Amplificadores de Potência (Estágios de Saída)

Post on 30-Apr-2022

11 views 0 download

Transcript of Amplificadores de Potência (Estágios de Saída)

Amplificadores de Potência(Estágios de Saída)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Prof. Jader A. De Lima

Ex: amplificadorde audio

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

η% - eficiência do amplificador

Pout – potência de saída do amplificador entregue à carga

Pdc – potência DC retirada da fonte de alimentação

Output Stage Requirements:

• deliver a specified amount of signal power to a load

with acceptably low levels of signal distortion;

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• high input impedance/low output impedance (why?);

• low quiescent power (when the input signal is zero

the power dissipation should be low).

Estágios de Sáida (Estágios de Potência)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Collector current waveforms for transistors operating in (a) class A, (b) class B,

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

(Continued) (c) class AB, and (d) class C amplifier stages.

Estágios de Sáida (Estágios de Potência)

Classe A - Seguidor de Fonte

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

( )oLm

0ioutin

outV

r//Rg

11

1

v

vA

+==

=

∞→=x

xin

i

vr

m

L

m

oL0vinout

g

1//R

g

1//r//Rr ≅==

Vin

VL

Vbe

Vcc - Vcesat

Vcc - Vcesat + Vbe

- RL Is + Vbe

Vin

VL

Vcc

IsRL

Q1

~

Va

Vs

Rs

• Classe A (seguidor de emissor) com fonte de corrente

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

- RL Is

-Vcc

• class-A efficiency:

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

( )CEsatCC VVvo −=2

1max

−==

L

CEsatCC

L R

VV

R

voIQ

2

1maxmin

( )CEsatCC

L

CCL

CEsatCC

VV

R

VR

VV

−−

=2

max

4

CC

CEsatCC

V

VV −=

4

1maxη

Ex: VCC = 3V e VCEsat = 0.3V → ηηηηmax = 22.5%

< 25% !!

• Class A amplifiers ( the transistor conducts for the entirecycle of the input signal) are highly (power) inefficient.

• Large power dissipation occurs even for no signal input (standby).

• Why save power?

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Preserve natural resources/reduce pollution

• Extend battery life

• Reduce costs, improve reliability (power wasted

is dissipated in the active devices: temperature↑,

performance ↓, chance of failure↑ and larger

devices are required → cost ↑

• class-A amplifier with inductive coupling

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• small speaker of 3.2Ω (8Ω) needs only 100mW (500mW) to operate

• class-A amplifier may be adequate for output power of a few hundred mW

• using the transformer impedance reflexion, speaker load apperas (Np/Ns)2 larger

at the collector; Ex: if turns ratio is 10:1, a 3.2Ω-speaker appears as 320Ω load.

Classe B – Push-Pull

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Transfer characteristic for the class B output stage

• Distorção de cruzamento (crossover distortion)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• class-B efficiency:

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

≈ 78.6%

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• class-B amplifier with inductive coupling

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• however, audio transformers are bulky and expensive

Classe AB – Push-Pull (eliminar distorção de cruzamento)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Class AB output stage. A bias voltage VBB is applied between the bases of QN and QP, giving rise to a bias current IQ .Thus, for

small vI, both transistors conduct and crossover distortion is almost completely eliminated.

• quiescent current

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• D1 (D2) must match VBE curves of QN (QP)

in saturation current , area and temperature;

• compensating biased diodes

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

in saturation current , area and temperature;

→ only good approach for integrated deisgn

ex:Determinar o rendimento do estágio:

i) Ibias

ii) IC_pk (transistor lim saturação)

iii) IC_av

iv) Idc

v) Pdc

vi) PL_max

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

vi) PL_max

vii) η

ex:

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

( ) ( )W

R

VVP

L

CEsatCCL 85.4

10

3.020

8

1

8

122

max =−

=−

=

%8.75%1004.6

85.4%100

maxmax === xx

P

P

dc

• push-pull com multiplicador de VBE

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

VBB = VBE1 (1 + ( R2 / R1 ))

- curvas dos BJTs devem ser consultadas para se determinar correto valor de VBB

Projeto Multiplicador VBE

• passo #1

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

QPNPBEQQNPNBEQBB IVIVV @@ __ += R2/R1 definido

max_max__

21_max__max_3

max_max__max_33

VII

IIII

VVIRV

oNPNC

RQCNPNBR

onpnBERCC

==

++=

++=

• no máximo de excursão no semiciclo positivo tem-se:

• passo #2

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

1

1_2

max_max__max__

R

VI

R

VII

QBER

LNPN

o

NPN

NPNCNPNB

==ββ

R3 definido

para IB_Q1 << IR2

Obs:assume-se um valor inicial para IC_Q1 para se determinar VBE_Q1 a partir

Da curva característica IC x VBE de Q1

max_max__

11_max__max_4

max_max__max_44

VI

IIII

VVIRV

oPNPC

RQEPNPBR

opnpBERCC

++=

++=

• no máximo de excursão do semiciclo negativo tem-se:

• passo #3

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

1

1_1

max_max__max__

R

VI

R

VII

QBER

LPNP

o

PNP

PNPCPNPB

=≅ββ

R4 definido

• passo #4

• re-calcular valores de IR2 e VBE_Q1

• no caso de diferença importante, reiniciar a partir do passo #2

Homework

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Homework

• Considerando npn Q2N2222 e pnp Q2N3906, projetar um estágio

classe-AB para IQ = 5mA, RL = 8Ω e Vo_max = 2.5V. Admitir fontes

simétricas, sendo VCC = 5V.

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• capacitive coupling is not the preferred coupling mechanism for audio push-

pull stages (bulky caps!)

• common-emitter driver: In addition to providing a higher input resistance, the

buffer Q1 biases the output transistors Q2 and Q3

small

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

driver(Av ~ R3/R4)

small

The Darlington configuration.

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

The compound-pnp configuration.

The Darlington configuration.

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• overload protection

• short-circuit protection occurs by sensing

current threough R6

• VR6 = VBE_Q15

• When load current reaches a given limit, Q15

becomes forwardly-biased and diverts any

further base current of Q14

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

further base current of Q14

→ load current no longer increases

• thermal shutdown

• Q2 acts as a swicth and is normally off at

operating temperatures

• with temperature increase above a given threshold,

positive tempco of Zener and negative tempco of

VBE_Q1 increses Q1 current

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

→ VBE_Q2 increases and Q2 turns on

• power opamp

low-powergain stage

current booster

buffer

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

gain stage

• when Q5 turns on, it sources

additiona load current

• when Q6 turns on, it sinks

additiona load current

• bridge amplifier

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

critical match

Class C (tuning amplifier)

• power devices conducts less than 180o

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

tank is driven by current pulses

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

rich in harmonics(f, 2f, 3f, ..., nf)

fundamental frequency f

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

only ressonancefrequency f

(like pure sinewave)

Very-low impedance at harmonics → no gain

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Coil Q > 50• class-C amps have Q > 10 usually

(for overall circuit)

narrowband operation

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

- determine:

• resonance frequency: fr

• bandwidth: BW

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

class-A, B, AB

Class D

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

class-D

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• power devices (normally MOSFETs) operate as switches (either fully ON or

OFF) → reducing their power losses (efficiency 90 – 95% is possible, as swicthes

have zero DC current when not switching and low VDS when conducting)

• input signal modulates a PWM carrier that drives the output switches

• commonly used in audio power amplifiers

high-side

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

PWM

~ lossless filter

high-side

low-side

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Despite the complexity involved, a properly designed class D amplifier offers the following benefits:

• Reduction in size and weight of the amplifier

• Reduced power waste as heat dissipation and hence smaller (or no) heat sinks

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

heat sinks

• Reduction in cost due to smaller heat sink and compact circuitry

• Very high power conversion efficiency, usually better than 90% above one quarter of the amplifier's maximum power, and around 50% at low power levels

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Using Feedback to Improve Performance

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Many class D amplifiers utilize negative feedback from the PWM output back to the input of the device.

• A closed-loop approach:• improves linearity• allows better power-supply rejection.

• Open-loop amplifier inherently has minimal (if any) supply rejection.

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Open-loop amplifier inherently has minimal (if any) supply rejection.

• In closed-loop topology, as the output waveform is sensed and fed back to the input of the amplifier, deviations in the supply rail are detected at the output and corrected by the control loop.

• Drawback: control loop must be carefully designed and compensated to ensure stability under all operating conditions

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Many Class D amplifiers are implemented as full-bridge output stage.

• A full bridge uses two half-bridge stages to drive the load differentially.

• The full-bridge configuration operates by alternating the conduction path through

Half Bridge vs. Full Bridge

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• The full-bridge configuration operates by alternating the conduction path through

the load. This allows bidirectional current to flow through the load without the need

of a negative supply or a DC-blocking capacitor.

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Half-bridge amplifier:

• output swings between VDD and ground and idles at 50% duty cycle

→ output has a DC offset equal to VDD/2.

• efficiency >90% while delivering more than 14W per channel into 8Ω.

• Full-bridge amplifier:

• does not require DC-blocking capacitors on outputs when operating from a

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• does not require DC-blocking capacitors on outputs when operating from a

single supply

→ offset appears on each side of the load, which means that zero DC current

flows at the output.

• can achieve twice the output signal as the load is driven differentially. → 4x

increase in maximum output power over a half-bridge amplifier operating from

the same supply (at cost of twice as many MOSFET switches)

• efficiency in the range of 80% to 88% with 8Ω loads

Class E

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

RFC

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• current I is diverted through C1 when S1 is opened (see IC and IS)

• RFC: only DC current

• Theorectical zero overlap between VDS and IS → ideally 100% efficiency

• LC resonator ensures single tone at output

high Qhigh L

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• C1: shunt cap to switch ( + device parasitics) – exact value for max efficiency

• L2 – C2 resonates below the operating frequency (↑Q → sinewave output current)

→ excessive inductive reactance → max efficiency at center frequency (not max power)

• ↑ L1 RF choke (only DC current)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• switch driven with 50%-duty cycle

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Rise of Vds is delayeduntil Is = 0

Vds returns to zero before Is increases

• efficiency as function of duty-cycle

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Safe Operating Area (SOA)

• voltage and current conditions over which the device can be

expected to operate without self-damage

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

(only BJT´s)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Transistor Power Rating

• temperature at collector junction places a limit on allowable power

dissipation PD.

Ex: 2N3904 → Tj (max) = 150oC

2N3710 → Tj (max) = 200oC

• ambient temperature: heat produced in junction passes through the transistor

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• ambient temperature: heat produced in junction passes through the transistor

case (metal or plastic) and radiates to the surrounding air (ambient

temperature, usually around 25oC)

• Derating Factor: data sheets often specify PD (max) @25oC.

Ex: 2N1936 has PD (max) @25oC = 4W.

• What happens if temperature is higher than 25oC? → power rating must be

derated (reduced)

• Power Derating

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Heat Sinks

• increase transistor power rating

→ area of transistor case is increased

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Ex: assuming the circuit below must operate from 0oC to 50oC, what is the

maximum power rating of the transistor?

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• for TO-92 case, PD(max) = 625mW@25oCderating factor D = 5mW/oC

Ex: assuming the circuit below must operate from 0oC to 50oC, what is the

maximum power rating of the transistor?

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• for TO-92 case, PD(max) = 625mW@25oCderating factor D = 5mW/oC

• Failure mechanisms in ICs are accentuated by increased temperatures

(leakage in reverse biased diodes, electromigration, and hot-electron

trapping).

• To prevent failure, the die temperature must be kept within certain

ranges:

• commercial devices [0° to 70°C]

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• commercial devices [0° to 70°C]

• military parts [–55° to 125°C]

• 40-pin DIP has a thermal resistance of 38 °C/W (natural) and 25 °C/W

(forced air convection).

→ DIP can dissipate 2 watts (natural) or 3 watts (forced), and still

keep the temperature difference between the die and the

environment below 75 °C

• PGA has thermal resistance from 15 ° to 30 °C/W.

Electromigration

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

REFERÊNCIAS:

• Fundamentals of Microelectronics, B. Razavi, John Wiley

and Sons, 2006

• Microelectronic Circuits, A. Sedra and K. Smith, Oxford

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Microelectronic Circuits, A. Sedra and K. Smith, Oxford

university Press, 5th Edition, 2003

• Analysis and Design of Analog Circuits, Gary, Hurst, Lewis

and Meyer, 4th Edition, 2001