Download - FLOWCOMAG April 1{2, 2004 SFB 609

Transcript

FLOWCOMAG

April 1–2, 2004

SFB 609

Seawater Flow Transition and Separation Control

Tom Weier, Thomas Albrecht, Gerd Mutschke, Gunter Gerbeth

Wall–parallel Lorentz force

NS

SN

NS

SN a

+ +z

xy

∞U

LSN S

N− + −

3

410

10

10

10

2

1F [N/m ]3

j = σ(E + u×B)

F = j×B = Fex

F =π

8j0M0e

−πay

Gailitis, Lielausis 1961

u?∂u?

∂x? + v?∂u?

∂y? = ∂2u?

∂y?2+ Ze−y

?

x? = νπ2xU∞a2, y

? = πay, u

? = uU∞, v

? = vaπν

Z = j0M0a2

8πρU∞ν = 1 : uU∞ = 1− e−πay

Laminar Boundary Layer with Lorentz force Reδ1 = 290

0

5

10

15

20

25

30

35

40

10.5010.5010.5010.50

y/m

m

u/U∞

x=0mm

x*=0

x=150mm

x*=0.18

x=350mm

x*=0.43

x=550mm

x*=0.68

Z=0Z=1.2exp. profileBlasius profile

Transition: T–S waves for Reδ1 = 585, a = 3.475δ1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700

u(y

=δ 1

)/U

x/δ1

Z=0, no TSZ=0, TSZ=1, x= 5Z=1, x=300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700

u(y

=δ 1

)/U

x/δ1

Z00.050.10.20.40.8

Transition: 3D disturbance for Reδ1 = 585, a = 3.475δ1

z

δ1

0 20

10

20y

δ1

0

100

200

x

δ1

isosurfacesQ = 0.4

Z = 0Z = 0.1

Separation suppression at an inclined flat plate

Hydrofoils with electrodes and magnets

NACA 0015 (left):c = 0.667ma/c = 0.015B0 = 0.58Tstainless steel electrodes

PTL IV (right):c = 0.158ma/c = 0.03B0 = 0.2TTi with RuO2/IrO2

(DSA)

NACA 0015 in parallel flow

CµEMHD = aj0B02ρU2∞

· xe−xsc

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

CL

Cµ EMHD

Re=1.16·105

Re=1.82·105

Re=3.08·105

Re=3.71·105

CL = 0.843 · C0.521µEMHD

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

CD

Cµ EMHD

Re=1.16·105

Re=1.82·105

Re=3.08·105

Re=3.71·105

CD = 0.024− 1.01 · CµEMHD

Reattachment: Comparison to steady blowing

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1

∆CL

CµEMHD

Re=3.4 ·104

Re=4.8 ·104

Re=5.8 ·104

PTL IVα=17° BLC

Circulation Control

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2

∆CL

0.35% c0.42% c0.45% c0.61% c

Maximum lift gain

0

0.5

1

2

0 5 10 15 20 25 35

CCL

Lmax

α[°]

Cµ EMHD =0Cµ EMHD =0.045

5Re=3.0·10 ∆NACA 0015

∆CLmax(Cµ, Re) = CLmax(Cµ, Re)− CLmax(Cµ = 0, Re)

Maximum lift gain versus CµEMHD

∆CLmax = 3.02 · C0.585µEMHD

0.01

0.1

1

10

0.001 0.01 0.1 1

∆CLm

ax

CµEMHD

PTL IV a/c=0.06PTL IV a/c=0.03NACA 0015 a/c=0.015Numerics

Oscillatory forces: Motivation

0.5

1

1.5

2

3

−10 −5 0 5 10 20

CL

α [°]

baselineF+=0 Cµ=1%F+=1.75 C’µ=0.015%

Darabi, A.Wygnanski, I.1996

Seifert, A.

Lorentz force configurations compared

stationary:

U∞

xs

xe

CµEMHD =1

2· aj0B0

ρU2∞· xe − xs

c

oscillatory:

F+ =fec

U∞

U∞

xs xe

C ′µeff =1

2· aj0effB0

ρU2∞· xe − xs

c

,

NACA 0015 in the test section

c = 160 mms = 240 mmxa = 15 mma = 5 mmB0 = 0.33 T

Lift- and drag coefficient versus excitation frequency,

α = 20◦, Re = 5.2 · 104

0.6

0.7

0.8

0.9

1

1.1

1.2

0 2 4 6 8 10

CL

F+

c’µeff

0.28%

0.56%

0.83%

1.11%

0.26

0.3

0.34

0.38

0.42

0.46

0 2 4 6 8 10

CD

F+

Comparison to oscillatory blowing on a NACA 0015

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25

CL

α / o

c’µeff

Re=5.2·104, F+=0.5

0

0.06%

0.28%

0.56%

0.84%

1.11%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20C

L

α / o

c’µeff

Greenblatt, D.Wygnanski, I.2000Re=1.5·105, F+=1.1

00.1%1.3%

Lift increase at constant angle of attack

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

∆CL

CµEMHD/[%]

F+=1

Re=5·104

α=17°

stationary forcingperiodic excitation

Maximum lift gain

PSfrag replacements

CL

α

max ∆CL

∆CLmax

∆CLcirc-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1 1.2

∆CLm

ax

c’µeff/%

NACA 0012, Re=2.4·105, F+=1.5Greenblatt, D., Wygnanski, I. 2000

Conclusions

Transition delay:

• exponential profile• T–S waves and 3D disturbances are damped

Separation control by stationary Lorentz force:

• separation & circulation can be controlled• power consumption (too) high (for applications)

Separation control by oscillatory Lorentz force:

• characteristic phenomena comparable to alternativemethods in a quantitative sense

➡ comparable gain in efficiency achievable (?)