Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x...

Post on 10-Mar-2021

4 views 0 download

Transcript of Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x...

Continuous-time, multibit, complex ∆Σ ADC

320 Ms/s, 16x oversampling, 3-bit quantizer, 10-bit ENOB.

J. Arias, P. Kiss, V. Prodanov

-100

-80

-60

-40

-20

0

-60 -40 -20 0 20 40 60

Am

pl. (

dB)

Freq. (MHz)

Motivation

Why complex ∆Σ:

Channel selection and image rejection are done in the digital domain by the decimation filter.

Easy analog filtering. (good IQ imbalance, low power)

Why continuous-time (CT):

Capable of operation at high sampling frequencies.

Low power consumption.

Implicit anti-aliasing property.

Why multibit:

Good SNR for low oversampling ratios. (16)

Good stability.

Drawbacks

∆Σ ADCs:

∆Σ ADCs requires high sampling rates ( oversampling 16, typical)

A digital filter/decimator is needed (several Kgates).

∆Σ ADCs consume more power than Nyquist-rate ADCs. (But the total power bill can be lower)

CT ∆Σ modulators:

Involves DT to CT transformations (NTF) Tedious mathematics & controllability issues.

CT modulators are more sensitive to clock jitter.

Multibit ∆Σ modulators:

Sensitive to DAC nonlinearity. Dynamic element matching (scrambler) needed.

IEEE 802.11a/g, low-IF, receiver with Nyquist-rate ADC

lo1 I

lo2

25

2

26

112

26

Q

fS 1 0 1 0

0 1 0 1 Q

I

CBPF

10-20 -10 20 [MHz] -40 -20 0 20 40

fS

0

BW 20 MHz, SNDR 55 dB

Nyquist ADC (1 ):

7-pole Chebyshe v filter 10-bit pipelined ADC

BW 20 MHz, fIF 10 MHz

AAF

fS

Complex BPF (1 ):

(Vladimir) (Jesús)

ADC FFTLNA

IEEE 802.11a/g, low-IF, receiver with ∆Σ ADC

lo1 I

lo2

25

2

26

112

26

Q

CBPF

[MHz] 00 20-20-20 20 -320 320

fS

QI

Complex BPF:

BW 20 MHz, SNDR 55 dB

fS fS

1 0 1 0

0 1 0 1Q

IfSOSR

2nd-or der 3-bit 16 oversampled

Complex CT ∆Σ ADC:

BW 20 MHz, fIF 10 MHz

AAF

3-pole Butterw or th filter

(Vladimir) (Peter/Vladimir/Jesús)Proposed architecture

FFTLNADECADC

∆Σ

Modulator architecture (Real DSM)

-80

-60

-40

-20

0

20

1 10 100G

ain

(d

B)

Freq. (MHz)

NTF

u(t) v[n]

v[n]u(t)

After amplitude equalization

Starting modulator

1

DACRZ

−3.5

11

Ts

1

Ts

DACRZ

−3.5

1

Ts

1

Ts

1.660.6

−1.2

− Second−order NTF

− 3−bit ADC and DAC

− RZ DAC: less sensitive to:

ADC metastability

Clock jitter

− Optimized zero: +3dB SNR

−0.015

−0.009

ADC

−2

fs

ADC

fs

Digital Domain

clk

GM2GM1C1

u(t) v[n]

IDAC2IDAC1

Gm−C Implementation (Real DSM, Single−ended)

C2

−GM3

SCR

RZ

ADC

fs

Multibit DACs: Overcoming nonlinearity using dynamic element matching

-120

-100

-80

-60

-40

-20

0

1 10 100

Am

pl. (

dB)

Freq. (MHz)

ideal DACs2% mismatch

2% mismatch & DWA

DWA logic (scrambler)

Rotator

Thermometerto binary

RZ

Reg. Reg.clkclk

clk

esp

esn

es

8−bit

from

AD

C

to D

AC

s

DSM output

Σ

Thermal noise

A/Vµ

µ A

µ A µ A

µ A

A/VµA/Vµ

-120

-100

-80

-60

-40

-20

0

1 10 100

Am

pl. (

dB)

Freq. (MHz)

NoiselessThermal noise

GM2: 200

GM3: 15

C1: 5.165 pF

C2: 0.376 pF

Ib2: 147

Ib1: 714 Idac1: 95.4

Idac2: 20.1

GM1: 1000

Noise simulation parameters:

Performance loss: 2 dB SNR

Real DSM. Detailed schematic

Scrambler

µ S

µ S µ S

µ A µ A

µ A

µ A

+

+

+

++

+

+

+

GM1

GM3levelshifter

DAC1 DAC2

DSM outputanalog

input

Vdd Vdd

Ibias1

CMFB

− −

17

C1 C2

1000 200

15

8 x 95.4 8 x 20.1

5.16 pF 0.37 pF

logic

7−level

ADC

147Ibias2

714

GM2

Circuit Elements: Transconductors

− Large dynamic range

− Unipolar output

− External tuning

− Vladimir’s patent (2001)

Circuit Elements: Transconductor’s nonlinear Gm

−1 −0.5 0 0.5 10

1

2

3

4

5

x 10−5

Vin(diff) [V]

Gm

[A

/V]

−0.5 0 0.54.81

4.85

4.89

x 10−5 25 × "amplified"

S: 85C, 74uA N: 25C, 66uA F: 0C, 59uA S: tanh approxN: tanh approxF: tanh approx

Gm x Gm 0 ∂∂x tanh x 0 82

3 x3 2 145 x5 0 60

7 x7

Circuit Elements: Small Transconductors (GM3)

− Pseudodifferential: poor common mode rejection

− Good linearity

− Low power efficiency

− Low accuracy: Gm depends on Vcas and Cm(Vin)

TriodeTriode

S D

G

resistancechannel

Cgs

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

Nor

m. C

apac

itanc

e

Gate Voltage (V)

Channel resistance is not simulated unless

"nqsmod=1"

Big capacitors must be split into parallel,

is specified on every capacitor

gnd

small, capacitors to improve their Q

P

NP+ + P+N+

Circuit Elements: Capacitors: Inversion MOSFETs

C2

C1

Circuit Elements: ADC

latc

hla

tch

latc

hla

tch

latc

hla

tch

latc

h

Vi−

p5

p1

n4

p7 n7

p6 n6

n5

p4

p3

p2

n1

n2

n3

p1

n7

p2

n6

p3

n5

p4

n4

p5

n3

p6

n2

p7

n1

t7

t6

t5

t4

t3

t2

t1

70mV

Vdd

90 ΩRnplus

0.5V

Input Range

2.5V

1.8V

0V

Vi+

Vbias

Circuit Elements: ADC biasing

Circuit Elements: ADC’s comparators

ck

Vi+

Vi−

Vdd

/dck

/ck

ck

out

NC

samplingwindow

latched

regen.track.

transp.

outN−1

internalnodes

dck

ck

sampleN

sample

track.

Comparator & Latch

Signal Timming

Circuit Elements: Current-mode DACs

Current cell Signal timming

Current−mode DACs

Io+

Io−

esp0esn0 esn1 esp1 esn7 esp7

Vcas

Vbias

Vref espesn

esp

esn

ck

Circuit Elements: CMFB

Real DSM results (spectre simulation with extracted blocks)

-100

-80

-60

-40

-20

0

1 10 100

Am

pl. (

dB)

Freq. (MHz)

(2048 samples)

SNR = 61 dBSNDR = 57 dB

Complex DSM schematic

clk

clk

-100

-80

-60

-40

-20

0

-60 -40 -20 0 20 40 60

Am

pl. (

dB)

Freq. (MHz)

Two real modulators

GM1

IDAC1 IDAC2RZ

ADCGM2

C1 C2

Qv[n]

Iv[n]

Qu(t)

Iu(t)

SCR

GM2 ADCGM1C1

SCR

IDAC2

C2

RZ

−GM3

−GM3

IDAC1

fs

fs

Complex DSM schematic

clk

clk

−GM4 GM4 −GM5 GM5

GM1

IDAC1 IDAC2RZ

ADCGM2

C1 C2

Qv[n]

Iv[n]

Qu(t)

Iu(t)

10 MHz

Freq. shift

SCR

GM2 ADCGM1C1

SCR

IDAC2

C2

RZ

−GM3

−GM3

IDAC1

fs

fs

-100

-80

-60

-40

-20

0

-60 -40 -20 0 20 40 60

Am

pl. (

dB)

Freq. (MHz)

-100

-80

-60

-40

-20

0

-60 -40 -20 0 20 40 60

Am

pl. (

dB)

Freq. (MHz)

Two real modulators

Complex modulator

Cross-coupled transconductor switching

Clock distribution

ADC

SCR

SCR

CK/CK

source

~10pFcapacitorexternal

pin

10 fF

clock

clock 15 kΩ

Pin drivers

Circuit Layout (2.5-V, 0.25-µm CMOS, 1480 880 µm2)

Simulated results (extracted circuit)

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

-80 -60 -40 -20 0 20 40 60 80

Am

pl. (

dB)

Freq. (MHz)

(2048 samples)

− SNR: 55 dB (+3dB dual tone)

intermodulation products

− Two−tone test show no

with parasitic capacitances

− Full extracted circuit

− Total power ~25 mW

Before chip submission

Chip completion.

Antenna check

Is it removed from Cadence?

Fill patterns

What are they for?

Are they really needed?

Other issues....

Setup for measurement

eval. board

AD8132

AD8132

eval. board

cos

sin

DDS

AD9854

eval. board

+2.5V

+2.5V

+2.5V

Q

Inputs

I

Inputs

clk input

clk out

oq2

oq1

oq0

oi1

oi2

oi0

Logi

c A

naly

zer

330K

330K

10K

x3

10Kx3

J2

J1

TP1 TP2 TP3

TP4

50

10pF

analog

digital

digital, pin drivers

oi1

oi0

oq0

oq1

Ibia

sGM

1

Ibia

sGM

2

Iref

10u

pinv

dd

res

vdd

oi2

viip

viin

vqin

vqip

gnda

vdda

cpx

Vr2

5

Ibia

scpx

gnd

ckin

oq2

ping

nd