Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55...

17
SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1902 NATURE GEOSCIENCE | www.nature.com/naturegeoscience 1 Structure of orogenic belts controlled by lithosphere age Frederic Mouthereau, Anthony B. Watts and Evgueni Burov Supplementary Table 1 Name Te (km) ± 20% Shortening (%) ± (1-σ) at 95%* N Age of Collision (Ma) Ref. Age of Thermal reset (Ma) Ref. t T-S ± 20% (Ma) ALAI 53± 11 35±7 1 25 1 300 56 275±55 ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050 56 675±135 BOL 71±14 37.77±5.21 5 60 8-12 950 56 890±178 BR 52±10 50±10 1 200 13 1900 56 1700±340 CAN 35±7 52.17±10.43 1 65 14 2000 58 1935±387 CANT 11± 2 59.14±7.12 2 310 15-16 1800 15 1490±298 COL 51±10 30.6±6 2 60 17-18 950 56 890±178 CPT 28± 6 59.5±4.9 2 110 19-20 1600 56 1409±298 DIN 12± 2 32±6.4 1 30 21 250 56 220±44 EH 44± 9 63±10.18 1 50 22-24 1800 56 1750±350 HAT 16± 3 25.71±5.14 1 65 25 200 25 135±27 NA 11± 2 23.33±4.67 1 30 26 250 56 220±44 NEP 92± 18 71.73±5.51 3 50 27-29 1800 56 1750±350 NP 10± 2 35±7 1 65 30 250 56 185±37 NWI 65± 13 65±13 2 50 31-32 1800 56 1750±350 PAK 55± 11 64±12.8 1 50 33 1800 56 1750±350 PER 51±10 28.9±5.78 1 60 34 950 57 890±178 POT 53± 11 46.15±7.53 2 13 35-36 1800 58 1687±337 RHE 43± 9 52±10.4 1 325 37 1490 37 1165±233 SA 9± 2 24±4.8 1 30 38 250 57 220±44 SEV 43±9 62.5±12.5 1 145 39 1700 58 1555±311 SP 13± 3 46.25±20.45 4 65 40-43 250 56 185±37 SPA 49± 10 30.33±10.5 3 60 44-46 950 56 890±178 SUL 49± 10 45.42±1.41 2 50 35-36 1800 56 1750±350 TA 14± 3 34.5±6.9 1 5 47 55 57 50±10 TAD 54± 11 35±7 1 52 48 300 56 248±49 TS 34± 7 26±5.9 2 25 49-50 300 56 275±55 ZA 43± 9 37±7.4 4 20 51-54 250 55 230±46 Compilation of shortening data, Te estimates in adjacent forelands with constraints on the age of collision and timing of the last thermotectonic resetting of the continental lithosphere. t T-S parameter denotes the ages of the lithosphere at time of shortening as plotted in Figure 2B. Errors on shortening data account for the number of individual shortening estimate and scattering of measurements with confidence interval of 95%. It is 20% on average. In thrust © 2013 Macmillan Publishers Limited. All rights reserved.

Transcript of Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55...

Page 1: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NGEO1902

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 1

Structure of orogenic belts controlled by lithosphere age

Frederic Mouthereau, Anthony B. Watts and Evgueni Burov

Supplementary Table 1  

Name Te

(km) ± 20%

Shortening (%)

± (1-σ) at 95%* N

Age of Collision

(Ma) Ref.

Age of Thermal

reset (Ma)

Ref. tT-S ± 20% (Ma)

ALAI 53± 11 35±7 1 25 1 300 56 275±55 ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050 56 675±135 BOL 71±14 37.77±5.21 5 60 8-12 950 56 890±178 BR 52±10 50±10 1 200 13 1900 56 1700±340 CAN 35±7 52.17±10.43 1 65 14 2000 58 1935±387 CANT 11± 2 59.14±7.12 2 310 15-16 1800 15 1490±298 COL 51±10 30.6±6 2 60 17-18 950 56 890±178 CPT 28± 6 59.5±4.9 2 110 19-20 1600 56 1409±298 DIN 12± 2 32±6.4 1 30 21 250 56 220±44 EH 44± 9 63±10.18 1 50 22-24 1800 56 1750±350 HAT 16± 3 25.71±5.14 1 65 25 200 25 135±27

NA 11± 2 23.33±4.67 1 30 26 250 56 220±44 NEP 92± 18 71.73±5.51 3 50 27-29 1800 56 1750±350 NP 10± 2 35±7 1 65 30 250 56 185±37 NWI 65± 13 65±13 2 50 31-32 1800 56 1750±350 PAK 55± 11 64±12.8 1 50 33 1800 56 1750±350 PER 51±10 28.9±5.78 1 60 34 950 57 890±178 POT 53± 11 46.15±7.53 2 13 35-36 1800 58 1687±337 RHE 43± 9 52±10.4 1 325 37 1490 37 1165±233 SA 9± 2 24±4.8 1 30 38 250 57 220±44 SEV 43±9 62.5±12.5 1 145 39 1700 58 1555±311 SP 13± 3 46.25±20.45 4 65 40-43 250 56 185±37 SPA 49± 10 30.33±10.5 3 60 44-46 950 56 890±178 SUL 49± 10 45.42±1.41 2 50 35-36 1800 56 1750±350 TA 14± 3 34.5±6.9 1 5 47 55 57 50±10 TAD 54± 11 35±7 1 52 48 300 56 248±49 TS 34± 7 26±5.9 2 25 49-50 300 56 275±55 ZA 43± 9 37±7.4 4 20 51-54 250 55 230±46

Compilation of shortening data, Te estimates in adjacent forelands with constraints on the age

of collision and timing of the last thermotectonic resetting of the continental lithosphere. tT-S

parameter denotes the ages of the lithosphere at time of shortening as plotted in Figure 2B.

Errors on shortening data account for the number of individual shortening estimate and

scattering of measurements with confidence interval of 95%. It is 20% on average. In thrust

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 2: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

belts where shortening is constrained by a single restored cross-section, a consistent average

error of 20% was assumed. Such single data are provided for large-scale cross-sections that

aim at combining years of structural analysis. Hence, shortening is not necessarily less well

constrained in case of one single measurement. Shortening were obtained from matching the

same external parts of collisional belts, where syn-convergence burial can be considered

limited. This is required to ensure the preservation of cross-sectional area during deformation,

which is a prerequisite for using balancing techniques and providing robust shortening

estimates. For instance, due to high metamorphic grade the Greater Himalaya Sequence were

not considered in shortening. With this approach, the compilation is intended to show

shortening for the same pre-collisional portions of the lithosphere.

Abbreviations of thrust belts are : ALAI, Alai Ranges; ALB, Alborz; APN, Apennines; APP,

Appalachians; BOL, Sub-Andean Bolivian thrust belt; BR, Brooks Ranges; CAN, Canadian

Rockies; CANT, Cantabrian Mountains; COL, Sub-Andean Colombian trust belt; CPT,

Carpathians; DIN, Dinarides; EH, Eastern Himalayas thrust belt (e.g. Sikkim, Bhoutan);

HAT, High Atlas; NA, Northern Alps; NEP, Nepalese thrust belt; NP, Northern Pyrenees;

NWI, North-western Himalaya; PAK, Pakistan Himalayan thrust belt; PER, Peruvian thrust

belt; POT, Potwar Plateau; RHE, Rheno-hercynian thrust belt; SA, Southern Alps; SEV,

Sevier thrust belt; SP, Southern Pyrenees; SPA, Sierras Pampeanas; SUL, Sulaiman Range;

TA, Taiwan; TAD, Tadjik thrust belt; TS, Tien-Shan; ZA, Zagros.

References cited in the Table are as follows : 1 (Coutand et al., 2002) ; 2-3(Allen et al., 2003;

Guest et al., 2006); 4-5 (Coward et al., 1999; Scrocca et al., 2005); 6-7 (Herman et al., 1997;

Thomas and Bayona, 2002) ; 8-12 (Sheffels, 1990; Baby et al., 1997; Kley and Monaldi,

1998; McQuarrie, 2002; Moretti et al., 2007) ; 13 (Blythe et al., 1996); 14 (Hardebol et al.,

2009); 15-16 (Perez-Estaun et al., 1988; Veselovsky, 2004); 17-18 (Colletta et al., 1990; Kley

et al., 1999) ; 19-20 (Roca et al., 1995; Matenco and Bertotti, 2000); 21 (Roure et al., 2004);

22-24 (Mitra et al., 2010; Yin et al., 2010; Long et al., 2011); 25 (Beauchamp et al., 1999); 26

(Burkhard and Sommaruga, 1998); 27-29 (Schelling and Arita, 1991; DeCelles et al., 2001;

Robinson et al., 2006); 30 (Teixell, 1998); 31-32 (Srivastava and Mitra, 1994; DeCelles et al.,

1998); 33 (COWARD et al., 1987); 34 (Kley and Monaldi, 1998); 35-36 (Banks and

Warburton, 1986; Jadoon et al., 1997); 37 (Oncken et al., 1999); 38 (Ford and Lickorish,

2004); 39 (DeCelles and Coogan, 2006); 40-43; (Roure et al., 1989; Muñoz, 1992; Vergés et

al., 1995; Teixell, 1998); 44-46 (Allmendinger et al., 1990; Zapata and Allmendinger, 1996;

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 3: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

Cristallini and Ramos, 2000); 47 (Yue et al., 2005); 48 (Bourgeois et al., 1997); 49-50 (Yin et

al., 1998; Allen et al., 1999); 51-54 (McQuarrie, 2004; Sherkati and Letouzey, 2004;

Molinaro et al., 2005; Mouthereau et al., 2007) ; 55 (Alavi, 1980); 56 (Watts, 2001); 57

(Mouthereau and Petit, 2003); 58 (Artemevia, 2006).

References  

Alavi,  M.,  1980,  Tectonostratigraphic  evolution  of  the  Zagros  sides  of  Iran:  Geology,  v.  8,  p.  144-­‐149,    Allen,  M.,  Ghassemi,  M.R.,  Shahrabi,  M.,  and  Qorashi,  M.,  2003,  Accommodation  of  late  Cenozoic  

oblique  shortening  in  the  Alborz  range,  northern  Iran:  Journal  of  Structural  Geology,  v.  25,  p.  659-­‐672,    

Allen,  M.B.,  Vincent,  S.J.,  and  Wheeler,  P.J.,  1999,  Late  Cenozoic  tectonics  of  the  Kepingtage  thrust  zone:  Interactions  of  the  Tien  Shan  and  Tarim  Basin,  northwest  China:  Tectonics,  v.  18,  p.  639-­‐654,    

Allmendinger,  R.W.,  Figueroa,  D.,  Snyder,  D.B.,  Beer,  J.,  Mpodozis,  C.,  and  Isacks,  B.L.,  1990,  Foreland  shortening  and  crustal  balancing  in  the  Andes  at  30ºS  latitude:  Tectonics,  v.  9,  p.  789–809,    

Artemevia,  I.M.,  2006,  Global  1°×1°  thermal  model  TC1  for  the  continental  lithosphere:  Implications  for  lithosphere  secular  evolution:  Tectonophysics,  v.  416,  p.  245–277,  doi:10.1016/j.tecto.2005.11.022.  

Baby,  P.,  Rochat,  P.,  Mascle,  G.,  and  Hérail,  G.,  1997,  Neogene  shortening  contribution  to  crustal  thickening  in  the  back  arc  of  the  Central  Andes:  Geology,  v.  25,  p.  883-­‐886,  10.1130/0091-­‐7613(1997)025<0883:nsctct>2.3.co;2.  

Banks,  C.J.,  and  Warburton,  J.,  1986,  Passive-­‐roof  duplex  geometry  in  the  frontal  structures  of  the  Kirthar  and  Sulaiman  mountain  belts:  Journal  of  Structural  Geology,  v.  8,  p.  229-­‐237,    

Beauchamp,  W.,  Allmendinger,  R.W.,  and  Barazangi,  M.,  1999,  Inversion  tectonics  and  the  evolution  of  the  High  Atlas  Mountains,  Morocco,  based  on  a  geological-­‐geophysical  transect:  Tectonics,  v.  18,  p.  163-­‐184,    

Blythe,  A.E.,  Bird,  J.M.,  and  Omar,  G.I.,  1996,  Deformational  history  of  the  central  Brooks  Range,  Alaska:  Results  from  fission-­‐track  and  40Ar/39Ar  analyses:  Tectonics,  v.  15,  p.  440-­‐455,    

Bourgeois,  O.,  Cobbold,  P.R.,  Rouby,  D.,  and  Thomas,  J.-­‐C.,  1997,  Least  squares  restoration  of  Tertiary  thrust  sheets  in  map  view,  Tajik  depression,  central  Asia:  Journal  of  Geophysical  Research,  v.  102,  p.  27553-­‐27573,    

Burkhard,  M.,  and  Sommaruga,  A.,  1998,  Evolution  of  the  western  Swiss  Molasse  basin:  structural  relations  with  the  Alps  and  the  Jura  belt,  in  MASCLE,  A.,  PUIGDEFABREGAS,  C.,  LUTERBACHER,  H.P.,  and  FERNANDEZ,  M.,  eds.,  Cenozoic  Foreland  Basins  of  Western  Europe,  Volume  134,  Geological  Society  Special  Publications  p.  279-­‐298.  

Colletta,  B.,  Hebrard,  F.,  Letouzey,  J.,  Werner,  P.,  and  Rudkiewics,  J.L.,  1990,  Tectonic  style  and  crustal  structure  of  the  Eastern  Cordillera  (Colombia)  from  a  balanced  cross-­‐section.  ,  in  Letouzey,  J.,  ed.,  Petroleum  and  Tectonics  in  mobile  belts:  Paris,  Editions  Technip,  p.  81-­‐100.  

Coutand,  I.,  Strecker,  M.R.,  Arrowsmith,  J.R.,  Hilley,  G.,  Thiede,  R.C.,  Korjenkov,  A.,  and  Omuraliev,  M.,  2002,  Late  Cenozoic  tectonic  development  of  the  intramontane  Alai  Valley,  (Pamir-­‐Tien  Shan  region,  central  Asia):  An  example  of  intracontinental  deformation  due  to  the  Indo-­‐Eurasia  collision:  Tectonics,  v.  21,  p.  1053,  doi:10.1029/2002TC001358,    

COWARD,  M.P.,  BUTLER,  R.W.H.,  KHAN,  M.A.,  and  KNIPE,  R.J.,  1987,  The  tectonic  history  of  Kohistan  and  its  implications  for  Himalayan  structure:  Journal  of  the  Geological  Society,  v.  144,  p.  377-­‐391,  10.1144/gsjgs.144.3.0377.  

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 4: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

Coward,  M.P.,  De  Donatis,  M.,  Mazzoli,  S.,  Paltrinieri,  W.,  and  Wezel,  F.-­‐C.,  1999,  Frontal  part  of  the  northern  Apennines  fold  and  thrust  belt  in  the  Romagna-­‐Marche  area  (Italy):  Shallow  and  deep  structural  styles:  Tectonics,  v.  18,  p.  559-­‐574,    

Cristallini,  E.O.,  and  Ramos,  V.A.,  2000,  Thick-­‐skinned  and  thin-­‐skinned  thrusting  in  the  La  Ramada  fold  and  thrust  belt:  crustal  evolution  of  the  High  Andes  of  San  Juan,  Argentina  (32°SL):  Tectonophysics,  v.  317,  p.  205-­‐235,    

DeCelles,  P.G.,  and  Coogan,  J.C.,  2006,  Regional  structure  and  kinematic  history  of  the  Sevier  fold-­‐and-­‐thrust  belt,  central  Utah:  Geological  Society  of  America  Bulletin,  v.  118,  p.  841-­‐864,  doi:  10.1130/B25759.1.  

DeCelles,  P.G.,  Gehrels,  G.E.,  Quade,  J.,  and  Ojha,  T.P.,  1998,  Eocene-­‐early  Miocene  foreland  basin  development  and  the  history  of  Himalayan  thrusting,  western  and  central  Nepal:  Tectonics,  v.  17,  p.  741-­‐765,    

DeCelles,  P.G.,  Robinson,  D.M.,  Quade,  J.,  Ojha,  T.P.,  Garzione,  C.N.,  Copeland,  P.,  and  Upreti,  B.N.,  2001,  Stratigraphy,  structure,  and  tectonic  evolution  of  the  Himalayan  fold-­‐thrust  belt  in  western  Nepal:  Tectonics,  v.  20,  p.  487-­‐509,    

Ford,  M.,  and  Lickorish,  W.H.,  2004,  Foreland  basin  evolution  around  the  western  Alpine  arc,  in  Joseph,  P.,  and  Lomas,  S.,  eds.,  New  perspectives  on  Turbidites,  the  Grès  d'Annot  Sandstones,  SE  France,  Volume  221:  London,  Geological  Society  p.  39-­‐63.  

Guest,  B.,  Axen,  G.J.,  Lam,  P.S.,  and  Hassanzadeh,  J.,  2006,  Late  Cenozoic  shortening  in  the  west-­‐central  Alborz  Mountains,  northern  Iran,  by  combined  conjugate  strike-­‐slip  and  thin-­‐skinned  deformation:  Geosphere,  v.  2,  p.  35-­‐52,  doi:  10.1130/GES00019.1.  

Hardebol,  N.J.,  Callot,  J.P.,  Bertotti,  G.,  and  Faure,  J.L.,  2009,  Burial  and  temperature  evolution  in  thrust  belt  systems:  Sedimentary  and  thrust  sheet  loading  in  the  SE  Canadian  Cordillera:  Tectonics,  v.  28,  p.  TC3003,  doi:10.1029/2008TC002335,    

Herman,  G.C.,  Monteverde,  D.H.,  Schlische,  R.W.,  and  Pitcher,  D.M.,  1997,  Foreland  crustal  structure  of  the  New  York  recess,  northeastern  United  States:  Geological  Society  of  America  Bulletin,  v.  109,  p.  955–977,    

Jadoon,  I.A.K.,  Frisch,  W.,  Kemal,  A.,  and  Jaswal,  T.M.,  1997,  Thrust  geometries  and  kinematics  in  the  Himalayan  foreland  (North  Potwar  deformed  zone),  North  Pakistan:  Geologische  Rundschau,  v.  86,  p.  120-­‐131,    

Kley,  J.,  and  Monaldi,  C.R.,  1998,  Tectonic  shortening  and  crustal  thickness  in  the  Central  Andes:  How  good  is  the  correlation?:  Geology,  v.  26,  p.  723-­‐726,  10.1130/0091-­‐7613(1998)026<0723:tsacti>2.3.co;2.  

Kley,  J.,  Monaldi,  C.R.,  and  Salfity,  J.A.,  1999,  Along-­‐strike  segmentation  of  the  Andean  foreland:  causes  and  consequences:  Tectonophysics,  v.  301,  p.  75–94,    

Long,  S.,  McQuarrie,  N.,  Tobgay,  T.,  and  Grujic,  D.,  2011,  Geometry  and  crustal  shortening  of  the  Himalayan  fold-­‐thrust  belt,  eastern  and  central  Bhutan:  Geological  Society  of  America  Bulletin,  v.  123,  p.  1427-­‐1447,  10.1130/b30203.1.  

Matenco,  L.,  and  Bertotti,  G.,  2000,  Tertiary  tectonic  evolution  of  the  external  East  Carpathians  (Romania):  Tectonophysics,  v.  316,  p.  255-­‐286,    

McQuarrie,  N.,  2002,  The  kinematic  history  of  the  central  Andean  fold-­‐thrust  belt,  Bolivia:  Implications  for  building  a  high  plateau:  Geological  Society  of  America  Bulletin,  v.  114,  p.  950-­‐963,  10.1130/0016-­‐7606(2002)114<0950:tkhotc>2.0.co;2.  

—,  2004,  Crustal  scale  geometry  of  the  Zagros  fold-­‐thrust  belt,  Iran:  Journal  of  Structural  Geology,  v.  26,  p.  519-­‐535,    

Mitra,  G.,  Bhattacharyya,  K.,  and  Mukul,  M.,  2010,  The  lesser  Himalayan  duplex  in  Sikkim:  implications  for  variations  in  Himalayan  shortening:  Journal  of  the  Geological  Society  of  India,  v.  75,  p.  289-­‐301,  10.007/s12594-­‐010-­‐0016-­‐x.  

Molinaro,  M.,  Leturmy,  P.,  Guezou,  J.-­‐C.,  Frizon  de  Lamotte,  D.,  and  Eshraghi,  S.A.,  2005,  The  structure  and  kinematics  of  the  south-­‐eastern  Zagros  fold-­‐thrust  belt;  Iran:  from  thin-­‐skinned  to  thick-­‐skinned  tectonics:  Tectonics,  v.  24,  p.  doi:10.1029/2004TC001633,    

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 5: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

Moretti,  I.,  Delos,  V.,  Letouzey,  J.,  Otero,  A.,  and  Calvo,  J.C.,  2007,  The  use  of  surface  restoration  in  foothills  exploration:  theory  and  application  to  teh  Sub-­‐Andean  Zone  of  Bolivia,  in  Lacombe,  O.,  Lavé,  J.,  Verges,  J.,  and  Roure,  F.,  eds.,  Thrust  belts  and  foreland  basins:  Frontiers  in  Earth  Sciences:  Berlin  Heidelberg,  Springer-­‐Verlag,  p.  149-­‐162.  

Mouthereau,  F.,  and  Petit,  C.,  2003,  Rheology  and  strength  of  the  Eurasian  continental  lithosphere  in  the  foreland  of  the  Taiwan  collision  belt  :  constraints  from  seismicity,  flexure  and  structural  styles:  Journal  of  Geophysical  Research,  v.  108,  p.  2512,  doi:10.1029/2002JB002098,    

Mouthereau,  F.,  Tensi,  J.,  Bellahsen,  N.,  Lacombe,  O.,  De  Boisgrollier,  T.,  and  Kargar,  S.,  2007,  Tertiary  sequence  of  deformation  in  a  thin-­‐skinned/thick-­‐skinned  collision  belt:  the  Zagros  Folded  Belt  (Fars,  Iran):  Tectonics,  v.  26,  p.  doi:10.1029/2007TC002098,    

Muñoz,  J.A.E.,  1992,  Evolution  of  a  continental  collision  belt:  ECORS-­‐Pyrenees  crustal  balanced  cross-­‐section,  in  McClay,  K.,  ed.,  Thrust  Tectonics,  Chapman  &  Hall,  p.  235–246.  

Oncken,  O.,  Winterfeld,  C.,  and  Dittmar,  U.,  1999,  Accretion  and  inversion  of  a  rifted  passive  margin  -­‐  the  Late  Paleozoic  Rhenohercynian  fold  and  thrust  belt  (Middle  European  Variscides):  Tectonics,  v.  18,  p.  75-­‐91,    

Perez-­‐Estaun,  A.,  Bastida,  F.,  Alonso,  J.L.,  Marquinez,  J.A.,  Alvarez-­‐Marron,  J.,  Marcos,  A.,  and  Pulgar,  J.A.,  1988,  A  thin-­‐skinned  tectonic  model  for  an  arcuate  fold  and  thrust  belt:  the  Cantabrian  Zone  (Variscan  Ibero-­‐Armorican  arc):  Tectonics,  v.  7,  p.  517-­‐537,    

Robinson,  D.M.,  DeCelles,  P.G.,  and  Copeland,  P.,  2006,  Tectonic  evolution  of  the  Himalayan  thrust  belt  in  western  Nepal:  Implications  for  channel  flow  models:  Geological  Society  of  America  Bulletin,  v.  118,  p.  865-­‐885,  10.1130/b25911.1.  

Roca,  E.,  Bessereau,  G.,  Jawor,  E.,  Kotarba,  M.,  and  Roure,  F.,  1995,  Pre-­‐Neogene  evolution  of  the  Western  Carpathians:  constraints  from  teh  Bochnia-­‐Tatra  Mountains  section  (Polish  Western  Carpathians):  Tectonics,  v.  14,  p.  855-­‐873,    

Roure,  F.,  Choukroune,  P.,  Berastegui,  X.,  Muñoz,  J.A.,  Villien,  A.,  Matheron,  P.,  Bareyt,  M.,  Seguret,  M.,  Camara,  P.,  and  Deramond,  J.,  1989,  ECORS  deep  seismic  data  and  balanced  cross  sections:  geometric  constraints  on  the  evolution  of  the  Pyrenees:  Tectonics,  v.  8,  p.  41-­‐50,    

Roure,  F.,  Nazaj,  S.,  Mushka,  K.,  Fili,  I.,  Cadet,  J.P.,  and  Bonneau,  M.,  2004,  Kinematic  evolution  and  petroleum  systems:  an  appraisal  of  the  outer  Albanides,  in  McClay,  K.R.,  ed.,  Thrust  Tectonics  and  Hydrocarbon  Systems:  AAPG  Memoir,  AAPG,  p.  474–493.  

Schelling,  D.,  and  Arita,  K.,  1991,  Thrust  tectonics,  crustal  shortening,  and  the  structure  of  the  far-­‐eastern  Nepal,  Himalaya:  Tectonics,  v.  10,  p.  851-­‐862,    

Scrocca,  D.,  Carminati,  E.,  and  Doglioni,  C.,  2005,  Deep  structure  of  the  southern  Apennines,  Italy:  Thin-­‐skinned  or  thick-­‐skinned?:  Tectonics,  v.  24,  p.  TC3005,  doi:10.1029/2004TC001634,    

Sheffels,  B.M.,  1990,  Lower  bound  on  the  amount  of  crustal  shortening,  in  the  central  Bolivian  Andes:  Geology,  v.  18,  p.  812-­‐815,  10.1130/0091-­‐7613(1990)018<0812:lbotao>2.3.co;2.  

Sherkati,  S.,  and  Letouzey,  J.,  2004,  Variation  of  structural  style  and  basin  evolution  in  the  central  Zagros  (Izeh  zone  and  Dezful  Embayment),  Iran:  Marine  and  Petroleum  Geology,  v.  21,  p.  535-­‐554,    

Srivastava,  P.,  and  Mitra,  G.,  1994,  Thrust  geometries  and  deep  structure  of  the  outer  and  lesser  Himalaya,  Kumaon  and  Garhwal  (India):  implications  for  evolution  of  the  Himalayan  fold-­‐and-­‐thrust  belt:  Tectonics,  v.  13,  p.  89-­‐109,    

Teixell,  A.,  1998,  Crustal  structure  and  orogenic  material  budget  in  the  west  central  Pyrenees:  Tectonics,  v.  17,  p.  395-­‐406,    

Thomas,  W.A.,  and  Bayona,  G.,  2002,  Palinspastic  restoration  of  the  Anniston  transverse  zone  in  the  Appalachian  thurst  belt,  Alabama:  Journal  of  Structural  Geology,  v.  24,  p.  797-­‐826,    

Vergés,  J.,  Millán,  H.,  Muñoz,  J.A.,  Marzo,  M.,  Cirès,  J.,  Den  Bezemer,  T.,  Zoetemeijer,  R.,  and  Cloetingh,  S.,  1995,  Eastern  Pyrenees  and  related  foreland  basins:  pre-­‐,  syn-­‐  and  post-­‐collisional  crustal-­‐scale  cross-­‐sections:  Marine  and  Petroleum  Geology,  v.  12,  p.  893-­‐915,    

Veselovsky,  Z.,  2004,  Integrated  Numerical  Modelling  of  a  Polyhistory  Basin,  Southern  Cantabrian  Basin  (Palaeozoic,  NW-­‐Spain):  Heidelberg,  University  of  Heidelberg.  

Watts,  A.B.,  2001,  Isostasy  and  Flexure  of  the  Lithosphere:  Cambridge,  Cambridge  University  Press.  

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 6: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

Yin,  A.,  Dubey,  C.S.,  Kelty,  T.K.,  Webb,  A.A.G.,  Harrison,  T.M.,  Chou,  C.Y.,  and  Célérier,  J.,  2010,  Geologic  correlation  of  the  Himalayan  orogen  and  Indian  craton:  Part  2.  Structural  geology,  geochronology,  and  tectonic  evolution  of  the  Eastern  Himalaya:  Geological  Society  of  America  Bulletin,  v.  122,  p.  360-­‐395,  10.1130/b26461.1.  

Yin,  A.,  Nie,  S.,  Craig,  P.,  Harrison,  T.M.,  Ryerson,  F.J.,  Xianglin,  Q.,  and  Geng,  Y.,  1998,  Late  Cenozoic  tectonic  evolution  of  the  southern  Chinese  Tian  Shan:  Tectonics,  v.  17,  p.  1-­‐27,    

Yue,  L.F.,  Suppe,  J.,  and  Hong,  J.H.,  2005,  Structural  geology  of  a  classic  thrust  belt  earthquake:  the  1999  Chi-­‐Chi  earthquake  Taiwan  (Mw  =  7.6):  Journal  of  Structural  Geology,  v.  27,  p.  2058–2083,    

Zapata,  T.R.,  and  Allmendinger,  R.W.,  1996,  Thrust-­‐front  zone  of  the  Precordillera,  Argentina;  a  thick-­‐skinned  triangle  zone:  American  Association  of  Petroleum  Geologists  Bulletin,  v.  80,  p.  359-­‐381,    

   

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 7: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

Structure of orogenic belts controlled by lithosphere age

Frederic Mouthereau, Anthony B. Watts and Evgueni Burov

Supplementary Figure S1

Te data were obtained from inverse (i.e. spectral) modeling based on coherence between Bouguer gravity anomaly data and forward modeling of the gravity and present-day topography/bathymetry. Data sources are summarized in Watts (2007). Original data can be downloaded at http://www.earth.ox.ac.uk/~tony/watts/downloads.htm or on request to A.B. Watts.

Watts AB. 2007. An overview. In: Treatise of Geophysics. Volume 6: Crust and lithosphere dynamics, ed. AB Watts, pp. 1-48: Elsevier

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 8: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

Lithosphere age and structural styles in orogenic belts

Frederic Mouthereau, Anthony B. Watts and Evgueni Burov

Supplementary Figure S2 and discussion

Shortening in steady-state mountain ranges for variable shortening rates and depth of

detachment H. Inset shows particles trajectories within the wedge.

For thrust wedges that have reached a steady-state geometry, the ongoing erosional flux at the

top of the wedge is balanced by the accretionary flux at the front1. This assumption allows a

simple derivation of the kinematic field at given time steps within the wedge and therefore the

calculation of the distribution of shortening of interest.

In the example presented in Figure S1, crustal thickening results from frontal accretion alone.

Hence, the component of accretion by underplating is neglected. In this case, following

modification of formulation by 2 the horizontal velocity U within the wedge at the distance x

from the thrust front is given by

In this example, erosion e(x) is assumed to be uniformly distributed and is integrated over the

entire width of the wedge W. The depth of the detachment h(x) is

where is the depth of the décollement at the front and the décollement dip.

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 9: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

For stationary mountain ranges, wedge width W is constant and velocity field is not

dependent on time, therefore short-term velocity distribution for any particle in the wedge

equals the longer term position x of particle. The long-term shortening defined by the

long-term position difference between a particle at the rear and at the front, is therefore given

by the velocity difference (ie., position for stationary orogen) at any given time t between the

moving particle at the rear and front of the thrust wedge and

the percentage of shortening is

.

The graph shows the influence of the thickness of accreted material. This depth is controlled

by the position and weakness of decoupling levels in the crust. They are related to the

inherited rheological layering, which illustrates the role of the thermotectonic state of the

crust and lithosphere.

The highest percentages of shortening (up to 70%) are expected for high shortening rates,

higher than 47 km/Ma in our example, but also for a specific range of detachment depths,

here, shallower than 7 km. The lowest (down to 20%) will be found for regions with more

variable shortening rates but associated with deeper detachment typically below 10 km in the

middle-lower crust. This indicates that lower shortening are found for regions with more

vertically distributed crustal shortening, where deformation typically involves reverse

reactivation of inherited faults and basement.

A general correlation appears when the above predicted shortening is compared to observed

crustal shortening in mountain belts (Figure 2).

1 Dahlen, F. A. critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences 18, 55-99 (1990).

2 Pazzaglia, F. J. & Brandon, M. T. A fluvial record of long-term steady-state uplift and erosion across the Cascadia forearc high, western washington state. Am. J. Sci. 301, 385-431 (2001).

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 10: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

Structure of orogenic belts controlled by lithosphere age

Frederic Mouthereau, Anthony B. Watts and Evgueni Burov

Supplementary Figure S3 and methodology

Figure S3: Initial yield stress envelopes, geotherm, Te, and lithosphere structure for end-member continental lithospheres with thermal ages of 50 Ma and 1Ga.

Thermal structure of continental lithosphere

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 11: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

To compute the continental geotherms Tcont presented in Figure 3, one can use the equation

(1) taking into account, in Tstd, the stationary part of the geotherm and contribution due to the

radiogenic heat production Hs in the crust, and correction T(age) due to transient cooling of

the lithosphere that depends on its age, or, more precisely, the time since the last major plate-

scale thermal event.

Tcont (z,age,Hs) = Tstd (z,Hs)+ T(age)       (1)  

The radiogenic contribution Tr in the crust depends on the thickness of the crust hc, density ρc,

radiogenic production Hs, radiogenic production decay depth hr, and thermal conductivity

coefficient kc (2):

2

1c

r

hhc s r

rc

H hT ek

ρ −⎛ ⎞⋅ ⋅= ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠                (2)  

Temperature Tm at Moho depth, hc , is used for calculation of temperature at depths below the

Moho and is given by :

Tm = T0 +qmkc⋅ hc + Tr           (3)  

where T0 and qm correspond, respectively, to the temperature at the surface and the heat flux

calculated at the Moho. This heat flux is given by:

qm =Thl −T0 −Trhckc

+hl − hckm

        (4)  

where Thl is temperature at the thermal base of lithosphere (of a thickness hl) and km is

coefficient of thermal conductivity for the mantle.

Temperature at a depth z can thus be calculated as:

-­‐  If  

z ≤ hc :    

Tstd (z) = T0 +qmkc⋅ z + Tr       (5)  

-­‐  If

z f hc :    

Tstd (z) = Tm + qm ⋅(z − hc )km

      (6)  

Table 3a: Thermal and mechanical constants used to calculate continental geotherms and

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 12: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

brittle stress profiles presented in Figure 3.

Definition Value

Thermal Surface temperature (0 km depth) , T0, 0°C

Temperature at base of thermal lithosphere , Thl 1330°C

Thermal conductivity of crust 2.5 Wm-1 °C-1

Thermal conductivity of mantle 3.3 Wm-1 °C-1

Radiogenic heat production at surface 2.5×10-9 W kg-1

Thermal diffusivity of mantle 10-6 m².s-1

Radiogenic heat production decay length 10 km

Thermo-tectonic age of the lithosphere 50 Ma and 1 Ga

Mechanical Density of the upper crust 2750 kg.m-3

Density of the lower crust 2900 kg.m-3

Density of the undepleted mantle lithosphere 3330 kg.m-3

Density of the asthenosphere 3310 kg.m-3

Byerlee’s law – Friction angle 30°

Byerlee’s law – cohesion 20 MPa

This temperature profile is then corrected for transient cooling that depends on thermotectonic

age (age) of the lithosphere using formulation from 1 adapted for the continental lithosphere.

     

T(age) =2π⋅ Thl −T0( )⋅TT(age)         (7)  

where    

TT(age) =−1( )n+1

n⋅ exp −km ⋅ π

2 ⋅ age ⋅ n2

ρm ⋅Cm ⋅ hl2

⎝ ⎜

⎠ ⎟

n=1

∑ ⋅ sin n ⋅ π ⋅ zhl

⎝ ⎜

⎠ ⎟     (8)

with Cm and ρm are respectively the specific heat capacity and the density for the mantle.

Values for the parameters used for the initial geotherm are given in Table 3a.

Yield stress envelopes

Based on the continental geotherm calculated above and presented in Figure 3 for different

lithosphere ages, we calculate the corresponding yield stress profiles.

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 13: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

To do this, we assume a homogeneous brittle property of rocks for the upper part of the

lithosphere. This is best described by the experimental Byerlee’s law of rock failure 2

τ  =  S  +  σn  tg  φ                       (9)  

where  φ  is the internal friction angle of 30°, S is cohesion (< 20 MPa) and τ  is the shear stress

and  σn   is the normal stress.    

The ductile-viscous term is represented by non-linear power law with three sets of material

parameters (Table 3b) that correspond to the properties of four lithological layers: upper crust

(wet quartzite), lower crust (diabase), mantle and asthenosphere (olivine):

! = !"!"

!/!!!!/!!(!/!"#) (10)

where !"!"

is strain rate, H is the activation enthalpy, H = Q + PV where Q is activation

energy, P is pressure and V is molar volume, R is the gas constant, n is the power law

exponent and T is temperature in K (Table 3b).

Byerlee’s law may be not applicable for depths exceeding 30-50 km3. One alternative

mechanism refers to Peierl’s plasticity 4 that takes place at high differential stresses (>100-200

MPa) and low temperature, when mixed dislocation glide and climb occur (Katayama et al.,

2008). In that case, the maximal strength of the mantle lithosphere is supposed to be limited by

the Peierl’s flow law.  

 

 

 

 

 

 

 

 

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 14: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

Table 3b: Ductile flow parameters. Dislocation creep parameters of rocks and mineral used in

model calculations after5-7. Parameters of Peierl’s flow law for wet and dry olivine are after 4,8. Case of Peierl’s law for wet olivine is shown in Figure 3. We use here the most common

“historically” introduced material parameters .

Layer Composition

Pre-exponential

stress constant

A (Pa-n.s-1)

Activation energy

Q (kJ.mol-1)

Power law

exponent

n

Upper Crust Wet Quartzite 1.1x10-14 223 4

Lower Crust Dry Maryland Diabase 8 485 4.7

Mantle Olivine (dry) 3x104 520 3

Peierls law Olivine Peierls activation

energy

107.8×10-12

Peierls stress limit

2.9 GPa (wet

olivine) or 9.1 GPa

(dry olivine)

Te of stratified lithosphere

We calculate Te values for two end-member old cratonized and young extended continental

lithosphere. Te of a multilayer visco-elastic-plastic plate reflects the combined strength of all

the brittle, elastic and ductile layers9. Due to the presence of weak rheological interfaces

between different lithologies, it is not a simple sum of the thickness of these layers:

!" !"# ~(ℎ!! + ℎ!! + ℎ!! +⋯ )!/! = ℎ!!!!!!

!/! < ℎ!!!!!   (11)

Te of stratified lithosphere is hence smaller than summary thickness of the mechanical layers.

For instance, in case of two equally strong layers (n=2) of total thickness h (e.g. crust and

mantle), Te~0.6h instead of h, that is, the integrated strength is reduced by about a factor 2

compared to a mono-layer plate (e.g. old craton with strong coupled lower crust).

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 15: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

References 1   Parsons,  B.  &  Sclater,  J.  G.  An  analysis  of  the  variation  of  ocean  floor  bathymetry  and  heat  

flow  with  age.  J.  Geophys.  Res.  82,  803-­‐827  (1977).  2   Byerlee,  J.  Friction  of  rocks.  Pure  Appl.  Geophys.  116,  615-­‐626  (1978).  3   Kirby,  S.  H.,  Durham,  W.  &  Stern,  L.  Mantle  phase  changes  and  deep-­‐earthquake  faulting  in  

subducting  lithosphere.  Science  252  (1991).  4   Evans,  B.  &  Goetze,  C.  Temperature  variation  of  hardness  of  olivine  and  its  implication  for  

polycrystalline  yield  stress.  J.  Geophys.  Res.  84,  5504-­‐5524  (1979).  5   Chopra,  P.  N.  &  Paterson,  M.  S.  The  role  of  water  in  the  deformation  of  dunite,.  J.  Geophys.  

Res.  89,  7861–7876,  doi:doi:10.1029/JB089iB09p07861  (1984).  6   Gleason,  G.  C.  &  Tullis,  J.  A  flow  law  for  dislocation  creep  of  quartz  aggregates  determined  

with  the  molten  salt  cell.  Tectonophysics  247,  1-­‐23,  doi:10.1016/0040-­‐1951(95)00011-­‐b  (1995).  

7   Mackwell,  S.  J.,  Zimmerman,  M.  E.  &  Kohlstedt,  D.  L.  High-­‐temperature  deformation  of  dry  diabase  with  application  to  tectonics  on  Venus.  J.  Geophys.  Res.  103,  975–984,  doi:doi:10.1029/97JB02671  (1998).  

8   Katayama,  M.,  Yuen,  D.  A.  &  Karato,  S.-­‐I.  Rheological  structure  and  deformation  of  subducted  slabs  in  the  mantle  transition  zone:  implications  for  mantle  circulation  and  deep  earthquakes.  Physics  of  the  Earth  and  Planetary  Interiors  168,  125-­‐133  (2008).  

9   Burov,  E.  B.  &  Diament,  M.  The  effective  elastic  thickness  (Te)  of  continental  lithosphere:  What  does  it  really  mean  ?  J.  Geophys.  Res.  100,  3905-­‐3927  (1995).  

   

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 16: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

Structure of orogenic belts controlled by lithosphere age

Frederic Mouthereau, Anthony B. Watts and Evgueni Burov

Supplementary Figure S4

 This Figure shows the dependence of the amount of subduction/underthrusting before break-off, a proxy for subduction stability, on convergence rates and plate strength, here expressed as the effective thickness Te (after results of experiments presented in several publications1-5).    

It can be concluded that stable underthrusting is favored for higher integrated strength and are therefore interlinked. Because of higher crustal and mantle strength shortening localizes in the uppermost crust leading to higher percentage of shortening.

© 2013 Macmillan Publishers Limited. All rights reserved.

Page 17: Supplementary Table 1 - Nature · Supplementary Table 1 ... ALB 40± 8 25.7±5.5 2 20 2-3 250 55 230±46 APN 17± 3 35±16 2 5 4-5 250 56 245±49 APP 52±10 34±7.46 5 375 6-7 1050

Cited references

1 Burov, E. & Yamato, P. Continental plate collision, P–T–t–z conditions and unstable vs. stable plate dynamics: Insights from thermo-mechanical modelling. Lithos 103, 178-204 (2008).

2 Yamato, P., Burov, E., Agard, P., Le Pourhiet, L. & Jolivet, L. HP-UHP exhumation during slow continental subduction: Self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps. Earth Planet. Sci. Lett. 271, 63-74 (2008).

3 Yamato, P., Mouthereau, F. & Burov, E. Taiwan mountain building: insights from 2D thermo-mechanical modelling of a rheologically-stratified lithosphere. Geophys. J. Int. 176, 307-326 (2009).

4 Sizova, E., Gerya, T., Brown, M. & Perchuk, L. L. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos 116, 209-229 (2010).

5 Burov, E., Francois, T., Yamato, P. & Wolf, S. Mechanisms of continental subduction and exhumation of HP and UHP rocks. Gondwana Res, http://dx.doi.org/10.1016/j.gr.2013.02.005 (2013).

© 2013 Macmillan Publishers Limited. All rights reserved.