Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux ....

45
Mesoscopic Physics for Beginners Gilles Montambaux Laboratoire de Physique des Solides Université Paris-Sud, Université Paris-Saclay Orsay µεσος GDR Physique Quantique Mésoscopique, Aussois, déc. 2015

Transcript of Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux ....

Page 1: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

Mesoscopic Physics for Beginners Gilles Montambaux Laboratoire de Physique des Solides Université Paris-Sud, Université Paris-Saclay Orsay

µεσος

GDR Physique Quantique Mésoscopique, Aussois, déc. 2015

Page 2: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

Mesoscopic physics = Phase coherence

Breakdown of classical laws of electronic transport

1 2R R R= +

LRS

ρ=

1 2G G G= +

SGL

σ=

1R 2R

2G1G

cf. Two path interferometer…

1GR

=

Page 3: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

Phase coherence

dimensionality disorder

interactions

The mesoscopic triangle

H =p2

2m+ V (~r) H = ¹hc~¾:~p + V (~r)

Ã(~r) fÃA(~r); ÃB(~r)g

Page 4: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

4

Domain of mesoscopic physics, deviations to classical transport Length scales, different regimes Conduction = transmission Landauer-Buttiker Quantization of conductance Universal conductance fluctuations Weak-localization What limits phase coherence ?

Page 5: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

5

e F el v τ=

Mean free path : distance between elastic collisions

Phase coherence length

el

( )L Tφ

Interaction with an external degree of freedom (phonons, electrons, spin impurities… breaks phase coherence

interference

L Dφ ϕτ=

Elastic collisions do not break phase coherence

F elλ

Page 6: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

6

Ohm’s law I GV= SGL

σ=

G conductance, σ conductivity

2ene

mτσ = Drude-Sommerfeld formula

Validity ? Diffusive regime No quantum effects

L Lφ>

elL

Page 7: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

7

int10

22cosI I I I πφφ

= ++

R. Webb (IBM, 1985) THE founding experiment of mesoscopic physics

1µm

1I

2II

Classical physics Ohm’s law :

2G1G

φ

Page 8: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

8

int10

22cosI I I I φπφ

= ++

R. Webb (IBM, 1985) THE founding experiment of mesoscopic physics

Interferences between electronic waves (cf. Young’s slits)

1µm

1I

2II

Aharonov-Bohm effect (1959) el L Lφ<

0he

φ =

2eG Gh

δ

φ

Page 9: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

9

int10

22cosI I I I φπφ

= ++

R. Webb (IBM, 1985) THE founding experiment of mesoscopic physics

Interferences between electronic waves (cf. Young’s slits)

1µm

1I

2II

Aharonov-Bohm effect (1959) el L Lφ<

0he

φ =φ

2eG Gh

δ

Page 10: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

10

Reproducibles conductance fluctuations el L Lφ<

IGV

= ,ij

ij klkl

IG

V=

Exp. measures a conductance and not a conductivity Drude-Einstein conductivity provides an average description, valid if How to go beyond this average and describe interferences, fluctuations ?

L Lφ <

B(T )

2eGh

δ

Conductance depends not only on the system to be studied, but also on its connection to the outside world

Page 11: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

11

Is the conductance of this Au atomic contact in any way related to the conductivity of gold ? NO new concepts, new tools

What is conductance?

SGL

σ=

Page 12: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

12

Quantization of the conductance (1988)

W

W

G W∝

Classically

ballistic « Quantum Point Contact » QPC

Page 13: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

13

2 2 22 2 int[ ]F

e e WG Mh h λ

= =

2eh

Quantum of conductance

W

W

Quantization of the conductance (1988)

« Quantum Point Contact » QPC ballistic

Page 14: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

At which scale do we need new concepts ?

14

macroscopic 1nm 10 1000nm− 1 mµ

nanoscopic

Lφel

Mean free path : distance between elastic collisions

Phase coherence length

mesoscopic

ballistic diffusive

el

( )L Tφ

Page 15: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

15

What is conductance?

Landauer-Büttiker : conductance = transmission

metallic ring atomic contact nanotube

2D gas graphene wire network

Page 16: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

16

a b

Analogies electronics - optics

Aharonov-Bohm oscillations Young’s slits UCF Speckle Weak-localization Coherent backscattering

Conductance – transmission coefficient

… electron quantum optics…

Page 17: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

17

1D wire

Reservoir Contact Terminal

1V 2V

Hypothesis : coherent transport in the wire, dissipation in the reservoirs

Lead

scatterer

Problem of 1D quantum mechanics

T

1 2( )I G V V= −

I

•A reservoir absorbs electrons and emits them at its own chemical potential and temperature. • No phase relation between ingoing and outcoming electrons in a reservoir. •The scatterer is elastic. •The resistance of the reservoirs is negligible.

Page 18: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

18

1D wire

1V 2V

22eG Th

=Landauer formula

Without scatterer 22eGh

=

2

1/(25812,807 )eh

= Ω

Conductance quantum

T

1 2( )I G V V= −

I

Page 19: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

19

1D wire

1V 2V

Very qualitatively…

T

I =charge

time= e

energy

h= e

e¢V

h

1 2( )I G V V= −

I

I =e2

h¢V

22eGh

=

time / 1

T

22eG Th

=

)

)

Page 20: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

20

The «multichannel » case

Total current

2

1 22 ( )ab ab

eI T V Vh

= −

Courant related to the transmission from a channel ‘b’ to a channel ‘a’

2

1 2,

2 ( )aba b

eI T V Vh

= −∑

1V 2V

abT

a b

2

,

2ab

a b

eG Th

= ∑

multichannel Landauer formula

Page 21: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

21

The «multichannel » case

2

,

2ab

a b

eG Th

= ∑

1V 2V

abT

a b

Page 22: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

22

2 2

2 2 int[ ]/ 2F

e e WG Mh h λ

= =

The conductance is proportional to the number of modes transmitted through the wave guide

The «multichannel » case

2

,

2ab

a b

eG Th

= ∑

1V 2V

abT

ab abT δ=

Page 23: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

23

Quantization of the conductance (1988)

« Quantum Point Contact »

2 2

2 2 int[ ]/ 2F

e e WG Mh h λ

= =

Page 24: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

24

4 vs. 2 terminals

1V 2V

2

1 22 ( )eI V Vh

= − ( ) ( )A BI V V −∞=

AV BV

for perfect sample, VA=VB

2

2 2 eGh

= 4G = ∞

no potential drop in the wire :

I

Page 25: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

25

4 vs. 2 terminals

1V 2V

22 1( )I G V V= −4 ( )A BI G V V= −

AV BV

with a scatterer VA=VB

scatterer

2

2 2 eG Th

=

I

2

4 21

e TGh T

=−

Page 26: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

Potential profile ε

1V

2V

T = 1 AV

x

BV

T < 1 2V

AVBV

1V

Ballistic

One scatterer

potential drop AT the contacts

2

2 2 eGh

=

4G = ∞

2

4 21

e TGh T

=−

2

2 2 eG Th

=

No dissipation in the wire

Page 27: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

AVBV

1V

2VAV

BV

1V

2VAV

BV

Diffusive regime

Four terminal disorder + interferences

2 1

A

B

ENS,Paris

Page 28: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

Landauer formula

Conductance = Transmission

2

2 eG Th

=

Landauer-Büttiker formalism

R. Landauer (1927-1999)

M. Büttiker (1950-2013)

Page 29: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

29

conductance = transmission

ak

bk

2

,

2ab

a bG Te

h= ∑

b a

analogy with optics

abT

optics - microwaves electronics

b a

ab abT Tδ =G Gδ

b a

fluctuations ~ average

2eGh

δ

fluctuations << average ??? Mailly,Sanquer

Maret

Page 30: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

30

conductance = transmission

ak

bk

2

,

2ab

a bG Te

h= ∑

b a

analogy with optics

abT

optics - microwaves electronics b a

In optics, you can mesure Tab , Ta , or T

a abb

T T= ∑,

aba b

T T= ∑abT

In electronics, you can only mesure T

,ab

a bT T= ∑

The fluctuations of are much smaller than the fluctuations of ,

aba b

T T= ∑ abT

Page 31: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

31

Weak-localization = first quantum correction to classical transport

Phase coherence effect The negative correction is cancelled by a magnetic field B Negative magnetoresistance The characteristic field depends on temperature measures the phase coherence

magnetoresistance of a Mg film Bergmann

G = Gcl + ±G(B)

Page 32: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

2 *'

, '( , ') ( , ') ( , ')j j j

j j jG A r r A r r A r r∝ + ∑ ∑

32

Conductance = Transmission

( , ')jj

A r r∑2

( , ')jj

G A r r∝ ∑r r’

j

j’

21 2I A A= +

2 2 * *1 2 1 2 2 1I A A A A A A= + + +

1

2 S

Page 33: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

2 *'

, '( , ') ( , ') ( , ')j j j

j j jG A r r A r r A r r∝ + ∑ ∑

33

Classical transport: only paired identical trajectoires Aj Aj contribute If paired trajectories are different, the amplitudes Aj et Aj’ are different

Classical term Interference term

Quantum effects

Disorder average

Conductance = Transmission

???

( , ')jj

A r r∑2

( , ')jj

G A r r∝ ∑

phases are uncorrelated all interference terms disappear in average

r r’

j

j’

Page 34: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

34

Quantum correction

Classical conductance

clG

One loop and one crossing

Weak-localization

(0, )clP L∝

G∆

Z(¡~k)(¡d~l) =

Z~kd~l

Page 35: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

35

int ( )P t

Quantum correction

Classical conductance

Opposite paired trajetories

clG

One loop and one crossing

crossing

= distribution of loops of time t = return probability

Weak-localization

(0, )clP L∝

(0, )P L∝ ∆G∆

i

2

nt ( )2eh

G P t ∆ −

Page 36: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

36

The return probability P(t) is larger at small d Phase coherence effects are more important in low dimension

/2int ( )(4 )

d

d

LP tDtπ

=

2 2

in

,

t int2 ( ) ( )2

e

D

D

e eh h

P dtG t P tφτ τ

τ τ∆ − − = ∫

Time spent in the sample Phase coherence time Elastic collision time eτ

2

DLD

τ =

2LD

φφτ =

volume explored after time t

Weak-localization = return probability

Page 37: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

37

/2e

d

dtt

Gφτ

τ

∆ ∝ ∫

/2e

d

dtt

φτ

τ∫

lne

φττ

eφτ τ− 1d =

2d =

L Dφ φτ=

The measure of this quantum correction gives access to the phase coherence time (length)

Weak-localization : importance of dimensionality

ln Lφ

Page 38: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

38

Oscillation of the WL correction with the flux (cf. oscillations Sharvin-Sharvin)

Diffuson Cooperon

Cooperon: in a field, time reversed trajectories acquire opposite phases

φ φ0

2 φπφ

0

2 φπφ

0

2 φπφ

0

4 φπφ

Phase difference 0

2 2he

φ= oscillations with period

int ( ) ( )clP t P t= 04i

eπ φ

φ

Weak-localization = phase coherence and magnetic field

( )clP t int ( )P t

Page 39: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

39

Negative magnetoresistance Bergmann

Diffuson Cooperon

Cooperon: in a field, time reversed trajectories acquire opposite phases

φ φ0

2 φπφ

0

2 φπφ

0

2 φπφ

0

4 φπφ

Phase difference 0

2 2he

φ= oscillations with period

int ( ) ( )clP t P t= 04i

eπ φ

φ

Weak-localization = phase coherence and magnetic field

( )clP t int ( )P t

Page 40: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

40

Diffuson (classical)

Cooperon (quantum)

²

Weak-localization = phase coherence

¿ ¿¿

t¡ 2¿( )clP t int ( )P tLoop of time t

Page 41: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

41

Suppression and revival of WL through control of time-reversal symmetry Vincent Josse et al. , Institut d’Optique, PRL 2015

¿ 6= t

2

t

¿ =t

2« Suppression » « Revival »

Page 42: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

42 Magnetic impurities, e-e interaction, magnetic impurities

Diffuson (classical)

Cooperon (quantum)

Phase coherence broken after a typical time Only trajectories of time contribute to the return probablity and to the WL

t φτ<φτ

/int ( ) ( )cl

tP t P t e φτ−= 04i

eπ φ

φ

²

Weak-localization = phase coherence

Loop of time t

¿ ¿¿

2t¡ ¿( )clP t int ( )P t

Page 43: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

43

( )tϕ+

02

( )i

i te eφπφ ϕ

Random dephasing depends on the position of atoms, other electrons, magnetic impurities,…

0

2 ( )tφπ ϕφ

+

0

2 ( )tφπ ϕφ

− +

0

4 ( ) ( )t tφπ ϕ ϕφ

+ −

04 ( )i i t

eφπ ϕφ

+ ∆

21 ( )( ) 2 /i t tte ee φ

ϕϕ τ− ∆ −∆

Dephasing :

Average on the trajectories and on the dynamics of external degrees of freedom

Dephasing

Page 44: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

44

0.1

1

10

100

0.001 0.01 0.1 1 10 100 T (K)

L φ ( µ

m)

3Tφτ −∝e-ph interaction

2/3Tφτ −∝

3012

3014

3016

3018

3020

3022

3024

-200 -150 -100 -50 0 50 100 150 200

R +

offs

et (O

hms)

B (G)

30mK

60mK

2000mK

470mK

10

( ) d

BWLG B f φδ

φ

=

Magnetotransport gives access to the phase coherence length

magnetic impurities

( )L Tφ

2

20

( ) d

BLG B f φδ

φ

=

2/3 31( )

AT B TTφτ

= +

e-phonon e-e

e-e interaction

quasi-1D wires

Grenoble

Page 45: Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux . Laboratoire de Physique des Solides . Université Paris-Sud, Université Paris -Saclay .

https://users.lps.u-psud.fr/montambaux/X15-meso.htm