FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m •...

59
FLASH ADCS

Transcript of FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m •...

Page 1: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADCS

Page 2: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC ARCHITECTURE

• Reference ladder consists of 2N

matched resistors

• Input is compared to 2N-1 reference

voltages

• Massive parallelism

• Very fast ADC architecture

• Latency = 1 Ts = 1/fs

• Throughput = fs

• Complexity = 2N

… …

En

co

de

r

VFS Vi

fs

Strobe

Dout

2N-1

comparators

Do 0

Vi

Δ

VFS

……

0

1

5

6

7

Page 3: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

THERMOMETER CODE

… …

VFS Vi

fs

Strobe

2N-1

comparators

1

1

1

0

Thermometer code

Page 4: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

THERMOMETER CODE

1

1

0

1

b2 b1 b0

001

010

110

111

000

ROM encoder

… ……

… …

VFS Vi

fs

Strobe

2N-1

comparators

1

1

1

0

Thermometer code

1-of-n code

Page 5: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC CHALLENGES: EXAMPLE

• VDD = 1.8 V

• 10-bit

• VFS = 1 V

• DNL < 0.5 LSB

• 0.5 mV = 3-5 σ

→ 1023 comparators

→ 1 LSB = 1 mV

→ Vos < 0.5 LSB

→ σ = 0.1-0.2 mV

• 2N-1 very large comparators

• Large area, large power consumption

• Very sensitive design

• Limited to resolutions of 4-8 bits

1V

1mV

σ

Page 6: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC CHALLENGES

4 6 8 10

2

8

32

128

N [bits]

Vo

s, m

ax [m

V]

VFS = 1V

VFS = 2V

0.5

• DNL < 0.5 LSB

• Large Full-scale voltage (VFS) relaxes offset tolerance

• Small VFS benefits conversion speed

(settling, linearity of building blocks)

Page 7: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

ADC INPUT CAPACITANCE

2

2 2Vthth g

Aσ V C 10 fF /

WLμm

• N = 6 bits

• VFS = 1 V

• σ = LSB/4

• AVT0 = 10 mV·μm

→ 63 comparators

→ 1 LSB = 16 mV

→ σ = 4 mV

→ L = 0.24 μm,

W = 26 μm

N (bits) # of comp. Cin (pF)

6 63 3.9

8 255 250

10 1023 ??!

• Small Vos leads to large device sizes, hence large area and power

• Large comparator leads to large input capacitance, difficult to drive and difficult to achieve sufficient tracking bandwidth

M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of MOS transistors,” IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, 1989.

Page 8: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FULLY-DIFFERENTIAL ARCHITECTURE

• VFS is effectively doubled

• 3-dB gain in SNR

• Better CMRR

• Noise immunity

• Input feedthrough is cancelled

• Cin nonlinearity partially removed

…… … …

En

co

de

r

VR+

VR-

Vi+

Vi-

PA Latch

Dout… … …

Page 9: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC DESIGN CONSIDERATIONS

• Use a dedicated S/H (or T/H) for better dynamic performance

– Can be avoided when using the A/D inside a ΔΣ loop

• Large input range for the quantizer has several benefits

– Increased step-size (VLSB) relaxes offset requirements on the comparators

– Reduced matching requirements result in small input cap to the S/H, easier to drive

– Reduced input cap results in smaller clock routing parasitics – power savings in clock drivers

• Comparator Design

– See comparator design notes/slides

Page 10: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC: REFERENCE LADDER

• Differential reference ladder

• Decaps on the reference taps

– large RC time-constant will not allow reference restoration after kickback noise

– Small R will lead to power dissipation

– Optimize RC time-constant value

• Subtract references from the input in a differential manner

– Several topologies are possible

• Several architectures for the digital backend

– May need to pipeline digital logic at high sampling rates >500 MS/s

Page 11: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

REFERENCE GENERATOR (FOR VREFP AND VREFM)

Page 12: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC: REFERENCE SUBTRACTION

Page 13: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

REFERENCE SUBTRACTION: SCHEME I

• Employ reference ladder for subtraction

• Choose current (I) such that differential voltage drop across R = 1 VLSB

• Ladder is part of the signal path

– Comparator input cap load the resistor taps

– Excess delay

Page 14: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

REFERENCE SUBTRACTION: SCHEME II

• Source followers to buffer vin

– reduced swing, varies with PVT

• Ladder is part of the signal path

– Comparator input cap load the resistor taps

– Excess delay

Page 15: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

REFERENCE SUBTRACTION: SCHEME III• Differential difference amplifier for subtracting the

reference

– followed by a zero crossing detector

• Relaxes the impedance requirements on the ladder

• Mismatch in differential pairs and tail current sources results in comparator offset

– current trimming (see the reference below)

• Finite BW of the amplifier causes excess delay

Page 16: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

REFERENCE SUBTRACTION: SCHEME IV

• Switched-capacitor reference subtraction

– Pay attention to charge injection

• ADC can handle large input swing

• Slow when auto-zeroing preamp is used

– Large settling time constant

– Reference subtraction in background

Page 17: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

EXAMPLE: FULLY-DIFFERENTIAL COMPARATOR

• Double-balanced, fully-differential preamp

• Switches (M7, M8) added to stop input propagation during regeneration

• Active pull-up PMOS added to the latch

M1 M2

Vi+

M5 M6

M9

Φ

Vo+

Vo-

Fully-diff. PA Latch

M3 M4

Vi-

VR+

VR-

M7 M8Φ

Page 18: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC: ERRORS

Page 19: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC ERRORS

… …

En

co

de

r

VFS Vi

Dout

2N-1

PA + Latch

Do 0

Vi

Δ

VFS

……

0

1

5

6

7

fs

Strobe• SHA-less

• Signal and clock propagation delay

• 2N-1 PAs + latches must be matched

• Synchronized clock strobe signal is critical

Going parallel is fast, but also gives rise to inherent problems…

Page 20: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

PREAMP INPUT COMMON MODE

Vi

VR1

VRj

PA 1

S1

PA j

Sj

PA j+1

… …

……

Input CM difference creates systematic mismatch (offset, gain, Cin, tracking BW, and CMRR) among preamps

j

R

1

R VV

Page 21: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

SAMPLING APERTURE ERROR

• Preamp delay and VTHN of sampling switch (M9) are both signal-dependent → signal-dependent sampling point (aperture error)

• A major challenge of distributing clock signals across 2N-1 comparators in flash ADC with minimum clock skew (routing, VTHN mismatch of M9, etc.)

M1 M2

Vin

M3 M4

Cgs1 Cgs2

CS

VR

RS

M5 M6

M8M7

M9

Φ

Vo+

Vo-

Cgd1 Cgd2Φ Mode

“high” Track

“low” Regenerate

Page 22: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

NONLINEAR INPUT CAPACITANCE

Vin Cin(Vout)

RS

Vout

t

Vin,

Vout

Signal-dependent input bandwidth (1/RSCin) introduces distortion

Page 23: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

INPUT SIGNAL FEEDTHROUGH

Feedthrough of Vin to the reference ladder through the serial connection of Cgs1

and Cgs2 disturbs the reference voltages

……

Vi

M1 M2

Vin

M3 M4

Cgs1 Cgs2

VRj

RS

Page 24: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

COMPARATOR METASTABILITY

• Cascade preamp stages (typical flash comparator has 2-3 PA stages)

• Use pipelined multi-stage latches; PA can be pipelined too

• Avoid branching off comparator logic outputs

LSB1

ΔBER

LmV2V1io /CgtexpAA0VtV

Vi

DoΔ

j

Vos

j+1 Assuming that the input is uniformly distributed over VFS, then

Page 25: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

COMPARATOR METASTABILITYVi

1

x

0

0

0

1 1 1

011

100

Logic levels can be misinterpreted by digital gates (branching off, diff. outputs)

Page 26: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

BUBBLES (SPARKLES) IN THERMOMETER CODE

Vi

0

0

1…

1

1

0

1 1 0

011

100

0010

Static/dynamic comparator errors cause bubbles in thermometer code

Page 27: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

BUBBLES (SPARKLES)

j+1

……

Vi

j

0

1

0

1

VRj

VRj+1

t

Vj

Vj+1

VRj

VRj+1

Δt

1 LSB

Comparator offset Timing error

Page 28: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

BUBBLE-TOLERANT BOUNDARY DETECTORVi

1

0

1

0

1

1

……

1

0

1

1

Ref: J. G. Peterson, “A monolithic video A/D converter,” IEEE Journal of Solid-State Circuits, vol. 14, pp. 932-937, issue 6, 1979.

• 3-input NAND

• Detect “011” instead of “01” only

• “Single” bubble correction

• Biased correction

Page 29: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

BUILT-IN BIAS

0

0

0

0

1

0

1

1

1

1

0

0

0

0

0

1

1

0

1

1

0

0

1

0

0

1

1

1

1

1

0

0

0

1

1

0

0

1

1

1

A CB D

1

2

3

Case“011”

Det.

“001”

Det.

A

B Fail

C Fail

D Fail Fail

Inspecting more neighboring comparator outputs improves performance

Page 30: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

MAJORITY VOTING LOGIC

Ref: C. W. Mangelsdorf, “A 400-MHz input flash converter with error correction,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 184-191, issue 1, 1990.

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

0

0

0

1

1

0

0

1

1

1

Case“011”

Det.

Majority

voting

A

B Fail

C

D Fail Fail

0

0

0

0

1

0

1

1

1

1

0

0

0

0

0

1

1

0

1

1

0

0

1

0

0

1

1

1

1

1

0

0

0

1

1

0

0

1

1

1

A CB D

1

2

3

1j1j1jjj1j

*

j CCCCCCC

Page 31: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

GRAY ENCODING

43

622

75311

TG

TTG

TTTTG

0

0

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

1

1

1

0

0

0

0

0

0

1

1

0

0

1

1

1

1

0

0

0

1

0

1

0

1

0

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

Thermometer Gray Binary

G3 G2 G1 B3 B2 B1T1 T2 T3 T4 T5 T6 T7

• One comparator output is ONLY used once → No branching!

• Gray encoding fails benignly in the presence of bubbles

• Codes are also robust over metastability errors

Only one transitionb/t adjacent codes

Page 32: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

GRAY ENCODING

Conversion of Gray code to binary code is quite time-consuming → “quasi” Gray code

43

622

75311

TG

TTG

TTTTG

0

0

1

1

0

1

1

1

1

1

0

0

1

1

1

0

1

0

0

0

0

1

0

0

13

15

12

Thermometer Gray Decimal

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Ref: Y. Akazawa, et al., “A 400MSPS 8b flash AD conversion LSI,” in IEEE International Solid-State Circuits Conference, Dig. Tech. Papers, 1987, pp. 98-99.

Page 33: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC: BINARY DECODERS

Page 34: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

GRAY ENCODED ROM DECODER

Page 35: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

WALLACE TREE ADDER (1S ADDER)

Page 36: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FOLDED WALLACE TREE DECODER

Page 37: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

MUX-BASED DECODER

Page 38: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

COMPARISON OF DECODER SCHEMES

• Mostly custom design at higher speeds

• Pipeline the digital backend at high-sampling rates to meet clock timing

• Tpd<TCK-(tpcq+tsetup)

• Tcd>thold-tccq

Page 39: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC: OTHER TECHNIQUES

Page 40: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

OFFSET AVERAGING (1)

Page 41: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

OFFSET AVERAGING (2)

Page 42: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC WITH AVERAGING

Page 43: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

OFFSET CALIBRATION

Page 44: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

COMPARATOR WITH OFFSET CORRECTING DAC

Page 45: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

HIGH-PERFORMANCE FLASH WITH CALIBRATION (1)

Page 46: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

COMPARATOR REDUNDANCY (1)

Page 47: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

COMPARATOR REDUNDANCY (2)

Page 48: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

STOCHASTIC FLASH ADC

• Fully synthesized ADC using ‘digital’ comparator cells (large offsets)

• Use more than 1 comparator for a reference threshold

– Use ‘detection theory’ to make accurate decisions around a threshold, by using more than one observation

• Low speed designs (<20 MS/s)

Page 49: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

FLASH ADC: CASE STUDY

Page 50: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

CASE STUDY: DISTORTION COMPENSATING FLASH ADC

Page 51: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

T/H DISTORTION

Page 52: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

PRE-DISTORTED REFERENCES

Page 53: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

ADC ARCHITECTURE

Page 54: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

T/H CIRCUIT

Page 55: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

COMPARATOR

Page 56: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

NON-LINEAR REFERENCE GENERATOR

Page 57: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

ADC TESTING

Page 58: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

TEST RESULTS

Page 59: FLASH ADCS - lumerink.com ADC 201… · ADC INPUT CAPACITANCE 22 2 Vth th g A 1 V C 10 fF/ WL m • N = 6 bits • V FS = 1 V • σ= LSB/4 • A VT0 = 10 mV·μm → 63 comparators

REFERENCES

1. Rudy van de Plassche, “CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters,” 2nd Ed., Springer,

2005.

2. N. Krishnapura, Analog IC Design Lectures, IIT Madras, 2008.

3. Y. Chiu, Data Converters Lecture Slides, UT Dallas 2012.

4. B. Boser, Analog-Digital Interface Circuits Lecture Slides, UC Berkeley 2011.