Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile...

50
Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University of Minho, 12-14 June 2017 Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 1 / 50

Transcript of Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile...

Page 1: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression: A Gentle Introduction

Roger Koenker

University of Illinois, Urbana-Champaign

University of Minho, 12-14 June 2017

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 1 / 50

Page 2: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Preview

Least squares methods of estimating conditional mean functions

were developed for, and

promote the view that,

Response = Signal + iid Measurement Error

When we write,yi = x

>i β+ ui

we are (often implicitly) endorsing this view. Covariates exert a purelocation shift effect on the response.In fact the world is rarely this simple. Quantile regression permitscovariate effects to “grow up” to become distributional objects.

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 2 / 50

Page 3: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Engel’s Food Expenditure Data

1000 2000 3000 4000 5000

500

1000

1500

2000

Household Income

Foo

d E

xpen

ditu

re

●●

●●

●●

●●

●●

●●

●●

●●

● ●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

● ●

●●

●●

●● ●

Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the de-

pendence of households’ food expenditure on household income. Seven estimated quantile

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.

The median τ = .5 fit is indicated by the blue solid line; the least squares estimate of the

conditional mean function is indicated by the red dashed line.Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 3 / 50

Page 4: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Engel’s Food Expenditure Data

400 500 600 700 800 900 1000

300

400

500

600

700

800

Household Income

Foo

d E

xpen

ditu

re

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

● ●●

Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the de-

pendence of households’ food expenditure on household income. Seven estimated quantile

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.

The median τ = .5 fit is indicated by the blue solid line; the least squares estimate of the

conditional mean function is indicated by the red dashed line.Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 4 / 50

Page 5: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Univariate QuantilesGiven a real-valued random variable, X, with distribution function F, wecan define the τth quantile of X as

QX(τ) = F−1X (τ) = inf{x | F(x) > τ}.

This definition follows the usual convention that F is CADLAG, and Q isCAGLAD as illustrated in the following pair of pictures.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

F(x

)

● ●

F's are CADLAG

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

τ

Q(τ

)●

Q's are CAGLAD

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 5 / 50

Page 6: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Univariate Quantiles

Viewed from the perspective of densities, the τth quantile splits the areaunder the density into two parts: one with area τ below the τth quantileand the other with area 1 − τ above it:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.4

0.8

x

f(x)

τ 1 − τ

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 6 / 50

Page 7: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Two Bits of Convex Analysis

A convex function ρ and its subgradient ψ:

ττ − 1

ρτ(u)τ

τ − 1

ψτ(u)

The subgradient of a convex function ρτ(u) at a point u consists of allthe possible “tangents.”

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 7 / 50

Page 8: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Population Quantiles as Optimizers

Quantiles solve a simple optimization problem:

α(τ) = argmina E ρτ(Y − a)

Proof: Let ψτ(u) = ρ′τ(u), so differentiating wrt to a:

0 =

∫∞−∞ψτ(y− a)dF(y)

= (τ− 1)

∫a−∞ dF(y) + τ

∫∞a

dF(y)

= (τ− 1)F(a) + τ(1 − F(a))

implying τ = F(a) and thus solving: α(τ) = F−1(τ).

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 8 / 50

Page 9: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Sample Quantiles as Optimizers

For sample quantiles replace F by F, the empirical distribution function.The objective function becomes a polyhedral convex function whosederivative is monotone decreasing, in effect the gradient simply countsobservations above and below and weights the counts by τ and τ− 1.

−2 0 2 4

2030

4050

6070

80

x

R(x

)

●●

●●●●

●●

●●●●●●●●●●

●●

●●

−2 0 2 4

−15

−10

−5

05

1015

x

R'(x

)

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 9 / 50

Page 10: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

µ = argminmE(Y −m)2

The conditional mean µ(x) = E(Y|X = x) solves

µ(x) = argminmEY|X=x(Y −m(X))2.

Similarly, the unconditional τth quantile solves

ατ = argminaEρτ(Y − a)

and the conditional τth quantile solves

ατ(x) = argminaEY|X=xρτ(Y − a(X))

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 10 / 50

Page 11: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Computation of Linear Regression Quantiles

Primal Formulation as a Linear Program:

min{τ1>u+ (1 − τ)1>v|y = Xb+ u− v, (b,u, v) ∈ |Rp × |R2n+ }

Dual Formulation as a Linear Program:

max{y ′d|X>d = (1 − τ)X>1,d ∈ [0, 1]n}

Solutions are characterized by an exact fit to p observations.Let h ∈ H index p-element subsets of {1, 2, ...,n} then primal solutionstake the form:

β(τ) = β(h) = X(h)−1y(h)

These solutions may be viewed as p-dimensional analogues of the orderstatistics for the linear regression model.

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 11 / 50

Page 12: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Least Squares from the p-subset Perspective

OLS is a weighted average of these β(h)’s:

βOLS = (X>X)−1X>y =∑h∈H

w(h)β(h),

w(h) = |X(h)|2/∑h∈H

|X(h)|2

The determinants |X(h)| are the (signed) volumes of the parallelipipedsformed by the columns of the the matrices X(h). In the simplest bivariatecase, we have,

|X(h)|2 =

∣∣∣∣ 1 xi1 xj

∣∣∣∣2 = (xj − xi)2

so pairs of observations that are far apart are given more weight. Thereare

(np

)of these subsets, but only roughly n logn distinct quantile

regression solutions for τ ∈ (0, 1).

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 12 / 50

Page 13: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression: The Movie

Bivariate linear model with iid Student t errors

Conditional quantile functions are parallel in blue

100 observations indicated in blue

Fitted quantile regression lines in red.

Intervals for τ ∈ (0, 1) for which the solution is optimal.

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 13 / 50

Page 14: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.069 , 0.096 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 14 / 50

Page 15: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.138 , 0.151 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 15 / 50

Page 16: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.231 , 0.24 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 16 / 50

Page 17: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.3 , 0.3 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 17 / 50

Page 18: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.374 , 0.391 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 18 / 50

Page 19: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.462 , 0.476 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 19 / 50

Page 20: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.549 , 0.551 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 20 / 50

Page 21: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.619 , 0.636 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 21 / 50

Page 22: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.704 , 0.729 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 22 / 50

Page 23: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.768 , 0.798 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 23 / 50

Page 24: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the iid Error Model

0 2 4 6 8 10

−2

02

46

810

12

x

y

●●

●●

● ●

●●

● ●

●●●

● ●

[ 0.919 , 0.944 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 24 / 50

Page 25: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression: The Sequel

Bivariate quadratic model with Heteroscedastic χ2 errors

Conditional quantile functions drawn in blue

100 observations indicated in blue

Fitted quadratic quantile regression lines in red

Intervals of optimality for τ ∈ (0, 1).

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 25 / 50

Page 26: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.048 , 0.062 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 26 / 50

Page 27: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.179 , 0.204 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 27 / 50

Page 28: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.261 , 0.261 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 28 / 50

Page 29: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.304 , 0.319 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 29 / 50

Page 30: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.414 , 0.417 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 30 / 50

Page 31: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.499 , 0.507 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 31 / 50

Page 32: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.581 , 0.582 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 32 / 50

Page 33: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.633 , 0.635 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 33 / 50

Page 34: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.685 , 0.685 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 34 / 50

Page 35: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.73 , 0.733 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 35 / 50

Page 36: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

020

4060

8010

0

x

y

●●

● ●

●●

●●

●●

●● ●

[ 0.916 , 0.925 ]

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 36 / 50

Page 37: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Conditional Means vs. Medians

●●

● ●

0 2 4 6 8 10

010

2030

40

x

y

meanmedian

Minimizing absolute errors for median regression can yield something quitedifferent from the least squares fit for mean regression.

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 37 / 50

Page 38: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Equivariance of Regression Quantiles

Scale Equivariance: For any a > 0, β(τ;ay,X) = aβ(τ;y,X) andβ(τ;−ay,X) = aβ(1 − τ;y,X)

Regression Shift: For any γ ∈ |Rp β(τ;y+ Xγ,X) = β(τ;y,X) + γ

Reparameterization of Design: For any |A| 6= 0,β(τ;y,XA) = A−1β(τ;yX)

Robustness: For any diagonal matrix D with nonnegative elements.β(τ;y,X) = β(τ,y+Du,X)

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 38 / 50

Page 39: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Equivariance to Monotone Transformations

For any monotone function h, conditional quantile functions QY(τ|x) areequivariant in the sense that

Qh(Y)|X(τ|x) = h(QY|X(τ|x))

In contrast to conditional mean functions for which, generally,

E(h(Y)|X) 6= h(EY|X)

Examples:h(y) = min{0,y}, Powell’s (1985) censored regression estimator.h(y) = sgn{y} Rosenblatt’s (1957) perceptron, Manski’s (1975) maximumscore estimator. estimator.

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 39 / 50

Page 40: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Beyond Average Treatment Effects

Lehmann (1974) proposed the following general model of treatmentresponse:

“Suppose the treatment adds the amount ∆(x) when theresponse of the untreated subject would be x. Then thedistribution G of the treatment responses is that of the randomvariable X+ ∆(X) where X is distributed according to F.”

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 40 / 50

Page 41: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Lehmann QTE as a QQ-Plot

Doksum (1974) defines ∆(x) as the “horizontal distance” between F andG at x, i.e.

F(x) = G(x+ ∆(x)).

Then ∆(x) is uniquely defined as

∆(x) = G−1(F(x)) − x.

This is the essence of the conventional QQ-plot. Changing variables soτ = F(x) we have the quantile treatment effect (QTE):

δ(τ) = ∆(F−1(τ)) = G−1(τ) − F−1(τ).

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 41 / 50

Page 42: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Lehmann-Doksum QTE

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

x

PG

F

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 42 / 50

Page 43: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

QTE via Quantile Regression

The Lehmann QTE is naturally estimable by

δ(τ) = G−1n (τ) − F−1

m (τ)

where Gn and Fm denote the empirical distribution functions of thetreatment and control observations, Consider the quantile regression model

QYi(τ|Di) = α(τ) + δ(τ)Di

where Di denotes the treatment indicator, and Yi = h(Ti), e.g.Yi = log Ti, which can be estimated by solving,

minn∑i=1

ρτ(yi − α− δDi)

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 43 / 50

Page 44: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

A Model of Infant Birthweight

Reference: Abrevaya (2001), Koenker and Hallock (2001)

Data: June, 1997, Detailed Natality Data of the US. Live, singletonbirths, with mothers recorded as either black or white, between 18-45,and residing in the U.S. Sample size: 198,377.

Response: Infant Birthweight (in grams)

Covariates:I Mother’s EducationI Mother’s Prenatal CareI Mother’s SmokingI Mother’s AgeI Mother’s Weight Gain

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 44 / 50

Page 45: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression Birthweight Model I

0.0 0.2 0.4 0.6 0.8 1.0

2500

3000

3500

4000

Intercept

••

••

••

••

••

••

0.0 0.2 0.4 0.6 0.8 1.0

4060

8010

012

014

0

Boy

••

••

••

••

• • • •

0.0 0.2 0.4 0.6 0.8 1.0

4060

8010

0

Married

••

• • ••

•• • •

••

• •

0.0 0.2 0.4 0.6 0.8 1.0

-350

-300

-250

-200

-150

Black

• • •• • • • • • •

• •• •

0.0 0.2 0.4 0.6 0.8 1.0

3040

5060

Mother’s Age

•• •

•• •

•• •

•• •

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

Mother’s Age^2

•• •

• • • ••

• • •• •

0.0 0.2 0.4 0.6 0.8 1.0

010

2030

High School

••

••

••

••

••

• ••

0.0 0.2 0.4 0.6 0.8 1.0

1020

3040

50

Some College

••

••

• ••

• ••

• • •

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 45 / 50

Page 46: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Quantile Regression Birthweight Model II

0.0 0.2 0.4 0.6 0.8 1.0

-20

020

4060

8010

0

College

•• • • •

••

•• •

•• • •

••

0.0 0.2 0.4 0.6 0.8 1.0

-500

-400

-300

-200

-100

0

No Prenatal

•• •

• •• •

•• • • • •

••

0.0 0.2 0.4 0.6 0.8 1.0

020

4060

Prenatal Second

••

••

• • •• •

••

••

• •

0.0 0.2 0.4 0.6 0.8 1.0

-50

050

100

150

Prenatal Third

• • •• •

• • •• • •

•• •

0.0 0.2 0.4 0.6 0.8 1.0

-200

-180

-160

-140

Smoker

• •• •

• ••

0.0 0.2 0.4 0.6 0.8 1.0

-6-5

-4-3

-2

Cigarette’s/Day

•• •

• • ••

••

• •

0.0 0.2 0.4 0.6 0.8 1.0

010

2030

40

Mother’s Weight Gain

••

•• •

• • •• • •

• • • •

0.0 0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.0

0.1

Mother’s Weight Gain^2

••

•• •

• • •• •

•• •

• •

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 46 / 50

Page 47: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Marginal Effect of Mother’s Age

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 47 / 50

Page 48: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Daily Temperature in Melbourne: AR(1) Scatterplot

10 15 20 25 30 35 40

1020

3040

yesterday's max temperature

toda

y's

max

tem

pera

ture

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 48 / 50

Page 49: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Daily Temperature in Melbourne: Nonlinear QAR(1) Fit

10 15 20 25 30 35 40

1020

3040

yesterday's max temperature

toda

y's

max

tem

pera

ture

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 49 / 50

Page 50: Quantile Regression: A Gentle Introductionroger/courses/NIPE/lectures/L1.pdf · Quantile Regression: A Gentle Introduction Roger Koenker University of Illinois, Urbana-Champaign University

Conditional Densities of Melbourne Daily Temperature

10 12 14 16 18

0.05

0.15

today's max temperature

dens

ity

Yesterday's Temp 11

12 16 20 24

0.00

0.05

0.10

0.15

today's max temperature

dens

ity

Yesterday's Temp 16

15 20 25 30

0.02

0.06

0.10

today's max temperature

dens

ity

Yesterday's Temp 21

15 20 25 30 35

0.01

0.03

0.05

0.07

today's max temperature

dens

ity

Yesterday's Temp 25

20 25 30 35

0.01

0.03

0.05

0.07

today's max temperature

dens

ity

Yesterday's Temp 30

20 25 30 35 40

0.01

0.03

0.05

0.07

today's max temperature

dens

ity

Yesterday's Temp 35

Roger Koenker (UIUC) Introduction Braga 12-14.6.2017 50 / 50