Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux ....
Embed Size (px)
Transcript of Mesoscopic Physics for Beginners · Mesoscopic Physics for Beginners . Gilles Montambaux ....
-
Mesoscopic Physics for Beginners Gilles Montambaux Laboratoire de Physique des Solides Université Paris-Sud, Université Paris-Saclay Orsay
µεσος
GDR Physique Quantique Mésoscopique, Aussois, déc. 2015
-
Mesoscopic physics = Phase coherence
Breakdown of classical laws of electronic transport
1 2R R R= +
LRS
ρ=
1 2G G G= +
SGL
σ=
1R 2R
2G1G
cf. Two path interferometer…
1GR
=
-
Phase coherence
dimensionality disorder
interactions
The mesoscopic triangle
H = p2
2m+ V (~r) H = ¹hc~¾:~p + V (~r)
Ã(~r) fÃA(~r); ÃB(~r)g
-
4
Domain of mesoscopic physics, deviations to classical transport Length scales, different regimes Conduction = transmission Landauer-Buttiker Quantization of conductance Universal conductance fluctuations Weak-localization What limits phase coherence ?
-
5
e F el v τ=
Lφ
Mean free path : distance between elastic collisions
Phase coherence length
el
( )L Tφ
Interaction with an external degree of freedom (phonons, electrons, spin impurities… breaks phase coherence
interference
L Dφ ϕτ=
Elastic collisions do not break phase coherence
F elλ
-
6
Ohm’s law I GV= SGL
σ=
G conductance, σ conductivity
2ene
mτσ = Drude-Sommerfeld formula
Validity ? Diffusive regime No quantum effects
L Lφ>
elL
-
7
int10
22cosI I I I πφφ
= ++
R. Webb (IBM, 1985) THE founding experiment of mesoscopic physics
1µm
1I
2II
Classical physics Ohm’s law :
2G1G
φ
-
8
int10
22cosI I I I φπφ
= ++
R. Webb (IBM, 1985) THE founding experiment of mesoscopic physics
Interferences between electronic waves (cf. Young’s slits)
1µm
1I
2II
Aharonov-Bohm effect (1959) el L Lφ
-
9
int10
22cosI I I I φπφ
= ++
R. Webb (IBM, 1985) THE founding experiment of mesoscopic physics
Interferences between electronic waves (cf. Young’s slits)
1µm
1I
2II
Aharonov-Bohm effect (1959) el L Lφ
-
10
Reproducibles conductance fluctuations el L Lφ
-
11
Is the conductance of this Au atomic contact in any way related to the conductivity of gold ? NO new concepts, new tools
What is conductance?
SGL
σ=
-
12
Quantization of the conductance (1988)
W
W
G W∝
Classically ballistic « Quantum Point Contact » QPC
-
13
2 2 22 2 int[ ]F
e e WG Mh h λ
= =
2eh
Quantum of conductance
W
W
Quantization of the conductance (1988)
« Quantum Point Contact » QPC ballistic
-
At which scale do we need new concepts ?
14
macroscopic 1nm 10 1000nm− 1 mµ
nanoscopic
Lφel
Mean free path : distance between elastic collisions
Phase coherence length
mesoscopic
ballistic diffusive
el
( )L Tφ
-
15
What is conductance?
Landauer-Büttiker : conductance = transmission
metallic ring atomic contact nanotube
2D gas graphene wire network
-
16
a b
Analogies electronics - optics
Aharonov-Bohm oscillations Young’s slits UCF Speckle Weak-localization Coherent backscattering
Conductance – transmission coefficient
… electron quantum optics…
-
17
1D wire
Reservoir Contact Terminal
1V 2V
Hypothesis : coherent transport in the wire, dissipation in the reservoirs
Lead
scatterer
Problem of 1D quantum mechanics
T
1 2( )I G V V= −
I
•A reservoir absorbs electrons and emits them at its own chemical potential and temperature. • No phase relation between ingoing and outcoming electrons in a reservoir. •The scatterer is elastic. •The resistance of the reservoirs is negligible.
-
18
1D wire
1V 2V
22eG Th
=Landauer formula
Without scatterer 22eGh
=
2
1/(25812,807 )eh
= Ω
Conductance quantum
T
1 2( )I G V V= −
I
-
19
1D wire
1V 2V
Very qualitatively…
T
I =charge
time= e
energy
h= e
e¢V
h
1 2( )I G V V= −
I
I =e2
h¢V
22eGh
=
time / 1T
22eG Th
=
)
)
-
20
The «multichannel » case
Total current
2
1 22 ( )ab ab
eI T V Vh
= −
Courant related to the transmission from a channel ‘b’ to a channel ‘a’
2
1 2,
2 ( )aba b
eI T V Vh
= −∑
1V 2V
abT
a b
2
,
2ab
a b
eG Th
= ∑
multichannel Landauer formula
-
21
The «multichannel » case
2
,
2ab
a b
eG Th
= ∑
1V 2V
abT
a b
-
22
2 2
2 2 int[ ]/ 2F
e e WG Mh h λ
= =
The conductance is proportional to the number of modes transmitted through the wave guide
The «multichannel » case
2
,
2ab
a b
eG Th
= ∑
1V 2V
abT
ab abT δ=
-
23
Quantization of the conductance (1988)
« Quantum Point Contact »
2 2
2 2 int[ ]/ 2F
e e WG Mh h λ
= =
-
24
4 vs. 2 terminals
1V 2V
2
1 22 ( )eI V Vh
= − ( ) ( )A BI V V −∞=
AV BV
for perfect sample, VA=VB
2
2 2eGh
= 4G = ∞
no potential drop in the wire :
I
-
25
4 vs. 2 terminals
1V 2V
22 1( )I G V V= − 4 ( )A BI G V V= −
AV BV
with a scatterer VA=VB
scatterer
2
2 2eG Th
=
I
2
4 2 1e TGh T
=−
-
Potential profile ε
1V
2V
T = 1 AV
x
BV
T < 1 2VAV
BV
1V
Ballistic
One scatterer
potential drop AT the contacts
2
2 2eGh
=
4G = ∞
2
4 2 1e TGh T
=−
2
2 2eG Th
=
No dissipation in the wire
-
AVBV
1V
2VAVBV
1V
2VAV
BV
Diffusive regime
Four terminal disorder + interferences
2 1
A
B
ENS,Paris
-
Landauer formula
Conductance = Transmission
2
2 eG Th
=
Landauer-Büttiker formalism
R. Landauer (1927-1999)
M. Büttiker (1950-2013)
-
29
conductance = transmission
ak
bk
2
,
2ab
a bG Te
h= ∑
b a
analogy with optics
abT
optics - microwaves electronics
b a
ab abT Tδ = G Gδ
b a
fluctuations ~ average
2eGh
δ
fluctuations
-
30
conductance = transmission
ak
bk
2
,
2ab
a bG Te
h= ∑
b a
analogy with optics
abT
optics - microwaves electronics b a
In optics, you can mesure Tab , Ta , or T
a abb
T T= ∑,
aba b
T T= ∑abT
In electronics, you can only mesure T
,ab
a bT T= ∑
The fluctuations of are much smaller than the fluctuations of ,
aba b
T T= ∑ abT
-
31
Weak-localization = first quantum correction to classical transport
Phase coherence effect The negative correction is cancelled by a magnetic field B Negative magnetoresistance The characteristic field depends on temperature measures the phase coherence
magnetoresistance of a Mg film Bergmann
G = Gcl + ±G(B)
-
2 *'
, '( , ') ( , ') ( , ')j j j
j j jG A r r A r r A r r∝ + ∑ ∑
32
Conductance = Transmission
( , ')jj
A r r∑2
( , ')jj
G A r r∝ ∑r r’
j
j’
21 2I A A= +
2 2 * *1 2 1 2 2 1I A A A A A A= + + +
1
2 S
-
2 *'
, '( , ') ( , ') ( , ')j j j
j j jG A r r A r r A r r∝ + ∑ ∑
33
Classical transport: only paired identical trajectoires Aj Aj contribute If paired trajectories are different, the amplitudes Aj et Aj’ are different
Classical term Interference term
Quantum effects
Disorder average
Conductance = Transmission
???
( , ')jj
A r r∑2
( , ')jj
G A r r∝ ∑
phases are uncorrelated all interference terms disappear in average
r r’
j
j’
-
34
Quantum correction
Classical conductance
clG
One loop and one crossing
Weak-localization
(0, )clP L∝
G∆
Z(¡~k)(¡d~l) =
Z~kd~l
-
35
int ( )P t
Quantum correction
Classical conductance
Opposite paired trajetories
clG
One loop and one crossing
crossing
= distribution of loops of time t = return probability
Weak-localization
(0, )clP L∝
(0, )P L∝ ∆G∆
i
2
nt ( )2eh
G P t ∆ −
-
36
The return probability P(t) is larger at small d Phase coherence effects are more important in low dimension
/2int ( ) (4 )
d
d
LP tDtπ
=
2 2
in
,
t int2 ( ) ( )2
e
D
D
e eh h
P dtG t P tφτ τ
τ τ∆ − − = ∫
Time spent in the sample Phase coherence time Elastic collision time eτ
2
DLD
τ =
2LD
φφτ =
volume explored after time t
Weak-localization = return probability
-
37
/2e
d
dtt
Gφτ
τ
∆ ∝ ∫
/2e
d
dtt
φτ
τ∫
lne
φττ
eφτ τ− 1d =
2d =
L Dφ φτ=
The measure of this quantum correction gives access to the phase coherence time (length)
Weak-localization : importance of dimensionality
Lφ
ln Lφ
-
38
Oscillation of the WL correction with the flux (cf. oscillations Sharvin-Sharvin)
Diffuson Cooperon
Cooperon: in a field, time reversed trajectories acquire opposite phases
φ φ02 φπ
φ0
2 φπφ
0
2 φπφ
−
0
4 φπφ
Phase difference 02 2
he
φ= oscillations with period
int ( ) ( )clP t P t= 04i
eπ φ
φ
Weak-localization = phase coherence and magnetic field
( )clP t int ( )P t
-
39
Negative magnetoresistance Bergmann
Diffuson Cooperon
Cooperon: in a field, time reversed trajectories acquire opposite phases
φ φ02 φπ
φ0
2 φπφ
0
2 φπφ
−
0
4 φπφ
Phase difference 02 2
he
φ= oscillations with period
int ( ) ( )clP t P t= 04i
eπ φ
φ
Weak-localization = phase coherence and magnetic field
( )clP t int ( )P t
-
40
Diffuson (classical)
Cooperon (quantum)
²
Weak-localization = phase coherence
¿ ¿¿
t¡ 2¿( )clP t int ( )P tLoop of time t
-
41
Suppression and revival of WL through control of time-reversal symmetry Vincent Josse et al. , Institut d’Optique, PRL 2015
¿ 6= t2
t
¿ =t
2« Suppression » « Revival »
-
42 Magnetic impurities, e-e interaction, magnetic impurities
Diffuson (classical)
Cooperon (quantum)
Phase coherence broken after a typical time Only trajectories of time contribute to the return probablity and to the WL
t φτ<φτ
/int ( ) ( )cl
tP t P t e φτ−= 04ieπ φ
φ
²
Weak-localization = phase coherence
Loop of time t
¿ ¿¿
2t¡ ¿( )clP t int ( )P t
-
43
( )tϕ+
02
( )i
i te eφπφ ϕ
Random dephasing depends on the position of atoms, other electrons, magnetic impurities,…
0
2 ( )tφπ ϕφ
+
0
2 ( )tφπ ϕφ
− +
0
4 ( ) ( )t tφπ ϕ ϕφ
+ −
04 ( )i i t
eφπ ϕφ
+ ∆
21 ( )( ) 2 /i t tt
e ee φϕϕ τ− ∆ −∆
Dephasing :
Average on the trajectories and on the dynamics of external degrees of freedom
Dephasing
-
44
0.1
1
10
100
0.001 0.01 0.1 1 10 100 T (K)
L φ ( µ
m)
3Tφτ−∝
e-ph interaction
2/3Tφτ−∝
3012
3014
3016
3018
3020
3022
3024
-200 -150 -100 -50 0 50 100 150 200
R +
offs
et (O
hms)
B (G)
30mK
60mK
2000mK
470mK
10
( ) dBWL
G B f φδφ
=
Magnetotransport gives access to the phase coherence length
magnetic impurities
( )L Tφ
2
20
( ) dBL
G B f φδφ
=
2/3 31( )
AT B TTφτ
= +
e-phonon e-e
e-e interaction
quasi-1D wires
Grenoble
-
https://users.lps.u-psud.fr/montambaux/X15-meso.htm
Diapositive numéro 1Diapositive numéro 2Diapositive numéro 3Diapositive numéro 4Diapositive numéro 5Diapositive numéro 6Diapositive numéro 7Diapositive numéro 8Diapositive numéro 9Diapositive numéro 10Diapositive numéro 11Diapositive numéro 12Diapositive numéro 13Diapositive numéro 14Diapositive numéro 15Diapositive numéro 16Diapositive numéro 17Diapositive numéro 18Diapositive numéro 19Diapositive numéro 20Diapositive numéro 21Diapositive numéro 22Diapositive numéro 23Diapositive numéro 24Diapositive numéro 25Diapositive numéro 26Diapositive numéro 27Diapositive numéro 28Diapositive numéro 29Diapositive numéro 30Diapositive numéro 31Diapositive numéro 32Diapositive numéro 33Diapositive numéro 34Diapositive numéro 35Diapositive numéro 36Diapositive numéro 37Diapositive numéro 38Diapositive numéro 39Diapositive numéro 40Diapositive numéro 41Diapositive numéro 42Diapositive numéro 43Diapositive numéro 44Diapositive numéro 45