R

2R 2R 2R 2R

I

2R

I/2 I/4 I/8 I/16

Vishal Saxena -27-– 27 –

Unit-Element DAC

Vishal Saxena -28-

Resistor-String DAC

– 28 –

• Simple, inherently monotonic → good DNL performance

• Complexity ↑ speed ↓ for large N, typically N ≤ 8 bits

VR

Vo

Vo

Di

0

b0 b0 b1 b1

1

2

3

Vishal Saxena -29-

Code-Dependent Ro

– 29 –

• Ro of ladder varies with signal (code)

• On-resistance of switches depend on tap voltage

t

Vo

VR

Vo

Ro

Di

b0 b0 b1 b1

Co

Signal-dependent

RoCo causes HD

Vishal Saxena -30-

DNL

– 30 –

RN

1

k

1j

1

k

RN

1

k

1j

1

k

j V

ΔRNR

ΔRR1j

V

R

R

V

R+ΔRNR+ΔRN-1R+ΔR1 R+ΔR2

VR...

V1 V2 VN VN+1

RN

1

k

2j

1

k

1j- V

ΔRNR

ΔRR2j

V

j 1 j 1Rj j-1 R RN

k

1

j 1 RR Rj j j-1 DNL

R ΔR ΔRVV V V V

N NRNR ΔR

ΔR σV VDNL V V DNL 0, σ

N N R R

Rσ0,ΔR

Vishal Saxena -31-

INL

– 31 –

R2

N

j

k

1j

1

k

RRN

1

k

1j

1

k

RN

1

k

1j

1

k

j VRN

ΔR1jΔR1j-N

VN

1jV

ΔRNR

ΔRR1j

V

R

R

V

RRj j R INL

σNVj-1INL V V INL 0, σ max

N N 2 R

j

j

22 2R

j R V R3 2

22 2R

V R2

j 1 N- j 1 σj 1V V , σ V

N N R

σ1 N Nσ max V , when j 1

4N R 2 2

Vishal Saxena -32-

INL and DNL of Binary-Wtd DAC

– 32 –

RINL

RDNL

σNINL 0, σ max

2 R

σDNL 0, σ max 2 INL N

R

A Binary Weighted DAC is typically constructed using unit elements, the

same way as that of a Unit Element DAC, for good component matching

accuracy.

Vishal Saxena -33-

Current-Steering DAC

– 33 –

• Fast, inherently monotonic → good DNL performance

• Complexity increases for large N, requires B2T decoder

Io

…… …

Binary-to-Thermometer Decoder

...

b1 bN

I I I

Vishal Saxena -34-

Unit Current Cell

– 34 –

• 2N current cells typically decomposed into a (2N/2×2N/2) matrix

• Current source cascoded to improve accuracy (Ro effect)

• Coupled inverters improve synchronization of current switches

Io

ROW/COL

Decoder

...

b1

bN

I

Φ

Φ

...

Sj Sj

Vishal Saxena -35-– 35 –

Segmented DAC

Vishal Saxena -36-

BW vs. UE DACs

– 36 –

Binary-weighted DAC

• Pros

– Min. # of switched elements

– Simple and fast

– Compact and efficient

• Cons

– Large DNL and glitches

– Monotonicity not guaranteed

• INL/DNL

– INL(max) ≈ (√N/2)σ

– DNL(max) ≈ 2*INL

Unit-element DAC

• Pros

– Good DNL, small glitches

– Linear glitch energy

– Guaranteed monotonic

• Cons

– Needs B2T decoder

– complex for N ≥ 8

• INL/DNL

– INL(max) ≈ (√N/2)σ

– DNL(max) ≈ σ

Combine BW and UE architectures → Segmentation

Vishal Saxena -37-

Segmented DAC

– 37 –

0

VFS

Di

Vo

2N-10

LSB’s

MSB’s

• MSB DAC: M-

bit UE DAC

• LSB DAC: L-bit

BW DAC

• Resolution: N =

M + L

• 2M+L switching

elements

• Good DNL

• Small glitches

• Same INL as

BW or UE

Vishal Saxena -38-

Comparison

– 38 –

Example: N = 12, M = 8, L= 4, σ = 1%

Architecture σINL σDNL # of s.e.

Unit-element0.32 LSB’s

0.01 LSB’s

2N = 4096

Binary-weighted

0.32 LSB’s

0.64 LSB’s

N = 12

Segmented0.32 LSB’s

0.06 LSB’s

2M+L = 260

Max. DNL error occurs at the transitions of MSB segments

Vishal Saxena -39-

Example: “8+2” Segmented Current DAC

– 39 –

Ref: C.-H. Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6mm2,” IEEE

Journal of Solid-State Circuits, vol. 33, pp. 1948-1958, issue 12, 1998.

Vishal Saxena -40-

MSB-DAC Biasing Scheme

– 40 –

Common-centroid global biasing + divided 4 quadrants of current cells

Vishal Saxena -41-

MSB-DAC Biasing Scheme

– 41 –

Vishal Saxena -42-

Randomization and Dummies

– 42 –

Vishal Saxena -43-

Current-Steering DAC Unit Cell

– 43 –

Vishal Saxena -44-

Current-Steering DAC Calibration

– 44 –

Vishal Saxena -45-

References

1. Y. Chiu, Data Converters Lecture Slides, UT Dallas 2012.

2. Rudy van de Plassche, “CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters,” 2nd Ed., Springer, 2005..

3. B. Boser, Analog-Digital Interface Circuits Lecture Slides, UC Berkeley 2011.

D. K. Su and B. A. Wooley, JSSC, pp. 1224-1233, issue 12, 1993.

C.-H. Lin and K. Bult, JSSC, pp. 1948-1958, issue 12, 1998.

K. Khanoyan, F. Behbahani, A. A. Abidi, VLSI, 1999, pp. 73-76.

K. Falakshahi, C.-K. Yang, B. A. Wooley, JSSC, pp. 607-615, issue 5, 1999.

G. A. M. Van Der Plas et al., JSSC, pp. 1708-1718, issue 12, 1999.

A. R. Bugeja and B.-S. Song, JSSC, pp. 1719-1732, issue 12, 1999.

A. R. Bugeja and B.-S. Song, JSSC, pp. 1841-1852, issue 12, 2000.

A. van den Bosch et al., JSSC, pp. 315-324, issue 3, 2001.