Recent results on high precision experiments ...wimu/Varying-Constants-Papers/... · a bit of...
Embed Size (px)
Transcript of Recent results on high precision experiments ...wimu/Varying-Constants-Papers/... · a bit of...

Recent results on high precision experiments : determination of the 1S-3S transition in hydrogen determination of the fine structure constant
F. Biraben, R. Bouchendira, P.Cladé, S.Guellati, L.Julien
and F. Nez
http://www.lkb.ens.fr/-Metrologie-Quantique- 1/29

a bit of history : QED -Theory-Experiments Electron in a magnetic field :• Cyclotron frequency : ωcyc
= eB/m• Larmor
frequency: ωlar
= γB
Landé
g-factor : ge
= ωlar
/ ωcyc
Dirac
equation predicts ge
= 2. In 1947, Kusch
& Foley performed a measurement of ge
. The result is not compatible with Dirac
equation.
Prediction of QED (Schwinger, 1948):ge
/2 = 1+ α/2π+…
α
is the coupling constant of QED, α
~
1/137
DiracBohr
n= 1
n= 2
Lamb1S1/2
2S1/2
, 2P1/2
2P3/2
2P1/2
2S1/2
2n nhcRE
QED
(3/8)mc²α²
~mc²α4
~mc²α5
1947 Lamb shift
Since the 50's, the best precision tests of QED are still realized with :
Atomic spectroscopy : Precision spectroscopy of hydrogen (hydrogen atom 1S-3S @LKB, muonic
atoms@PSI
CREMA Collaboration)
Anomalous magnetic moment of the electron measurement by Gabrielse
et al. Calculation by Kinoshita (Recoil determination Rb
@LKB)
2/29

hydrogen theory
E(n,l,j) = Dirac
+ recoil + L(n,j)
hcR∞
f(α, me
/mp
, n,l,j)
exactnot well known
• QED corrections (1/n3)• relativistic
recoil• charge radius of
the
proton (1/n3)
Ltheo(1S1/2
) = 8172.903 (4) (50) MHzQED
scattering proton size
r
0.15 MHz
1.2 MHz
e-
spinrelativity
177 MHz
Dirac
43.5 GHz
hfs
1.4 GHz
Bohr
n= 1
n= 2
n= 3
Lamb
8.2 GHz
energy
1S1/2
2S1/2
, 2P1/2
2P3/2
2P1/2
2S1/2
F=0
F=1
F=1
rp
2n nhcRE QED proton
spinprotonsize
re-
p
rp
Potentialenergy
3/29

hydrogen spectroscopy experiments : R∞
and L1S
determination
Linear combinations
R∞
, Lexp(1S)
L
exp(1S) = 8172.840 (19) kHz + QED
rp
(1%)
cR∞
= 3 289 841 960 360.9 (21.9) kHz (6.6μ10-12)
E(n,l,j) = hcR∞
f(,, me
/mp
, n,l,j) + recoil + L(n,j,rp
) ≈
+ L(n,rp
)R∞n2
Pachucki K.calculatedpreciselyL(2S)L(1S)Karshenboi S.
L(8S)L(2S))R641
41(8S)(2SParisLKB
L(2S)L(1S))R41(12S)(1SGarchingMPQ
8
ν
ν
m
1S-3S experiment4/29

Two photon spectroscopy : no first order Doppler effect
Two photon spectroscopy
1S-3S transition
at LKB/MPQ (
= 205 nm)G. Hagel
et al, PRL 89, 203001 (2002)
1S-2S transition
at MPQ (Garching) (
= 243 nm) (2 μ
10-14)M. Niering
et al, PRL 84, 5496 (2000) (Impressive new result see next talk)
2S-nS/nD transitions
at LKB/ NPL
(
= 778 nm) (8 μ
10-12)B. de Beauvoir
et al, Eur. Phys. J. D 12,61 (2000)
E0
1S
2S
3S
h(1+ ---)h(1-
---)vc
v v
c
5/29

1S-3S hydrogen spectroscopy
TiSa
frequency
3S
1S
2P
205 nm
205 nm
656 nm
• 1S atomic beam (1014
at/cm3) (~1011at/s)2S atomic beam 17 at/cm3
! (2μ106
at/s)
• transition probability fi
f 2
1S-3S:
=2.14 a.u.f
= 1 MHz
2S-8S:
=14.921 a.u.f
= 144 kHz
1S-2S:
=7.85 a.u.f
= 1.2 Hz• 205 nm laser (<1mW) ( 820 nm
410 nm
205 nm
)
2S-8S
778 nm 1.6W !
• Velocity distribution measurement :
No “easy”
optical transition for Doppler spectroscopy
121 nm
6/29

Second order Doppler effect compensation
Principle: quadratic Stark effect
for opposite parity levels (ex. S and P)
v
B
h(1-
-
)vc
v2
2c2+h(1 -
)v
cv2
2c2 E = v Bv
◉
dop =-atv2
2c2E2
SP
v2B2
SP
Stark = =
F. Biraben, L. Julien, J. Plon
and F. Nez, Europhys. Lett., 15 (1991) p.831 :"Compensation of the second Doppler effect in two photon spectroscopy of atomic hydrogen". 7/29

Partial compensation →
distribution velocity measurement
Second order Doppler effect compensation
ΔmF
=0
Level crossing
G. Hagel, R. Battesti, F. Nez, L. Julien
and F. Biraben, Phys. Rev. Lett. 89 (2002) p.203001 : "Observation of a motional Stark effect to determine the second order Doppler effect".
B (G)
mF
=-1
mF
=+1
mF
=±1v= 3km/s
0
100
200
-
100
-
200
-
300
-
400
-
500130 150 170 190 210 230
Line position (kHz)
mF
=0 B calibration
8/29

Experimental
set-up
3S
1S
2P
TiSa
frequency
B
LBO cavity
BBO cavity
820 nm (2W)
410 nm (1W)
205 nm (<1mW)
Detection
@656 nm (100 ph/s)
FP
DL/Rb
Frequency comb
TiSa
laser
H(1S)
Cs Maser HLNE Syrte 3km
opt. fib.
9/29

BBO cavity mirror motion
CCD
PM
PM
1S -
3S line shape
Relative intensity of mF
=±1
mF
=+1
mF
=-1
v=0
B = 171 G
B = 171 G
= 1.6 km/s
= 1.6 km/s
10/29

Hydrogen velocity determination
f(v,) = v3
e- ---v2
22
MkT
with
(km/s)
B = 160.1 G
B = 171.2 G
B = 191.5 G
B = 0.29 G
= 1.646(89) km/s
= 2 922 742 936. 7275 (120) MHz (4.1μ10-12)
Least square
11/29

Error budget • Frequency measurements 8 μ
0.3 kHz• Light shift 0.3 kHz• Pressure shift 1.2 kHz• Velocity distribution 3.0 kHz• Scan of BBO cavity 2.6 kHz• Statistic 12.0 kHz
Results
[1S1/2
-3S1/2
(F=1)] = 2 922 742 936. 7292 (130) MHz (4.5μ10-12)
LKB
[1S1/2
-3S1/2
] = 2 922 743 278.6783 (130) MHz (4.6μ10-12)
NIST data base [1S1/2
-3S1/2
] = 2 922 743 278.6716 (14) MHz (4.8μ10-13)
1S-2S and 1S-3S
c R∞
= 3 289 841 960. 467 (204) kHz (6.4 μ10-11)rp
= 0.911 (65) fm
O. Arnoult
et al, Eur. Phys. J. D 60 p.243 (2010) 12/29

LKB prospects
Sum frequency generation : 205 nm 1S-3S
532 nm 266 nm
896 nm
205 nm
Liquid N2
cooled atomic beam
Sum frequency generation : 194.5 nm 1S-4S
532 nm 266 nm
724 nm
194.5 nm
13/29

Determinations of the fine structure constant
c4e
0
2
α dimension less
scale electromagnetic interaction
137.035 990 137.036 000 137.036 010
h/m
(neutron)
-1
quantum Hall effectSolid state
physics’p,h-90
hfs muonium
QEDg –
2 of the electron
(UW)g –
2 of the electron
(Harvard)
h/m
(Cs)
h / mh/m (Rb)
20062008
He fine structure
2010
mv=h/λDB
vr
=ћk/m
14/29

Determination of the fine structure constant α
from h/m
Rydberg
constant in terms of energy : 22e αcm
21Rch
Rbm
heARbA
cR2α 87
r
87r2 -
Rydberg
constant : 7 x 10- 12
-
atom-to-proton mass ratio :1.4 x 10- 10
-
electron-to-proton mass ratio : 4.2 x 10- 10
Recoil effect h/m
The recoil velocity is directly related to the h/M ratio J.L. Hall et al, : PRL 37,1339 (1976)
Spontaneous emission
Raman two photon transition
mkvr
and can be measured very precisely in terms of frequency (Doppler effect)
a
E=hp=ћk
b
m
c
b
4Er
Same internal state
a
c
b
Two different internal states
am
v=2μ----ħkm
15/29

Principle of our experiment
vr
= v
/ (2N)
N
2ħk
coherent
acceleration
measurement(Raman transitionor Ramsey fringes)
selection(Raman transition
or Ramsey fringes)
MOT +molasses
selection of an initial sub-recoil velocity class
87Rb
5S1/2
5P3/2
F=2F=1
coherent acceleration : N
Bloch oscillations,momentum transfer 2Nħk
measurement of the final velocity class
16/29

Succession of stimulated Raman transitions(same hyperfine level)
F=1
2m
2vr
Momentum
Ene
rgy
h
h2
0
rvk2
rvk10
k2
rvk6
k6k4k2
k2
Coherent acceleration of atoms : simple approach
t 21
Addiabatic
passage : acceleration of the atoms
The atom is placed in an accelerated standing wave: in its frame, the atom is submitted to an inertial force
Bloch oscillations in a periodic potential
LKB (1996) (E.P.)
per cycle
17/29

Atom in an accelerated lattice
1
& 2
Velocity of the lattice v=(1
-
2
)/2kLight shifts : Periodic potential
m1 2
2vr
Velocity distribution Wannier
function (center at v=0)
Wannier
function(center at 2Nvr
)
v
2
U0
vAcceleration
vt)cos(2k2
Ut)U(x, 0
18/29

Bloch oscillations and atomic interferometry
-10 -5 0 5 10-15 -10 -5 0 5 10 15
2 2 22
selectionF=2 → F=1
measurement F=1 → F=2
acceleration deceleration
detection
blow away beam
TRTR
high sensitivity of atomic interferometry+
high efficiency of Bloch oscillations
space
time
/2 /2/2/2
TR
TR
N Bloch oscillations
v0
v+2Nv0 r
v-2Nv0 r
19/29

Measurement of the recoil velocity
+
k1
k2
k2
k1
2 spectra
+k1
k1k2
k2
2 spectra
upwards acceleration
mes
sel
downwards acceleration sel
mes
Acceleration in both opposite directions
: )NN(2
VVv downup
downup
r
21
measselkkδδ
ΔV
We measure (Doppler effect)
:
mkv B
r
B21
downup
downmeassel
upmeassel
kkk)NN(2m
)V,VAvg(V 1,2 2,1with
(no contribution of g)
g
20/29

«
Atom
elevator
»
2 2 22
selectionF=2 → F=1
measurement F=1 → F=2
accelerationdeceleration
detection
blow
away beam
TRTR
acc dec
Bloch oscillations = high efficiency (99.95% per recoil) “increase”
the size of the vacuum chamber
more recoils transferred to the atoms higher accuracy on recoil determination
sel
acc
dec
acc
dec
mes
±300 ±300 -500 50021/29

Results with new vacuum chamber
170 measurements (14 hours)
Each measurement : 6μ10±9
(h/m) and 3 μ10±9
(α)
Relative uncertainty on h/m
: 4.4μ10±10 and 2.2μ10±10
on α22/29

Testing for correlations in measurements : T.Witt
BIPM : no correlations
Results : correlation ?
Metrologia
44 201 (2007) 23/29

Laser frequencies 0 1.3Beams alignment
- 3.3
3.3
Wave front curvature and Gouy phase - 25.1 3.0 2nd order Zeeman effect 4.0
3.0
Gravity gradient
-2.0
0.2 Light shift (one photon) 0 0.1Light shift (two photon) 0 0.1 Light shift (Bloch oscillations)
0 0.1
Index of refraction (cold atomic cloud and backgrd
vapor) 2.0Global systematic effects -26.4 5.9Statistical uncertainty 2.0Rydberg
constant and mass ratio
2.2
TOTAL UNCERTAINTY 6.6
Error budget
Source
(1/α) (×10-10) (×10-10)
24/29

Systematics
: beams alignment
/2)θ2k(1cosθ2kkk 221
Maximum angle estimated 40 µrad
from coupling between optical fibers 3.3μ10-10
25/29

Wavefront
curvature and Gouy
phase shift
Momentum of the photon ?
zp
where Φ
is the phase of the laser beam
p= ћk
holds
only
for a perfect
plane wave
For a Gaussian beam :
2
22
4
2
2 Rkr
w4r
w4
2k1k
zΦ
where w is
the
waist
of
the
beam, R the
wavefront
curavture
and
r the
distance from
the
propagation axes of
the
beam.
Beam diagnostics with a Shack-Hartmann analyser
w=3.6 mm R > 30 m
Largest systematic effect 25μ10-10
larger beam size
more light power
26/29

Determination of the fine structure constant
LKB-10 (Paris)
: α-1=137.035 999 037 (91) [6.6μ10-10] PRL 106,080801 (2011)
ae
=0.001 159 652 181 13 (84)
Harvard Uni-08
: ae
=0.001 159 652 180 73 (28) PRL 100,120801 (2008)
α-1=137.035 999 084 (51) [3.7μ10-10]
(-1
–
137.03) ×
105
599,8 599,85 599,9 599,95 600 600,05 600,1
h/m(Cs) 2002
ae
(UW) 1987
ae
(Harvard, 2006)
h/m(Rb) 2006
h/m(Rb) 2008
ae
(Harvard, 2008)
h/m(Rb) 2010
27/29

...hadronweak,,/mm,/mmaπαC
παC
παC
παCa τeμe
4
4
3
3
2
21e
Test of QED: electron
anomaly
14eee 1089)(40theoameasaaδ
First test of the QED at
the 10-9
level
First test of the muonicand hadronic
corrections
2008
2010
10-3
10-6
10-9
10-12
100
πα
2
πα
4
πα
3
πα
5
πα
μe
mm
τmme
a(weak)a(hadron)
176 180 184 188 192(ae
–
0.001 159 652 000)/10-12
UW 1987Harvard 2008
Rb 2010Rb 2010 –
only
electronic
QED contributions
28/29

Our team thanks you for your attention
29/29