Université de Strasbourg Strasbourg, 2010...

38
Pressure laws and fast Legendre transform Philippe HELLUY, Hélène MATHIS Université de Strasbourg Strasbourg, 2010 April Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 1 / 34

Transcript of Université de Strasbourg Strasbourg, 2010...

Page 1: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Pressure laws and fast Legendre transform

Philippe HELLUY, Hélène MATHIS

Université de Strasbourg

Strasbourg, 2010 April

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 1 / 34

Page 2: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Motivations

Euler equations for a compressible fluid

∂tρ +∂x(ρu) = 0,

∂t(ρu)+∂x(ρu2 +π) = 0,

∂t(ρQ)+∂x((ρQ+π)u) = 0.

The pressure is related to e = Q−u2/2 and τ = 1/ρ by a pressure lawπ = p(τ,e).It has to satisfy some convexity properties in order that the Eulersystem is stable (hyperbolic).

General framework for constructing pressure laws of fluid mixtures withphase transition?

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 1 / 34

Page 3: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Outlines

1 Legendre transform

2 Mixtures thermodynamics

3 Fast Legendre Transform

4 Numerical experiments

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 2 / 34

Page 4: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Outlines

1 Legendre transform

2 Mixtures thermodynamics

3 Fast Legendre Transform

4 Numerical experiments

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 3 / 34

Page 5: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Legendre transform

Let f : Rn → R∪{+∞}.In the following, we always suppose that

1 dom f := {x, f (x) < +∞} 6= /0;2 f is minorized by an affine function.

The conjugate f ∗ of f is defined by

f ∗(s) = supx

(s · x− f (x)) , (1)

and the transformation f 7→ f ∗ is called the Legendre transform.

The conjugate f ∗ also satisfies the conditions 1 and 2.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 4 / 34

Page 6: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Graphical interpretation

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 5 / 34

Page 7: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Example: Conjugate of a regular convex function

If f : Rn → R is C2 strictly convex and

f (x)‖x‖

→‖x‖→∞

∞, (2)

thenf ∗(s) = sx− f (x), with ∇ f (x) = s.

We deduce that∇ f ∗(s) = x ⇔ ∇ f (x) = s.

It is then easy to check that in this case the Legendre transform isinvolutive

f ∗∗ = f .

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 6 / 34

Page 8: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Example: enthalpyIn thermodynamics, the energy E is a function of the volume V and theentropy S.The temperature and the pressure are defined by

T = ∂SE p =−∂V E

Thermodynamics first principle: T dS = dE + pdV .The partial Legendre transform of E with respect to V is formally

E∗,V = V ′V −E, with V ′ = ∂V E =−p.

ThusE∗,V =−(E + pV ) =−H

is the opposite of the enthalpy (expressed as a function of (−p,S)).And we have the relation

T dS = dH−V d p.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 7 / 34

Page 9: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Main properties [HL01]

• f ∗ is convex and lower semi-continuous (lsc).• f ∗∗ = co( f ) is the lsc convex enveloppe (or convex hull) of f

∀x ∈ Rn, co( f )(x) = sup{g(x),g affine function, g ≤ f}.

• The Legendre transform satisfies : max( f ∗,g∗) = (comin( f ,g))∗.• For two convex functions f and g, we define the inf-convolution

operation byf �g(x) = inf

y( f (y)+g(x− y)) , (3)

then( f �g)∗ = f ∗+g∗.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 8 / 34

Page 10: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Outlines

1 Legendre transform

2 Mixtures thermodynamics

3 Fast Legendre Transform

4 Numerical experiments

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 9 / 34

Page 11: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Mixtures thermodynamics [Cal85]

We consider two fluids (i), i = 1,2 with volume Vi ≥ 0, mass Mi ≥ 0 andentropy Si ≥ 0. Each fluid is characterized by its energy function

Ei : (Vi,Mi,Si) 7→ Ei(Vi,Mi,Si).

We extend Ei by +∞ outside C = (R+)3. We suppose that Ei is convex,lsc and “extensive”, i.e.

∀λ ≥ 0,∀W ∈ R3,Ei(λW ) = λEi(W ).

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 10 / 34

Page 12: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Example: perfect gas

The perfect gas energy is

E = V(

MV

exp(

SCvM

)(4)

where γ > 1 is the polytropic exponent and Cv > 0 is the specific heat atconstant volume.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 11 / 34

Page 13: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Mixture equilibrium

The mixture energy is

E(W1,W2) = E1(W1)+E2(W2).

At equilibrium the mixture achieves a minimum of the energy.The mixture volume, mass and entropy are noted respectively V , Mand S. We also note W = (M,V,S).Because of mass conservation,

M = M1 +M2.

The entropy being an additive variable,

S = S1 +S2.

For the volume, two cases are possible depending on the miscibility ofthe mixture

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 12 / 34

Page 14: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Non-miscible case

We setV = V1 +V2,

thusW = W1 +W2.

The mixture equilibrium energy is then given by an inf-convolutionoperation

E(W ) = minW1∈R3

E1(W1)+E2(W −W1) = E1�E2.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 13 / 34

Page 15: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Miscible case

We haveV = V1 = V2,

andZi = (Mi,Si), Z = (M,S) = Z1 +Z2.

The mixture equilibrium energy is also given by an inf-convolutionoperation

E(V,Z) = minZ1∈R2

E1(V,Z1)+E2(V,Z−Z1),

E(V, ·) = E1(V, ·)�E2(V, ·).

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 14 / 34

Page 16: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Intensive variables

The function α : W 7→ α(W ) is “intensive” if

∀λ ≥ 0,α(λW ) = α(W ).

We introduce the following intensive quantities• specific volume τi = 1

ρi= Vi

Mi, density ρi = Mi

Vi,

• specific entropy si = Si/Mi, volumic entropy σi = Si/Vi = ρisi.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 15 / 34

Page 17: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Intensive energies

We also introduce two intensive energy functions defined by• specific energy

ei(τi,si) =1

MiEi(Vi,Mi,Si) = Ei(

Vi

Mi,1,

Si

Mi) = Ei(τi,1,si),

• volumic energy

εi(ρi,σi) =1Vi

Ei(Vi,Mi,Si) = Ei(1,Mi

Vi,

Si

Vi) = Ei(1,ρi,σi).

The intensive energy functions are convex lsc and

εi(ρi,σi) = ρiei(1ρi

,σi

ρi).

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 16 / 34

Page 18: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Non-miscible case

For a non-miscible mixture, the intensive equilibrium energies aregiven by

e = comin(e1,e2)

andε = comin(ε1,ε2).

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 17 / 34

Page 19: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Miscible case

For a miscible mixture, the equilibrium volumic energy is given by

ε = ε1�ε2.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 18 / 34

Page 20: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Conjugate of the volumic energy

We also havedε = µdρ +T dσ ,

which implies that ∂ρε = µ and ∂σ ε = T . The Legendre transform of ε

is thusε∗ = µρ +T σ − ε (5)

considered as a function of (µ,T ). From the expression of µ above wededuce that the Legendre transform of the volumic energy is thepressure

ε∗(µ,T ) = p(µ,T ).

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 19 / 34

Page 21: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Physical interpretation

• non-miscible case:

ε∗ = (comin(ε1,ε2))∗ = max(ε∗1 ,ε∗2 ),

p(µ,T ) = max(p1(µ,T ), p2(µ,T )).

The coexistence of the two phases corresponds top(µ,T ) = p1(µ,T ) = p2(µ,T ) (saturation curve).

• miscible case:

ε∗ = (ε1�ε2)∗ = ε

∗1 + ε

∗2 ,

p(µ,T ) = p1(µ,T )+ p2(µ,T ).

The pressure is the sum of the partial pressures (Dalton’s law).

→ (max,+) analysis [Mas87]

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 20 / 34

Page 22: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Outlines

1 Legendre transform

2 Mixtures thermodynamics

3 Fast Legendre Transform

4 Numerical experiments

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 21 / 34

Page 23: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Discrete conjugate: 1D case

Let f : [a,b]→ R. We extend f by +∞ outside [a,b].We consider a subdivision of [a,b] with N +1 points

a = x0 < x1 < · · ·< xN = b.

We suppose that f is piecewise linear

f (xi) = yi

f (x) = yi + si(x− xi), x ∈ [xi,xi+1], i = 0 · · ·N−1. (6)

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 22 / 34

Page 24: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Fast algorithm [Luc97]

We know that f ∗ = (co f )∗, thus we first compute the convex hull of f ,which is still piecewise linear on [a,b] (and continuous). Without loss ofgenerality, we can thus suppose that the sequence of slopes(si)i=0···N−1 is strictly increasing. Then

f ∗(s) =

as− f (a) if s < s0xis− f (xi) if si−1 < s < si, i = 1 · · ·N−1bs− f (b) if s > sN−1

The global algorithm to compute N′ values of f ∗ has a O(N +N′)complexity.We observe that f ∗ is linear outside [s0,sN−1].The algorithm to compute the Legendre transform of a functionextended by affine maps is very similar.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 23 / 34

Page 25: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

2D version

Let f : [a,b]× [c,d]→R. We extend f by +∞ (or by linear maps) outside[a,b]× [c,d].

f ∗(s, t) = supx,y

(sx+ ty− f (x,y)) = supy

(ty+ supx

(sx− f (x,y))

= supy

(ty+ f ∗,x(s,y))

= (− f ∗,x)∗,y . (7)

In practice, we apply the 1D algorithm on all the rows and then all thecolumns of the samples.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 24 / 34

Page 26: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Outlines

1 Legendre transform

2 Mixtures thermodynamics

3 Fast Legendre Transform

4 Numerical experiments

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 25 / 34

Page 27: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Maxwell equal area ruleWe consider a van der Waals gas with dimensionless specific energy

e(τ,s) =

{es

(3τ−1)8/3 − 3τ

if τ > 1/3,s > 0,

+∞ elsewhere.

This energy is not convex.Therefore we replace it by

e∗∗ = coe.

⇔ Maxwell equal area ruleconstruction.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 26 / 34

Page 28: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Numerical illustration

It is classical to plot the isotherms in the (p,τ) plane.In practice, it is very easy using the FLT.First we compute

f (τ,T ) := e∗,s(τ,T ) = T s− e(τ,s),

with T = ∂se.Then we fix T and plot p = ∂τ f for a varying τ.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 27 / 34

Page 29: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Isotherms of e

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

5e-05 0.0001 0.00015 0.0002 0.00025 0.0003

Pre

ssur

e

Specific volume

Isotherms

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 28 / 34

Page 30: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Isotherms of e∗∗

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 29 / 34

Page 31: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

A simple non-miscible mixture

We consider a mixture of two perfect gases (γ1 > γ2)

ei(τi,si) = exp(si)τ1−γii

It is possible to compute analytically e(τ,s) = comin(e1,e2) and p(τ,s)[1].

The saturation curve is simply

p = κT

(κ = κ(γ1,γ2) has a complicatedexpression).

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 30 / 34

Page 32: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

IsothermsWe simply set e = min(e1,e2) and the isotherms.

7.5

8

8.5

9

9.5

10

10.5

11

11.5

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

Pre

ssur

e

Specific volume

Isotherms

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 31 / 34

Page 33: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

A simple miscible mixtureWe take the same perfect gases and now construct the misciblemixture

ε = ε1�ε2

The isotherms are very similar to those of a perfect gas

2

4

6

8

10

12

0.2 0.4 0.6 0.8 1 1.2 1.4

Pre

ssur

e

Specific volume

Isotherms

T = 6.47 T = 6.95 T = 7.43

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 32 / 34

Page 34: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Mass fractionThe mass fraction ϕ of the gas (1) reads :

ϕ =

∂ p∂ µ

(µ,T )

∂ p1

∂ µ(µ,T )

.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

2 4 6 8 10 12

Phi

Pressure

Mass fraction

T = 6.47 T = 6.95 T = 7.43

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 33 / 34

Page 35: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Conclusion

• We have found a natural mathematical framework for studyingEOS of mixtures.

• The FLT is a useful numerical tool for practically computetabularized EOS of mixtures.

Next steps:• real EOS for more than two fluids,• coupling with CFD computations,• use the ideas of idempotent analysis for more general mixtures.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 34 / 34

Page 36: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

H. B. Callen. Thermodynamics and an introduction tothermostatistics, second edition. Wiley and Sons, 1985.

P. Helluy, H. Mathis. Pressure laws and fast Legendre transform.http://hal.archives-ouvertes.fr/hal-00424061/fr/

J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convexanalysis. Grundlehren Text Editions. Springer-Verlag, Berlin, 2001.

JAOUEN, S., Etude mathématique et numérique de stabilité pourdes modèles hydrodynamiques avec transition de phase, PhDThesis, 2001.

Y. Lucet. Faster than the fast Legendre transform, the linear-timeLegendre transform. Numer. Algorithms 16 (1997), no. 2, 171–185(1998).

V. Maslov. Méthodes opératorielles. Éditions Mir, Moscou, 1987.

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 34 / 34

Page 37: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Appendix

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 34 / 34

Page 38: Université de Strasbourg Strasbourg, 2010 Aprilirma.math.unistra.fr/~helluy/cavitation2010/mathis.pdf · 2010. 4. 14. · Hélène MATHIS (Université de Strasbourg) Pressure laws

Proof

E∗i (V ′,M′,S′) = supV,M,S≥0VV ′+MM′+SS′−Ei(V,M,S) (8)

= supV,ρ,σ≥0V (V ′+ρM′+σS′− εi(ρ,σ)) (9)= supV≥0V (V ′+ ε∗i (M′,S′)) (10)

={

0 if ε∗i (M′,S′)≤−V ′,+∞ else.

(11)

We introduce Ai = {(V ′,M′,S′),ε∗i (M′,S′)≤−V ′}.Then E∗

i is the convex indicator of Ai.Then, E∗ = E∗

1 +E∗2 is the convex indicator of

A1∩A2 = {(V ′,M′,S′),max(ε∗1 (M′,S′),ε∗2 (M′,S′)

)≤−V ′}

We deduce that ε∗ = max(ε∗1 ,ε∗2 ) and then ε = comin(ε1,ε2).�

Hélène MATHIS (Université de Strasbourg) Pressure laws and fast Legendre transform April 14, 2010 34 / 34