The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp...

31
The specific Static Rotor Work The specific Static Rotor Work Yp Yp Specific Static rotor work ( ) 0 3 1 P P Y P = ρ Where P 0 ,P 3 = static pressures at points 0,3 (P 0 –P 3 ) = static pressure difference of the rotor ρ ρ = density, in case of a compressible medium average of ρ 3 and ρ 3 . Yp can be calculated from the energy difference of the flow medium between o and 3 2 2 Wh 2 2 0 2 3 0 3 C C P P Z Y u blade + = ρ m Where 0 0 1 3 3 2 0 1 3 2 cos cos α α C U C U C U C U Y U U blade = = 1

Transcript of The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp...

Page 1: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

The specific Static Rotor Work The specific Static Rotor Work YpYppp pp

Specific Static rotor work  ( )031 PPYP −=ρ

Where  P0, P3 = static pressures at points 0,3(P0 – P3) = static pressure difference of the rotor

ρ

ρ = density, in case of a compressible medium average of ρ3 and ρ3 .

Yp can be calculated from the energy difference of the flow medium between o and 3

22

Wh

2

20

2303 CCPPZY ublade−

+−

m

Where 0013320132 coscos αα CUCUCUCUY UUblade −=−=

1

Page 2: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• Applying the cos‐theorem of a triangleApplying the cos theorem of a triangle

b aα

C Wα

C

αU

222cos2 acbbc −+=α 222cos2 WUCCU −+=α

( )2222220003332

1 WUCWUCYblade +−−−+=

• It follows

( )2222223003032

1 WWUUCC −+−+−=

• It follows

( ) uubladeP ZWWUUZCCYY mm 222220

23 1

−+−=−

−= ( ) uubladeP 300322

2

Page 3: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

Bernoulli Equation of the Relative FlowBernoulli Equation of the Relative FlowBernoulli Equation of the Relative FlowBernoulli Equation of the Relative Flow

• Neglecting the hydraulic loss, i.e. Zu = 0,

⎟⎟⎠

⎞⎜⎜⎝

⎛−−⎟

⎟⎠

⎞⎜⎜⎝

⎛−=

−=

2222

22

23

2203 10 UWUWPPYP ρ

• It follows2

12

0022

233 UWPUWP

−+=−+

• The above formula applies to any points along the flow line 

2222+=+

ρρ

passing the vane channel

UWP 22 Bernoulli Equation of theconstUWP

=−+22ρ

Bernoulli Equation of theRelative Flow

3

Page 4: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

Impulse and Reaction Type of Impulse and Reaction Type of T b hiT b hiTurbomachinesTurbomachines

• Considering Y the turbomachine can be grouped into:• Considering YP, the turbomachine can be grouped into:

A. Turbomachines without pressure difference in front of andA. Turbomachines without pressure difference in front  of and beyond the rotor, i.e (P3‐P0) =0 or Yp = 0 “Impulse” type of Turbomachines

B. Turbomachines with pressure difference in front and beyond the rotor, i.e. (P3‐P0) ≠ 0 Y > 0 Reaction type ofthe rotor, i.e. (P3 P0)  ≠ 0 Yp> 0 Reaction type of Turbomachines

4

Page 5: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

For impulse turbinesFor impulse turbines– The total head of the incoming fluid is converted into a large velocity head at the exit of the supply nozzle.

B th th d th b k t (bl d ) d th– Both the pressure drop across the bucket (blade) and the change in relative speed of the fluid across the bucket are negligible.

– The space surrounding the rotor is not completely filled with fluid.

– The individual jets of fluid striking the buckets that generates the torque.

5

Page 6: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

For reaction turbinesFor reaction turbines

– There is both a pressure drop and a fluid relativeThere is both a pressure drop and a fluid relative speed change across the rotor.

Guide vanes act as nozzle to accelerate the flow– Guide vanes act as nozzle to accelerate the flow and turn it in the appropriate direction as the fluid enters the rotor.enters the rotor.

– Part of the pressure drop occurs across the guide vanes and part occurs across the rotorvanes and part occurs across the rotor,

6

Page 7: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

SummarySummarySummarySummary

–– Impulse turbines: HighImpulse turbines: High‐‐head, low head, low flowrateflowrated id idevices.devices.

bb h d h hh d h h flfl–– Reaction turbines: LowReaction turbines: Low‐‐head, highhead, high‐‐flowrateflowratedevices.devices.

7

Page 8: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

Equal Pressure or Impulse Type of Equal Pressure or Impulse Type of TurbomachinesTurbomachinesTurbomachinesTurbomachines

0003 ==− PYandPP

• Example a. Single‐Stage Steam Turbine

8

Page 9: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• The entirely available pressure difference (P3‐P0) is converted i t l it hil th fl th h th t tiinto velocity while the flow passes through the stationary guide vanes

• The velocity existing in the clearance between the stationary guide vanes and the rotor blades is the highest one which can be obtained from the available pressure difference i e C3 =be obtained from the available pressure difference, i.e. C3  C3max attainable

Th ki ti f th fl t i th t i d d• The kinetic energy of the flow entering the rotor is reduced while the flow passes the blade channels, the absolute velocity is reduced from C3 to C0.

• The specific static rotor work Yp is (for axial flow U1=U2 = U)

( ) uP ZWWY +−= 23

202

19

Page 10: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• Neglecting the hydraulic lose Zu of the rotor, it follows because Yp = 0.

C id i th l

30 WW =

WW• Considering the loss:

• Where the velocity coefficient φ takes in to account the drop

30 WW ϕ=

Where the velocity coefficient φ takes in to account the drop in kinetic  energy due to Zu; Ф<1.

• The condition Wo ≈W3 demands rotor blades of the ‘hook‐form’ type, i.e. β2 >900.

Blades of a constant-pressure steam or Gas turbine. ‘a’ is the channel

idth t ll point pp o im tel width at all points approximately equal

10

Page 11: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• If blade has uniform thickness the flow while passing the• If blade has uniform thickness, the flow while passing the channel is first decelerated then accelerated. 

• Such change in the flow velocity is undesirable as it leads to  unnecessary losses.unnecessary losses.

• In order  to obtain W≈ const. along the vane channel the blade be designed with strong profiling; however such bladesblade be designed with strong profiling; however, such blades are costly

11

Page 12: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• The specific work Yblade of an impulse steam turbine stage as for a given velocity U proportional to the velocity Cgiven velocity U2 proportional to the velocity C3

.max3333232 cos attUblade CCCUCUY −=∝== α For α0=900

• Steam turbines are designed with approximately the same angle α3=15 to 20 degrees.

• As C3 of impulse team turbines has highest possible value C3max‐att.The spec. work Yblade of these turbines has highest value

2..max. UgivenaforYY attbladetimpulseblade −− =

•• The peripheral velocity UThe peripheral velocity U22 will be lowest for a given will be lowest for a given YYbladeblade if the if the turbine is designed as impulse turbineturbine is designed as impulse turbine

I l bi l i biI l bi l i bi•• Impulse turbines are slow running turbinesImpulse turbines are slow running turbines

12

Page 13: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

OverOver--Pressure or Reaction Type of Pressure or Reaction Type of T b hiT b hiTurbomachineTurbomachine

• Example: Single‐Stage Reaction Steam Turbinep g g

13

Page 14: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• While the flow passes through the channels of stationaryvanes (also called Guide Blades), onlyonly aa portionportion ofof thetheavailableavailable pressurepressure differencedifference (P(PDD‐‐PPSS)) isis convertedconverted intointo velocityvelocity

• Thus C3<C3max‐attainable and, hence, the spec. work Yblade =U2C3U3 3 a atta ab e b ade 3Uof the reaction turbine is smaller that that of the impulseturbine if the same velocity U2 is assumed

•• TheThe velocityvelocity UU ofof reactionreaction turbinesturbines hashas toto bebe higherhigher thanthan thatthatofof impulseimpulse turbinesturbines ifif thethe samesame YYbladeblade isis toto bebe obtainedobtained..

•• ReactionReaction turbinesturbines maymay bebe classifiedclassified asas fastfast runningrunningturbomachinesturbomachines..

14

Page 15: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• β1 should be small but not too small as leads to strong whirls β1 gin the discharge flow.

• The angle β2 of reaction turbines is β2≤900 and, thus, differs g β2 β2from that of impulse turbines.

• The blade does not have the hook form. As the relative velocity increases from W3 to W0, the channel width decreases and no profile is necessary in order  to obtain equal channel widthchannel width.

• Reaction turbine has more stages because of the lower Ybladeof its single stageof its single stage.

15

Page 16: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

Degree of ReactionDegree of ReactionDegree of ReactionDegree of Reaction

• In case of the reaction turbine, the driving force at the rotor is the driving force at the rotor is , g fg fdue to change of direction (impulse) and magnitude (reaction) due to change of direction (impulse) and magnitude (reaction) of the relative velocity W.of the relative velocity W.

• A reaction effect, i.e. a change of the magnitude of the a change of the magnitude of the relative velocity Wrelative velocity W in case of the axial‐flow machine, is only possible if a pressure difference exists between the entranceif a pressure difference exists between the entrancepossible if a pressure difference exists between the entrance if a pressure difference exists between the entrance and dischargeand discharge side of the rotor.

• Quota of reaction acting is found by comparing total energy YQuota of reaction acting is found by comparing total energy Y, with pressure rotor energy (Yp).

16

Page 17: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

YworkrotorStaticSpecreactionofDegree P.YstagetheofoutletandinletbetweenworkSpec

reactionofDegree ==)(.

00 RdYhii l)1(100:

00:casesspecialsomeinRRandYmachinereaction

RandYmachineimpulse

P

P

≥<<>==

The reaction effect exists also in case of radial or mixed flow rotorswhere U1≠U2 even for |W0| =|W3| as shown by the equation

( ) ( )11 222222 −−+− ZUUZWWUU mm( ) ( )022 123012

≠=+

=Y

ZUU

Y

ZWWUUY

uu

P

mm

17

Page 18: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

Blade Speed RatioBlade Speed RatioBlade Speed RatioBlade Speed Ratio

• The blade speed ratio as defined below is widely used in the l l i f bi i ll f bicalculation of turbines especially of steam turbines.

UURatioSpeedBlade ==

• is the velocity which could be obtained if the spec.

YCp

Y 2

YCY 2= is the velocity which could be obtained if the spec. work Y is converted without losses completely into velocity.

YCY 2

C2 Where Ф is velocity coefficient of guide vanesR

CCY −≈

12

ϕWhere Ф is velocity coefficient of guide vanes

(referring to velocity losses)

U 1RC

U h

Y −=

11

cos2 2αϕη

After some derivation18

Page 19: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• Assuming the following data: ηh = 0.85;φ=0.98; α2= 300.

1cos2 2

≈αϕ

ηh

• The blade speed ratio has the value501

021

0

⎟⎞

⎜⎛

==⎟⎟⎠

⎞⎜⎜⎝

=

RfU

RforCU

RY

• The following values of the blade speed ratio re obtained with 

5.025.0

=≈⎟⎟⎠

⎞⎜⎜⎝

=

RforCU

RY

actual machines:

U ⎟⎞

⎜⎛

{ {

147.035.0

1'

'47.035.0arg.0

Rto

Rk

CUturbinessteamreaction

ktoCUturbinessteamimpuse

Y

powereldesignqualityhighpowersmallDesignCheapRY

−=

−≈⎟⎟

⎞⎜⎜⎝

==⎟⎟⎠

⎞⎜⎜⎝

=

47.044.0

11

0

0

toCUTurbinesPelton

RRC

RY

RY

=⎟⎟⎠

⎞⎜⎜⎝

⎠⎝

=

>

19

Page 20: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

(57) Calculation of Mean Diameter and Peripheral (57) Calculation of Mean Diameter and Peripheral V l it i th Bl d S d R tiV l it i th Bl d S d R tiVelocity using the Blade Speed RatioVelocity using the Blade Speed Ratio

20

Page 21: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

The Vane Angle The Vane Angle ββ22The Vane Angle The Vane Angle ββ22

• Three different axial‐flow vanes, namely form A, B, C for which U2, C2m and β1 are the same but the angle β2 differ

21

Page 22: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• Β2 is chosen for the form A as β2<900, for the form B as β2=900

and for the form C as β2>900.

• A similar sketch for three different radial‐flow vanes with β2<900 (form a), β2=900 (form b) and β2=900 (form c) is given below.

22

Page 23: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• In case of the radial‐flow machine the vanes of the different forms are calledforms are called

– Vane form a as ‘backward‐curved’ vanes

– Vanes form b, c as ‘forward‐curved’ vanes

The following relation exists between β2 and U2

Case:α0=900∞

−=−===

mUu

ubladeUblade

thenCUWUCwhereCUYandCUY

222222

2232

,cot, β( )∞

+⎟⎟⎞

⎜⎜⎛

+=

−=

bl dmm

mblade

mUu

YCCU

followsitandCUUY2

222

2222

222222

cot,,

ββ

∞+⎟⎟⎠

⎜⎜⎝

+ bladeYU22

2 tan2tan2 ββ

2⎞⎛Case:α0≠900

23

OUblademm CUYCCU 1

2

2

2

2

22 tan2tan2

++⎟⎟⎠

⎞⎜⎜⎝

⎛+= ∞ββ

Page 24: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• The necessary peripheral velocity U2 for a given Yblade∞ can be y p p y 2 g blade∞determined by these equation if the vane angle β2 is assumed.

• A large β2 decreases U2 and the size of the rotor decreases, 2  2too, if the speed n is not altered:

24

Page 25: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

Ranges of Ranges of ββ22 with different types of with different types of b hi b hi turbomachines turbomachines

25

Page 26: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

Shape Number, Specific SpeedShape Number, Specific SpeedShape Number, Specific SpeedShape Number, Specific Speed

• The shape of the rotor is determined by the three related values n, Y and V as long as the vane angle β2  is unchanged.

1. Effect of Increase in speed n on the shape of the rotor (with h d β V d Y)unchanged β2,V and Y)

The unchanged Y demands the same velocity triangle at 2.

Ubladeblade CUYYY 22=∝∝ ∞

The unchanged velocity triangle can be obtained for increased speed n but same velocity U as demanded by the increased speed n but same velocity U as demanded by the unchanged velocity triangle only at a smaller outer diamunchanged velocity triangle only at a smaller outer diamunchanged velocity triangle only at a smaller outer diamunchanged velocity triangle only at a smaller outer diam.

26

Page 27: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

27

Page 28: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

2. Effect of Increase in V on the shape of the slow running rotor (with unchanged β2,n ,D2,and Y)(with unchanged β2,n ,D2,and Y)

The larger volume V can be obtained only by increasing the increasing the channel width and the eye dia. Ds channel width and the eye dia. Ds 

The meridian component of the velocity must remain unchanged because of the unchanged Y with same n and D2

Demanding and unchanged velocity triangle at 2.

28

Page 29: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• The rotor shape is a function of n V and Y• The rotor shape is a function of n, V and Y.

•• Shape number (Shape number (NNshapeshape)) is a dimensionless number and is used to define the shape of the rotor by relating n V and Yto define the shape of the rotor  by relating n, V and Y.

[ ] 2

23

;1,11 assumemYmVnN h =⎥⎤

⎢⎡

⎥⎤

⎢⎡

⎥⎤

⎢⎡=

γβα

α[ ]

002

231

2

11

;1,1

smsm

sm

s

assumes

Ys

Vs

nNshape

=⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡⎥⎦⎤

⎢⎣⎡=

⎥⎦

⎢⎣

⎥⎦

⎢⎣

⎥⎦⎢⎣γβ

α

• It follows⎦⎣⎦⎣

[ ] 4/32/11 Vn023: =+ γβm Thus [ ] 434/32/111

YVnYVnNshape ==

21021

021:023:

==+−

=−−−+

ββ

γβγβ

or

Sm Thus,

2943

232,

2

−=−= γγ orthusshapesh Nn 1000=

Page 30: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

• A relation which is based on the head H instead on the spec. work Y is called Specific Speed.Specific Speed.

Vn

• Where  the values has a unit of n(rpm), V(m3/s) and H(m).

43HVnnq =

( p ), ( / ) ( )

• nq is not dimensionless  for metric system nq has the following unit

⎥⎦

⎤⎢⎣

⎡=⎥⎦

⎤⎢⎣⎡=

min.333

min16081.9

4343

243

smNNs

smn shapeshapeq

• For water turbines a specific speed derived from n, H and N is often used.

⎦⎣

3045H

Nnns =

Page 31: The specific Static Rotor Work Ypp - Nathi · 4/11/2013 · The specific Static Rotor Work Ypp Specific Static rotor work 3 0 1 Y P = P −P ρ Where P 0, P 3 = static pressures at

Values of Nshape, nq and ns:

1000Nshape nq ns

Slow‐ running rotor 33 to 120 11 to 38 40 to 140

Medium‐running rotor 120 to 250 38 to 82 140 to 300

Fast –running rotor 250 to 500 82 to 164 300 to 600

axial‐flow rotor 330 to 1500 110 to 500 400 to 1800

31