Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014...

23
Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston [email protected]

Transcript of Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014...

Page 1: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

Teaching Microeconomics ofRenewable Energy

ISEE ConferenceReykjavík, IcelandAugust 13, 2014

David TimmonsUniversity of Massachusetts Boston

[email protected]

Page 2: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.
Page 3: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

kW = 9.8ηQH

Dam functions: 1. create head 2. store water (store energy)

Renewable Energy: Physical Basis

photo: Orkustofnun, Iceland National Energy Authority

Page 4: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

W = 0.5 ρAV3

Renewable Energy: Physical Basis

Page 5: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

Adapted from Murphy and Hall (2010)

Renewable Energy Cost Factors: Net Energy Ratios

Energy Source Net Energy

Ratio Reference Oil (global) 35 (Yandle, Bhattarai and Vijayaraghavan 2004) Natural gas 10 (Hall 2008) Coal 80 (Cleveland 2005) Shale oil 5 (Hall 2008) Nuclear 5-15 (Lenzen 2008; Murphy and Hall 2010) Hydropower >100 (Hall 2008) Wind 18 (Kubiszewski, Cleveland and Endres 2010) Photovoltaic cells 6.8 (Battisti and Corrado 2005) Biomass: ethanol (sugarcane) 0.8 – 10 (Hall, Cleveland and Kaufmann 1986),(Goldemberg 2007) Biomass: ethanol (corn-based) 0.8 – 1.6 (Farrell, Pelvin and Turner 2006) Biomass: biodiesel 1.3 (Hall, Cleveland and Kaufmann 1986) Biomass: farmed willow chips 55 (Keoleian and Volk 2005)

Page 6: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

Nominal Capacity

(MW)

Capital Cost

($/kW)

Assumed Capacity Factor

Capital $/Expected1

kW Natural gas: combined cycle 620 $917 90% $1,019 Coal: advanced pulverized fuel 650 $3,246 90% $3,607 Hydroelectric 500 $2,936 75% $3,915 Nuclear: dual unit 2,234 $5,530 90% $6,144 Wind: onshore 100 $2,213 25% $8,852 Biomass combined cycle 20 $8,180 90% $9,089 Wind: offshore 400 $6,230 35% $17,800 Solar: photovoltaic 150 $3,873 20% $19,365 Solar: thermal electric 100 $5,067 20% $25,335

1 For comparing sources with different capacity factors, we define $/expected kW as ($/kW)/(capacity factor), or the capital cost to produce the same amount of electricity as one kW of capacity running continuously.

Adapted from EIA (2013)

Renewable Energy Cost Factors: Capital Intensity

Page 7: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

Renewable Energy Cost Factors: Intermittency

pumped storage: Northfield, Massachusetts

Page 8: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

source: EIA (2014)

Renewable Energy Supply

source: Jacobson and Delucchi (2011)

tera

watt

s (T

W)

2012

$/k

Wh

2030 est. demand = 17 TW

Page 9: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

P

Q

MCH

A. Hydropower: low initial cost, but limited quantity

Microeconomic Concepts: marginal cost

Renewable Energy Supply

Page 10: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

P

Q

MCH P

Q

MCW

A. Hydropower: low initial cost, but limited quantity

B. Wind: higher cost, higher quantity

Microeconomic Concepts: marginal cost

Renewable Energy Supply

Page 11: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

P

Q

MCH P

Q

MCW P

QA. Hydropower: low initial cost, but limited quantity

B. Wind: higher cost, higher quantity

C. Solar PV: highest cost, unlimited quantity

Microeconomic Concepts: marginal cost supply elasticity

Renewable Energy Supply

MCPV

Page 12: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

P

Q

MCH P

Q

MCW P

Q

P

Q

MCagg

A. Hydropower: low initial cost, but limited quantity

B. Wind: higher cost, higher quantity

C. Solar PV: highest cost, unlimited quantity

D. Aggregaterenewable supply, and demand

MCPV

Microeconomic Concepts: marginal cost supply elasticity aggregate supply

Renewable Energy Supply

Page 13: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

P

Q

MCH P

Q

MCW P

Q

P

Q

D

MCagg

A. Hydropower: low initial cost, but limited quantity

B. Wind: higher cost, higher quantity

C. Solar PV: highest cost, unlimited quantity

D. Aggregaterenewable supply, and demand

Microeconomic Concepts: marginal cost supply elasticity aggregate supply market equilibrium

Renewable Energy Supply

MCPV

Page 14: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

P

Q

MCH P

Q

MCW P

Q

P

Q

D

MCagg

A. Hydropower: low initial cost, but limited quantity

B. Wind: higher cost, higher quantity

C. Solar PV: highest cost, unlimited quantity

D. Aggregaterenewable supply, and demand

Renewable Energy Supply

Microeconomic Concepts: marginal cost supply elasticity aggregate supply market equilibrium equimarginal principle

MCPV

Page 15: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

P

Q

MCH P

Q

MCW P

Q

P

Q

P

Q

MCC

D

MCagg

A. Hydropower: low initial cost, but limited quantity

B. Wind: higher cost, higher quantity

C. Solar PV: highest cost, unlimited quantity

E. Conservation:high quantity available at MC of solar PV

D. Aggregaterenewable supply, and demand

Renewable Energy Supply

Microeconomic Concepts: marginal cost supply elasticity aggregate supply market equilibrium equimarginal principle

MCPV

Page 16: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

CoalHydro Power Geothermal Peat

0

20

40

60

80

100

120

140

160

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

PJ (petajoule)

1 petajoule = 1015 joule = 0,278

TWh

Source: Orkustofnun 2004

Geothermal Heating in Iceland

Oil

2000

Page 17: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

CoalHydro Power Geothermal Peat

0

20

40

60

80

100

120

140

160

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

PJ (petajoule)

1 petajoule = 1015 joule = 0,278

TWh

Source: Orkustofnun 2004

Geothermal Heating in Iceland

0%

20%

40%

60%

80%

100%

1900 1920 1940 1960 1980 2000

Proportional contribution of sources

Oil

2000

Page 18: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

Geothermal Heating in Iceland

Page 19: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

Geothermal Heating in Iceland

Ísafjörður

Page 20: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

District Heat Energy Sources 2008

electricity, 86%

oil, 4%District Heating SystemÍsafjörður, IcelandPopulation: 2,600

Midtown District (Skutulsfjardareyri)

Southern District (Holtahverfi)

incinerator plant

incinerator, 10%

Page 21: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

P

MCrenewable1

Time

MCfossil

t1

Renewable Energy Transition Dynamics

Page 22: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

t2

Renewable Energy Transition Dynamics

P

Time

MCfossil

MCrenewable1

t1

MCrenewable2

Page 23: Teaching Microeconomics of Renewable Energy ISEE Conference Reykjavík, Iceland August 13, 2014 David Timmons University of Massachusetts Boston david.timmons@umb.edu.

MCrenewable2

SMCfossil

t2

Renewable Energy Transition Dynamics

P

Time

MCfossil

t3