Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from...

21
Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone Kuldeep K. Bansal, a Deepak Kakde, a Laura Purdie, a Derek Irvine, b Steven M. Howdle, c Giuseppe Mantovani a and Cameron Alexander a* TABLE OF CONTENT:- List of Figures Figure S1 1 H NMR of commercially available δ-decalactone acquired in CDCl 3 .. ...................................................................... 1 Figure S2 1 H NMR spectra of propargyl-PDL and BZD-PDL in CDCl 3 . ..................................................................................... 2 Figure S3 1 H NMR spectra of propargyl PDL before and after purification of polymer. ............................................................. 3 Figure S4 DSC plot of Propargyl PDL.. ........................................................................................................................................ 3 Figure S5 13 C NMR of BZD-PDL and propargyl-PDL in CDCl 3 . ................................................................................................ 4 Figure S6 SEC traces of (A) BZD-PDL and (B) propargyl-PDL .................................................................................................. 5 Figure S7 Conversion of monomer with time for ROP of δ-decalactone using mPEG as initiator and TBD (5 mol %) as the catalyst............................................................................................................................................................................................ 6 Figure S8 1 H NMR spectrum and SEC trace of mPEG-b-PDL (during kinetic study) after 9 h containing 5% of TBD as the catalyst............................................................................................................................................................................................ 6 Figure S9 Overlaid FTIR spectra of mPEG, δ-decalactone monomer and mPEG-b-PDL copolymer. ......................................... 7 Figure S10 1 H NMR of mPEG-b-PDL and PDL-b-PEG-b-PDL copolymer in CDCl 3 ................................................................. 8 Figure S11 13 C NMR of mPEG-b-PDL and PDL-b-PEG-b-PDL copolymer in CDCl 3 . ............................................................... 9 Figure S12 SEC traces of PEG macroinitiator and different block copolymers of decalactone in chloroform ........................... 10 Figure S13 DSC plots of (A) mPEG-b-PDL and (B) PDL-b-PEG-b-PDL, obtained from second heating/cooling cycle .......... 11 Figure S14 1 H NMR and 13 C NMR spectra of mPEG-b-PDL-b-PPDL in CDCl 3 ....................................................................... 12 Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Transcript of Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from...

Page 1: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry RSCPublishing

Supporting Information 

New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Kuldeep K. Bansal,a Deepak Kakde,a Laura Purdie,a Derek Irvine,b Steven M. Howdle,c Giuseppe Mantovania and Cameron Alexandera*

TABLE OF CONTENT:-

List of Figures

Figure S1 1H NMR of commercially available δ-decalactone acquired in CDCl3.. ...................................................................... 1

Figure S2 1H NMR spectra of propargyl-PDL and BZD-PDL in CDCl3. ..................................................................................... 2

Figure S3 1H NMR spectra of propargyl PDL before and after purification of polymer. ............................................................. 3

Figure S4 DSC plot of Propargyl PDL.. ........................................................................................................................................ 3

Figure S5 13C NMR of BZD-PDL and propargyl-PDL in CDCl3. ................................................................................................ 4

Figure S6 SEC traces of (A) BZD-PDL and (B) propargyl-PDL .................................................................................................. 5

Figure S7 Conversion of monomer with time for ROP of δ-decalactone using mPEG as initiator and TBD (5 mol %) as the

catalyst.. .......................................................................................................................................................................................... 6

Figure S8 1H NMR spectrum and SEC trace of mPEG-b-PDL (during kinetic study) after 9 h containing 5% of TBD as the

catalyst.. .......................................................................................................................................................................................... 6

Figure S9 Overlaid FTIR spectra of mPEG, δ-decalactone monomer and mPEG-b-PDL copolymer. ......................................... 7

Figure S10 1H NMR of mPEG-b-PDL and PDL-b-PEG-b-PDL copolymer in CDCl3 ................................................................. 8

Figure S11 13C NMR of mPEG-b-PDL and PDL-b-PEG-b-PDL copolymer in CDCl3. ............................................................... 9

Figure S12 SEC traces of PEG macroinitiator and different block copolymers of decalactone in chloroform ........................... 10

Figure S13 DSC plots of (A) mPEG-b-PDL and (B) PDL-b-PEG-b-PDL, obtained from second heating/cooling cycle .......... 11

Figure S14 1H NMR and 13C NMR spectra of mPEG-b-PDL-b-PPDL in CDCl3 ....................................................................... 12

Electronic Supplementary Material (ESI) for Polymer Chemistry.This journal is © The Royal Society of Chemistry 2015

Page 2: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Figure S15 DSC plots of mPEG-b-PDL-b-PPDL from second heating/cooling cycle ................................................................ 13

Figure S16 SEC trace of mPEG-b-PCL obtained using chloroform as the mobile phase. .......................................................... 13

Figure S17 1H NMR and 13C NMR of mPEG-b-PCL in CDCl3 .................................................................................................. 14

Figure S18 CMC plot for (A) mPEG-b-PDL, (B) PDL-b-PEG-b-PDL, (C) mPEG-b-PDL-b-PPDL and (D) mPEG-b-PCL

obtained by the pyrene 1:3 peak ratio method in water ................................................................................................................ 15

Figure S19 Size and Zeta potential of propargyl-PDL nano emulsion.. ...................................................................................... 16

Figure S20 Zeta potential values for (A) mPEG-b-PDL, (B) PDL-b-PEG-b-PDL, (C) mPEG-b-PCL and (D) mPEG-b-PDL-b-

PPDL micelles acquired in HEPES 10 mM buffer (pH – 7.4). .................................................................................................... 16

Figure S21 UV-Visible absorbance spectra of Nile red (NR) in acetone and micelles.. ............................................................. 17

Figure S22 Size distribution curve by intensity of (A) mPEG-b-PDL, (B) PDL-b-PEG-b-PDL and (C) mPEG-b-PDL-b-PPDL

acquired by DLS in water. (D) Appearance of micellar solutions and control (formulation without polymer) after Nile red

loading. ......................................................................................................................................................................................... 17

Figure S23 Physical appearance of micellar suspensions (obtained via nanoprecipitation method) in water (A) before and (B)

after filtration through 0.22 µm syringe filter. ............................................................................................................................. 18

Figure S24 Size distribution curves by intensity of (A) Blank mPEG-b-PCL, (B) AmpB loaded mPEG-b-PCL, and TEM

image of (C) Blank mPEG-b-PCL and (D) AmpB loaded mPEG-b-PCL micelles. The images were taken without staining.. .. 18

Figure S25 SEC trace of mPEG-b-PDL after 120 days of storage at pH 7.4 (temperature – 37°C). ........................................... 19

List of Tables

Table S1 Data obtained from the kinetics analysis of mPEG-b-PDL synthesis.. .......................................................................... 7 

Page 3: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Page | 1   

Figure S1 1H NMR of commercially available δ-decalactone acquired in CDCl3. Inset showing enlarged region of spectrum between 3.3 and 5.0 ppm.

 

e

e

b

b

c

d f

g

h

i

j

c

d

j g,h,i

f,g

d

b

k l

k l

e

l k

4.9 4.7 4.5 4.3 4.1 3.9 3.7 3.5 3.3

a

Page 4: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Page | 2   

 

 

Figure S2 1H NMR spectra of propargyl-PDL and BZD-PDL in CDCl3. Inset showing enlarged area of 1HNMR to aid visualisation of diagnostic proton peaks. Lettering adjacent to positions on the chemical structures refer to protons labelled on the NMR spectra

a, a’

d’, l j

d

f, f’, g, g’, h’, h’

b, b’, c, c’, e’, e’

i, i’

k

a a’ d’

e’

i’

h’

g’ f’

l c’

b’

d

j b

c

e f

g

h

i

k

d’, l k

j

4.7 4.5 4.3 4.1 3.9 3.7 3.3 2.9 2.7 3.5 3.1 2.5

q, r, s

p, t o

d

l k, m d’, j

i’

f’ e’

b’ c’

g’ h’

a’ j d’

k

m’

l d

o q

p

t r s

a b

c

e f

g h

i

o

d

l k, m d’, j

7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2

a, a’

f, f’, g, g’, h’, h’

b, b’, c, c’, e’, e’

i, i’

p, t

q, r, s

Page 5: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Po

 

Figrea

Fig

lymer Chemis

gure S3 1H Naction mixture

gure S4. DSC

stry 

NMR spectraes in cold me

C plot of Prop

-0.4

-0.2

0.0

0.2

0.4

Heat F

low

(W

/g)

-100

Exo Up

a of propargyethanol.

pargyl PDL. T

-54.20

-56.00°C

-51.91°C

-50

yl PDL befor

The presented

°C(I)

C

0

re and after

d trace was a

50

Temperatur

purification o

acquired from

100

re (°C)

of polymer b

m the second

150

by precipitatio

heating/coo

0 20

Universal V3.9A

ARTI

Page 

 

on of quench

 

ling cycle.

00

TA

ICLE 

| 3  

 

hed

 

Page 6: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Page | 4   

 

 

 

Figure S5. 13C NMR of BZD-PDL and propargyl-PDL in CDCl3.

172.98

73.62

13.94

20.77

31.60 24.89

34.14

33.43

22.48

33.91

69.04

125.97

173.04

73.69

13.98

20.79

31.64

24.93

34.19

33.46

22.52

33.94

52.30

77.23

75.86

Page 7: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Po

 

Figpha

 

lymer Chemis

gure S6. SECase. Average

stry 

C traces of (Ae molecular w

A) BZD-PDL weights were

and (B) procalculated a

pargyl-PDL, against polyst

which were tyrene as the

acquired usin molar mass

ng chloroformstandard.

ARTI

Page 

 

 

m as the mo

ICLE 

| 5  

 

bile

Page 8: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Po

 

Figthe

Figthesta

lymer Chemis

gure S7. Cone catalyst.

gure S8. 1H Ne catalyst. Sandard. For 1H

stry 

nversion of m

NMR spectruSEC traces wH NMR analy

%C

i

onomer with

m and SEC twere obtaineysis the samp

0

10

20

30

40

50

60

70

80

0

% C

on

vers

ion

time for ROP

trace of mPEed using chlple was disso

100 2

P of δ-decala

EG-b-PDL (duoroform as olved in CDC

200 300

Time (m

actone using

uring kinetic the mobile

Cl3.

400

min)

mPEG as ini

study) after 9phase and p

500 60

 

itiator and TB

9 h containinpolystyrene

00

ARTI

Page 

BD (5 mol %)

 

g 5% of TBDas molar m

ICLE 

| 6  

 

) as

 

D as ass

Page 9: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Page | 7   

Table S1. Data obtained from the kinetics analysis of mPEG-b-PDL synthesis. As shown in figure S8, peaks 1 and 2 correspond to copolymer and homopolymer respectively. (PD-Polydispersity Index)

Time Conversion by NMR (%)

Mn,SEC Peak 1 (kDa)

PD Peak1

Mn,SEC Peak 2 (kDa)

PD Peak 2

15 min 15 12.6 1.02 1.2 1.36

30 min 21 13.7 1.02 1.7 1.37

1 h 35 15.2 1.02 2.8 1.23

1.5 h 45 15.8 1.02 3.3 1.21

2 h 52 16.4 1.02 3.9 1.16

3 h 62 17.2 1.02 4.5 1.14

4 h 69 17.3 1.02 4.6 1.13

5.5 h 70 17.6 1.02 4.7 1.13

9 h 70 17.6 1.02 4.7 1.12

 

Figure S9 Overlaid FTIR spectra of mPEG, δ-decalactone monomer and mPEG-b-PDL copolymer.

 

0

20

40

60

80

100

120

648114816482148264831483648

Tra

nsm

ittan

ce

Wavenumber cm-1

mPEG decalactone mPEG-b-PDL

Page 10: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Page | 8   

 

 

 

Figure S10. 1H NMR of mPEG-b-PDL and PDL-b-PEG-b-PDL copolymer in CDCl3

h

d

p

o

l k

j

a

b

c

e f

g i

d

p

k, l, o

j

a

f, g, h

b, c, e

i

d

p

k, l, o

f, g, h

b, c, e

i

a

a

h

d b

c

e f

g i

p

o l

k

Page 11: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Page | 9   

 

 

 

Figure S11. 13C NMR of mPEG-b-PDL and PDL-b-PEG-b-PDL copolymer in CDCl3.

a b

c

d e f

g

h

i k

j

a c

c

c

f

f

d e

h

i

j

g

b f

k

a b

c

f

g

h

i

j

k

d

d

a

k

Page 12: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Page | 10   

Figure S12. SEC traces of PEG macroinitiators and different block copolymers of decalactone, which were obtained using chloroform as the mobile phase. Polystyrene standards were used to calibrate the SEC.

11 12 13 14 15 16 17

Retention Time (Min.)

PEG4K mPEG5K PDL-b-PEG-b-PDL mPEG-b-PDL mPEG-b-PDL-b-PPDL

Page 13: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Page | 11   

 

 

 

Figure S13. DSC plots of (A) mPEG-b-PDL and (B) PDL-b-PEG-b-PDL, obtained from second heating/cooling cycle.

 

-54.65°C(I)

-56.78°C

-52.69°C

54.60°C

50.97°C70.28J/g

-4

-2

0

2

4

He

at F

low

(W

/g)

-100 -50 0 50 100 150 200

Temperature (°C)Exo Up Universal V3.9A TA In

50.91°C 70.28 J/g

-56.78°C -54.65°C (I)

-52.69°C

54.60°C

-100 -50 0 50 100 150 200

A

-53.36°C(I)

-55.50°C

-51.17°C

47.02°C

43.45°C61.67J/g

-4

-2

0

2

4

Hea

t F

low

(W

/g)

-100 -50 0 50 100 150 200

Temperature (°C)Exo Up Universal V3.9A TA

43.45°C 61.67J/g

-55.50°C -53.36°C (I)

-51.17°C

47.02°C

-100 -50 0 50 100 150 200

B

-55.50°C -53.36°C (I)

-51.17°C

43.45°C 61.67 J/g

47.02°C

Page 14: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Po

 

Fig

lymer Chemis

gure S14. 1H

kj

stry 

NMR and 13C

p o l

k

C NMR spect

h

da

b

c

f

g i

tra of mPEG-

d

d

e

q

r s

-b-PDL-b-PP

p

u

k, l, o

t u

PDL in CDCl3

j

.

a, q

f, g, h, s, t

b, c, e, r

ARTI

Page |

i

ICLE 

 12  

 

Page 15: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Po

 

Fig

Figuse

lymer Chemis

gure S15 DSC

gure S16. SEed to calibrat

stry 

C plots of mP

EC trace of mte the SEC.

-4

-2

0

2

4

Hea

t Flo

w (

W/g

)

-100

Exo Up

-100

PEG-b-PDL-b

mPEG-b-PCL

-52.76

-55.32°

-51.81°C

-50

-55.32°C-52.76°C

-51.81°C

-50

b-PPDL from

L obtained us

6°C(I)

°C

0

C C (I)

0

second heat

sing chlorofor

54.75°C

51.58°C51.49J/g

50

Temperature

51.58°C 51.49J/g

54.75°C

50

ting/cooling c

rm as the mo

C

88.06°C83.505.489

100

(°C)

C

100

83.5.488.06°C

cycle.

obile phase.

0°C9J/g

150150

50°C 489J/g

 

Polystyrene

200

Universal V3.9A TA

200

ARTI

Page |

standards w

ICLE 

 13  

 

were

Page 16: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Page | 14   

 

 

 

Figure S17. 1H NMR and 13C NMR of mPEG-b-PCL in CDCl3.

e

j b, c, d

a

f g, i

h

e

j

b

a f

g

h

i

c d

a

b

c

d

e f g

h

a

b

c

d

e

f

g

h b

b

Page 17: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Polymer Chemistry  ARTICLE 

Page | 15   

 

 

Figure S18. CMC plot for (A) mPEG-b-PDL, (B) PDL-b-PEG-b-PDL, (C) mPEG-b-PDL-b-PPDL and (D) mPEG-b-PCL obtained by the pyrene 1:3 peak ratio method in water.

 

 

Inte

nsi

ty R

atio

(3

73/3

84) A B

Polymer Concentration µg/mL(Log10 Scale)

Polymer Concentration µg/mL(Log10 Scale)

Inte

nsi

ty R

ati

o (

373/

384

)

C D

Page 18: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Po

 

Figwh

FigmP

lymer Chemis

gure S19. Sizhereas zeta p

gure S20. ZePEG-b-PDL-b

stry 

ze and Zeta potential was

eta potential b-PPDL mice

potentials omeasured in

measuremeelles acquired

of propargyl-P 10 mM HEP

nts of (A) md in HEPES 1

PDL nano emPES buffer.

mPEG-b-PDL10 mM buffer

mulsion. Size

, (B) PDL-b-r (pH 7.4).

e was determ

-PEG-b-PDL,

 

mined in HP

 

, (C) mPEG

ARTI

Page |

LC grade wa

-b-PCL and

ICLE 

 16  

ater

 

(D)

Page 19: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Po

 

Figen

FigPPNil

lymer Chemis

gure S21. UVcapsulated N

gure S22. SizPDL acquirede red loading

stry 

V-Visible absNR in mPEG-

ze distributiod by DLS in wg.

4500.0

0.5

1.0

Ab

so

rba

nc

e (

no

rmal

ised

)

sorbance sp-b-PDL micel

n curve by inwater. (D) Ap

50

W

NR in a

ectra of Nileles dispersed

ntensity of (Appearance of

00

Wavelength

acetone

e red (NR) id in water.

A) mPEG-b-Pf micellar sol

 

550

(nm)

NR in m

n acetone a

PDL, (B) PDLutions and co

600

micelles

nd micelles.

L-b-PEG-b-PDontrol (formu

 

Micelle sam

DL and (C) mulation withou

ARTI

Page |

mples contain

mPEG-b-PDLut polymer) a

ICLE 

 17  

ned

 

L-b-after

 

Page 20: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Po

 

Figand

Figimasta

lymer Chemis

gure S23. Phd (B) after filt

gure S24. Sizage of (C) B

aining. Scale

stry 

hysical appeatration throug

ze distributionBlank mPEG-

bar – 500 nm

arance of micgh 0.22 µm sy

n curves by i-b-PCL and (m.

cellar suspenyringe filter.

ntensity of (A(D) AmpB lo

nsion (obtain

A) Blank mPEaded mPEG

ed via nanop

EG-b-PCL, (B-b-PCL mice

precipitation

B) AmpB loadelles. The ima

method) in w

ded mPEG-bages were re

ARTI

Page |

water (A) bef

b-PCL, and Tecorded with

ICLE 

 18  

fore

 

TEM hout

 

Page 21: Polymer Chemistry · Polymer Chemistry RSCPublishing Supporting Information New Biomaterials from Renewable Resources - Amphiphilic Block Copolymers from δ-Decalactone

Po

 

Figwa

lymer Chemis

gure S25. SEas calibrated

stry 

EC trace of musing polysty

PEG-b-PDL yrene standa

after 120 dayrds and chlor

ys of storageroform was u

e at pH 7.4 (teused as the m

emperature –mobile phase.

– 37°C). The .

ARTI

Page |

 

SEC instrum

ICLE 

 19  

ment