Poster$P516 SIRPα … · Here$we$demonstrate$the$immunomodulatory$effects$of$SIRP α...

1
Here we demonstrate the immunomodulatory effects of SIRPα blockade. In an in vitro assay with tumor cell suspension, SIRPα blockade increases the cellular uptake of tumor cells by matured peritoneal macrophages as a monotherapy and to a greater degree when combined with a tumor targeting antibody. Using a mouse BMDC crosspresentation assay, we also demonstrate that the blockade of SIRPα results in increased T cell expansion, supporting a role for SIRPα blockade in enhancing DC skewing and function. We further demonstrate that DC phenotype is shifted towards the crosspresenting DC1 phenotype in this assay. Additionally, SIRPα blockade functions to modify the myeloid compartment in the TME of solid tumors. In the mouse mammary tumor model 4T1, we demonstrate that SIRPα blockade skews the DC population towards the crosspresenting DC1 phenotype and increases the CD86 expression on DC2s in the spleen and lymph node. Lastly, in the subcutaneous tumor models 4T1 and CT26, SIRPα blockade combined with PD1 blockade reduces tumor burden and increases overall survival. Subcutaneous mouse tumor models and a mouse bone marrowderived dendritic cell (BMDC) crosspresentation assay were used to assess the efficacy of SIRPα blockade in solid tumors. Presented at the 2018 The Society for Immunotherapy of Cancer, November 7 11, 2018, Washington, DC Poster P516 SIRPα Blockade Increases the Activity of Multiple Myeloid Lineage Cells and Aids in Remodeling the Tumor Microenvironment Brian J. Francica, Brandy Chavez, Uyen Vu, Erik Voets, Joost Kreijtz, Hans van Eenennaam, Andrea van Elsas, and Meredith Leong Aduro Biotech, 740 Heinz Ave, Berkeley, CA 94710 Antagonizing the SIRPαCD47 pathway is gaining traction as an effective and novel approach to immune manipulation as design of immunotherapies broadens to include blockade of innate immune checkpoints. Recently, the combination of tumortargeting antibodies with SIRPαCD47 blockade has provided promising clinical results, suggesting that increased phagocytosis of cancer cells is clinically relevant for treatment of hematologic cancers.[1] However, the ability for this combination to enhance phagocytosis in the context of solid tumors may be remarkably diminished for several reasons including reduced expression of “eatme” signals like SLAMF7 [2], increased immune suppression in the tumor microenvironment (TME), and the physical size of tumor cells when adhered in a complex heterogeneous environment. To achieve efficacy in solid tumor indications, it is important that therapies blocking the SIRPαCD47 axis also potentiate adaptive immune mechanisms and not solely phagocytosis. Together, these data suggest that antagonizing SIRPα can have multiple functional consequences in myeloid cells. In suspension tumor cultures, SIRPα blockade results in an increase in uptake of tumor cells by macrophages. In an in vitro cross presentation assay, SIRPα blockade results in more DC1 phenotype DCs in culture and higher expansion of CD8+ T cells. In vivo, SIRPα blockade leads to multiple changes of cell phenotype and cell numbers within the tumor microenvironment. Mice treated with SIRPα blockade experience higher DC infiltration in the tumor as well as higher CD86 expression on DC2 phenotype cells. We hypothesize that these cellular changes are the driving force behind the combinatorial efficacy that we see when SIRPα agents are combined with PD1 blockade. These data continue to aid in the clinical development of ADU1805, a pan allele, anti human SIRPα blockade antibody. References: 1. X. Liu et al. (2017). Is CD47 an innate immune checkpoint for tumor evasion? Journal of Hematology & Oncology , 10, 12. http://doi.org/10.1186/s130450160381z. 2. J. Chen et al. (2017). SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac1 integrin. Nature volume 544, pages 493–497. Figure 1. SIRPα Influences Multiple CellCell Interactions Figure 2. SIRPα Blockade Causes Increased Cellular Uptake of Tumor Cells by Macrophages in vitro Figure 3. SIRPα Blockade Increased T Cell Expansion in vitro Figure 4. SIRPα Blockade Increases DC1 Abundance in vitro Figure 6. SIRPα Induces Changes in the DC Compartment in vivo Figure 7. Combination of SIRPα + αPD1 Reduces Tumor Burden in Syngeneic Tumor Models Figure 5. SIRPα Combination with PD1 Modulates T Cell Responses Blood Macrophage Tumor Phagocytosis Inhibition Increase Cellular Uptake SIRPα CD47 DC Lymph Node Potentiate CrossPriming and T Cell Response Increased presence or activity of DCs could lead to increased T cell priming, activation, and effector function z Modify TME Allows for increased infiltration and activity of adaptive immune subsets A) Peritoneal macrophages were elicited with biogel and matured with MCSF supplemented media for 4 days. After maturation of macrophages, SIRPα blocking antibodies and Trastuzumab were added to the culture where indicated. MC38hHER2 tumor cells were CFSE labelled and incubated with antiCD47 antibodies. Tumor cells were admixed to the macrophage culture for 4 hours, then harvested for flow cytometry. B) Alternatively, after admix of tumor cells, cultures were imaged on a fluorescent microscope at Time 0 (Left) and 180 minutes (Right), using CFSE to image tumor cells (Green) and CD11b fluorescent antibody to label macrophages (Red). Isotype AntiCD47, MIAP301 AntiSIRPα CD8 CFSE No AntiPD1 +AntiPD1 A) In vitro cross presentation assay setup. BMDC were elicited with FLT3l supplemented media for 7 days. On Day 7, MC38Ova tumor cells, along with antibodies blocking SIRPα, CD47, and PD1 were added. On Day 8, OT1 T cells were enriched, CFSE labelled, and added to the culture. Controls for this assay showed that OT1 T cells do not persist in the absence of antigen, nor do they expand without APC presence. B) Representative FACS plots and C) summary graph of T cell expansion after 72 hours co culture with MC38 Ova and matured APC. D) In a similar culture, we analyzed the addition of MC38 WT+ soluble SIINFEKL peptide, rather than MC38OVA to understand if the increase in T cell expansion was due to increased cross presentation. A B C D 7 days after treatment was initiated, immune responses in mice from Figure 7A were measured by examining PBMCs using a p15e specific tetramer (A) or by measuring bulk CD8+ T cells for Tbet (B) or PD1 (C) . Statistics were performed using a Student’s t test. *P<.05. **P<.01. B AB) Mice bearing 4T1 tumors were treated with Isotype, 180µg anti SIRPα +/ 200µg antiPD1, then sacrificed at for immune analysis. A) After 1 treatment, CD86 expression increases in the spleen in the DC2 (SIRPα+ CD103) population. B) After 2 treatments, the % DC1 (SIRPα CD103+) of CD11c+Ly6c cells in the tumor is increased. A A B C B A Trastuzumab 0 5 10 15 % CD45+CD11b+CFSE+ 0 AntiCD47 5 10 15 % CD45+CD11b+CFSE+ SIRPα Partially Blocking Ab 0 5 10 15 % CD45+CD11b+CFSE+ SIRPα Fully Blocking Ab 0 5 10 15 % CD45+CD11b+CFSE+ 0 10 20 30 % >5 Divisions 40 A) To diminish the effects of Fc binding, we altered the antiSIRPα and antiPD1 antibodies to include the D265A mutation, which nullifies Fc binding. C57BL6 mice were implanted with MC38 tumors. Biweekly intratumoral injections of 180µg antiSIRPα +/ weekly injections of 50µg PD1 (RMP114D265A) were initiated 5 days after tumor implantation and sustained for 3 weeks. B) 5e5 4T1 tumor cells were implanted into Balb/c mice on day 1. Biweekly IT injections of 200µg antiSIRPα or weekly injections of 200µg PD1 (RMP114) were initiated 8 days after implantation and sustained for 3 weeks. A B Tumor Volume (mm3) 5 10 0 500 1000 1500 15 20 D265A Isotype AntiSIRPαD265A AntiPD1 D265A AntiSIRPαD265A+ AntiPD1 D265A 8 13 0 500 1000 1500 18 23 Isotype AntiSIRPα AntiPD1 AntiSIRPα +AntiPD1 2000 2500 Days Post Tumor Implantation 0 20 40 60 % CD90+ That Are >3 Divisions CFSE 80 0 5 10 15 % SIRPα CD103+ of Ly6cCD11c+ 20 25 30 35 ** ** ** ** * 0 1 3 % Tetramer+ of CD8+ 2 %P15e + CD8+ T Cells 0 1 3 % of CD8+ That Are Tbet+ 2 Tbet+ CD8+ T Cells 4 0 5 15 % of CD8+ That Are PD1+ 10 CD8+ PD1+ Cells 20 Full Culture No Tumor in Dish (NonSpecific Expansion) No APCs in Dish Direct Tumor Reactogenicity BMDC Tumor T Cells FSCA CFSE FSCA CFSE FSCA CFSE CONCLUSIONS BACKGROUND METHODS RESULTS Direct tumor reduction by macrophages. Most likely effective in homological tumors where tumors are in suspension without complex architecture and anti tumor antibody is present 0 500 CD86 MFI 1000 1500 2000 Isotype AntiSIRPα AntiSIRPα + AntiPD1 CD86 Expression in Spleen DC1 Abundance in Tumor Combination Combination 0 Minutes 180 Minutes % CFSE Dilute % CFSE Dilute L Isotype AntiSIRPα Tumor Volume (mm 3 ) Percentage composition and absolute numbers of cells in the MC38 Ova (A,B) and MC38 WT+ SL8 (C,D) cultures from Figure 3 D. *p<.05 A B C D * * 0 5 10 15 % CD103 + SIRPα of CD11c+ 0 5000 10000 15000 # CD103 + SIRPα 0 2 4 8 % CD103 + SIRPα of CD11c+ 6 0 2000 4000 6000 # CD103 + SIRPα p=.08 p=.085 % DC1 of Total DC # DC1s in Culture % DC1 of Total DC # DC1s in Culture SIRPα CD47

Transcript of Poster$P516 SIRPα … · Here$we$demonstrate$the$immunomodulatory$effects$of$SIRP α...

Here  we  demonstrate  the  immunomodulatory  effects  of  SIRPα blockade.  In  an  in  vitroassay  with  tumor  cell  suspension,  SIRPα blockade  increases  the  cellular  uptake  of  tumor  cells  by  matured  peritoneal  macrophages  as  a  monotherapy  and  to  a  greater  degree  when  combined  with  a  tumor  targeting  antibody.  Using  a  mouse  BMDC  cross-­presentation  assay,  we  also  demonstrate  that  the  blockade  of  SIRPα results  in  increased  T  cell  expansion,  supporting  a  role  for  SIRPα blockade  in  enhancing  DC  skewing  and  function.  We  further  demonstrate  that  DC  phenotype  is  shifted  towards  the  cross-­presenting  DC1  phenotype  in  this  assay.  Additionally,  SIRPα blockade  functions  to  modify  the  myeloid  compartment  in  the  TME  of  solid  tumors.  In  the  mouse  mammary  tumor  model  4T1,  we  demonstrate  that  SIRPα blockade  skews  the  DC  population  towards  the  cross-­presenting  DC1  phenotype  and  increases  the  CD86  expression  on  DC2s  in  the  spleen  and  lymph  node.  Lastly,  in  the  subcutaneous  tumor  models  4T1  and  CT26,  SIRPα blockade  combined  with  PD-­1  blockade  reduces  tumor  burden  and  increases  overall  survival.

Subcutaneous  mouse  tumor  models  and  a  mouse  bone  marrow-­derived  dendritic  cell  (BMDC)  cross-­presentation  assay  were  used  to  assess  the  efficacy  of  SIRPα blockade  in  solid  tumors.

Presented  at  the  2018  The  Society  for  Immunotherapy  of  Cancer,  November  7  -­ 11,  2018,  Washington,  DC

Poster  P516

SIRPα Blockade  Increases  the  Activity  of  Multiple  Myeloid  Lineage  Cells  and  Aids  in  Remodeling  the  Tumor  Microenvironment

Brian  J.  Francica,  Brandy  Chavez,  Uyen  Vu,  Erik  Voets,  Joost  Kreijtz,  Hans  van  Eenennaam,  Andrea  van  Elsas,  and  Meredith  LeongAduro  Biotech,  740  Heinz  Ave,  Berkeley,  CA  94710

Antagonizing  the  SIRPα-­CD47  pathway  is  gaining  traction  as  an  effective  and  novel  approach  to  immune  manipulation  as  design  of  immunotherapies  broadens  to  include  blockade  of  innate  immune  checkpoints.  Recently,  the  combination  of  tumor-­targeting  antibodies  with  SIRPα-­CD47  blockade  has  provided  promising  clinical  results,  suggesting  that  increased  phagocytosis  of  cancer  cells  is  clinically  relevant  for  treatment  of  hematologic  cancers.[1]  However,  the  ability  for  this  combination  to  enhance  phagocytosis  in  the  context  of  solid  tumors  may  be  remarkably  diminished  for  several  reasons  including  reduced  expression  of  “eat-­me”  signals  like  SLAMF7  [2],  increased  immune  suppression  in  the  tumor  microenvironment  (TME),  and  the  physical  size  of  tumor  cells  when  adhered  in  a  complex  heterogeneous  environment.  To  achieve  efficacy  in  solid  tumor  indications,  it  is  important  that  therapies  blocking  the  SIRPα-­CD47  axis  also  potentiate  adaptive  immune  mechanisms  and  not  solely  phagocytosis.  

Together,  these  data  suggest  that  antagonizing  SIRPα can  have  multiple  functional  consequences  in  myeloid  cells.  In  suspension  tumor  cultures,  SIRPα blockade  results  in  an  increase  in  uptake  of  tumor  cells  by  macrophages.  In  an  in  vitro  cross  presentation  assay,  SIRPα blockade  results  in  more  DC1  phenotype  DCs  in  culture  and  higher  expansion  of  CD8+  T  cells.  In  vivo,  SIRPα blockade  leads  to  multiple  changes  of  cell  phenotype  and  cell  numbers  within  the  tumor  microenvironment.  Mice  treated  with  SIRPα blockade  experience  higher  DC  infiltration  in  the  tumor  as  well  as  higher  CD86  expression  on  DC2  phenotype  cells.  We  hypothesize  that  these  cellular  changes  are  the  driving  force  behind  the  combinatorial  efficacy  that  we  see  when  SIRPα agents  are  combined  with PD-­1  blockade.  These  data  continue  to  aid  in  the  clinical  development  of  ADU-­1805,  a  pan-­ allele,  anti-­ human  SIRPαblockade  antibody.

References:1.  X.  Liu  et  al.  (2017).   Is  CD47  an  innate   immune   checkpoint  for  tumor  evasion?  Journal  of  Hematology   &  Oncology,  10,  12.  http://doi.org/10.1186/s13045-­016-­0381-­z.  2.  J.  Chen  et  al.  (2017).  SLAMF7   is  critical  for  phagocytosis  of  haematopoietic   tumour  cells  via  Mac-­1  integrin.  Nature volume  544, pages  493–497.  

Figure  1.  SIRPα Influences  Multiple  Cell-­Cell  Interactions  

Figure  2.  SIRPα Blockade  Causes  Increased  Cellular  Uptake  of  Tumor  Cells  by  Macrophages  in  vitro

Figure  3.  SIRPα Blockade  Increased  T  Cell  Expansion  in  vitro

Figure  4.  SIRPα Blockade  Increases  DC1  Abundance  in  vitro

Figure  6.  SIRPα Induces  Changes  in  the  DC  Compartment  in  vivo

Figure  7.  Combination  of  SIRPα +  αPD-­1  Reduces  Tumor  Burden  in  Syngeneic  Tumor  Models

Figure  5.  SIRPα Combination  with  PD-­1  Modulates  T  Cell  Responses

BloodMacrophage

TumorPhagocytosisInhibition

Increase  Cellular  Uptake  

SIRPα

CD47

DC

Lymph  Node

Potentiate  Cross-­Priming  and  T  Cell  Response

Increased  presence  or  activity  of  DCs  could  lead  to  increased  T  cell  priming,  activation,  and  

effector   function

z

Modify  TME

Allows  for  increased  infiltration  and  activity  of  adaptive  immune  

subsets  

A) Peritoneal  macrophages  were  elicited  with  biogel  and  matured  with  M-­CSF  supplemented   media  for  4  days.  After  maturation  of  macrophages,  SIRPα blocking  antibodies  and  Trastuzumab  were  added   to  the  culture  where  indicated.  MC38-­hHER2   tumor  cells  were  CFSE  labelled  and  incubated  with  anti-­CD47  antibodies.  Tumor  cells  were  admixed   to  the  macrophage   culture  for  4  hours,  then  harvested  for  flow  cytometry.B) Alternatively,  after  admix  of  tumor  cells,  cultures  were  imaged  on  a  fluorescent  microscope  at  Time  0  (Left)  and  180  minutes  (Right),  using  CFSE  to  image  tumor  cells  (Green)  and  CD11b  fluorescent  antibody  to  label  macrophages   (Red).

Isotype Anti-­CD47,  MIAP301Anti-­SIRPα

CD8

CFSE

No  Anti-­PD-­1

+Anti-­PD-­1

A) In  vitro cross  presentation  assay  setup.  BMDC  were  elicited  with  FLT-­3l  supplemented   media  for  7  days.  On  Day  7,  MC38-­Ova  tumor  cells,  along  with  antibodies  blocking  SIRPα,  CD47,  and  PD-­1  were  added.  On  Day  8,  OT-­1  T  cells  were  enriched,  CFSE  labelled,  and  added   to  the  culture.  Controls  for  this  assay  showed   that  OT-­1  T  cells  do  not  persist  in  the  absence  of  antigen,  nor  do  they  expand  without  APC  presence.B)  Representative  FACS  plots  and  C) summary  graph  of  T  cell  expansion  after  72  hours  co  culture  with  MC38-­Ova  and  matured  APC.D) In  a  similar  culture,  we  analyzed  the  addition  of  MC38  WT+  soluble  SIINFEKL  peptide,  rather  than  MC38-­OVA   to  understand   if  the  increase  in  T  cell  expansion  was  due  to  increased  cross-­presentation.  

A

B

C D

7  days  after  treatment  was  initiated,    immune  responses  in  mice  from  Figure  7A  were  measured  by  examining  PBMCs  using  a  p15e-­specific  tetramer  (A) or  by  measuring  bulk  CD8+  T  cells  for  Tbet  (B) or  PD-­1  (C).  Statistics  were  performed  using  a  Student’s  t  test.  *P<.05.  **P<.01.  

B

A-­B)  Mice  bearing  4T1  tumors  were  treated  with  Isotype,  180µg  anti-­SIRPα +/-­ 200µg  anti-­PD-­1,  then  sacrificed  at  for  immune  analysis.  A)  After  1  treatment,  CD86  expression  increases  in  the  spleen  in  the  DC2  (SIRPα+  CD103-­)  population.B)  After  2  treatments,  the  %  DC1  (SIRPα-­ CD103+)  of  CD11c+Ly6c-­cells  in  the  tumor  is  increased.  

A

A

B C

B

A Trastuzumab

0

5

10

15

%  CD45+CD11b+CFSE+

I so ty pe

1 ug /ml

5 ug /ml

1 0u g/ml

5 0u g/ml

n o   t umo r

0

5

1 0

1 5

T r a s t u z u m a b

%CD45+CD11b+CFSE+

0

I so ty pe

1 ug /ml

5 ug /ml

1 0u g/ml

5 0u g/ml

5 ug  CD4 7+ 5u g   Tr as

0

5

1 0

1 5

A n t i -­ C D 4 7

%CD45+CD11b+CFSE+

Anti-­CD47

5

10

15

%  CD45+CD11b+CFSE+

I so ty pe

1 ug /ml

5 ug /ml

1 0u g/ml

5 0u g/ml

5 ug S

I RP+ 5u g   Tr as

0

5

1 0

1 5

S I R P a  P a r t i a l l y   B l o c k i n g     A b

%CD45+CD11b+CFSE+

I so ty pe

1 ug /ml

5 ug /ml

1 0u g/ml

5 0u g/ml

5 ug S

I RP+ 5u g   Tr as

0

5

1 0

1 5

S I R P a   F u l l y   B l o c k i n g   A b

%CD45+CD11b+CFSE+

SIRPα Partially  Blocking  Ab

0

5

10

15

%  CD45+CD11b+CFSE+

SIRPα Fully  Blocking  Ab

0

5

10

15

%  CD45+CD11b+CFSE+

0

10

20

30

%  >5  Divisions

40

A)  To  diminish  the  effects  of  Fc  binding,  we  altered  the  anti-­SIRPα and  anti-­PD-­1  antibodies   to  include  the  D265A  mutation,  which  nullifies  Fc  binding.  C57BL6  mice  were  implanted  with  MC38  tumors.  Biweekly  intra-­tumoral  injections  of  180µg  anti-­SIRPα +/-­ weekly  injections  of  50µg  PD-­1  (RMP1-­14-­D265A)  were  initiated  5  days  after  tumor  implantation  and  sustained  for  3  weeks.B) 5e5  4T1  tumor  cells  were  implanted  into  Balb/c  mice  on  day  1.  Biweekly  IT  injections  of  200µg  anti-­SIRPα or  weekly  injections  of  200µg  PD-­1  (RMP1-­14)  were  initiated  8  days  after  implantation  and  sustained  for  3  weeks.  

A B

Tumor  Volume  (mm3)

51 0 1 5 2 0

0

5 0 0

1 0 0 0

1 5 0 0

D a y s   P o s t   T u m o r   I m p l a n t a t i o n

Tumor  Volume  (mm

3)

D 2 6 5 a   I s o t y p e

A n t i -­ S I R P a -­   D 2 6 5 A

A n t i -­ P D -­ 1   D 2 6 5 A

A n t i -­ S I R P a -­   D 2 6 5 A +

A n t i -­ P D -­ 1   D 2 6 5 A

5 100

500

1000

1500

15 20

D265A  Isotype

Anti-­SIRPα-­ D265A

Anti-­PD-­1  D265A

Anti-­SIRPα-­ D265A+Anti-­PD-­1  D265A

81 3 1 8 2 3

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0I s o t y p e

A n t i -­ S I R P a

A n t i -­ P D -­ 1

A n t i -­ S I R P a

+ A n t i -­ P D -­ 1

8 130

500

1000

1500

18 23

Isotype

Anti-­SIRPα

Anti-­PD-­1

Anti-­SIRPα+Anti-­PD-­1

2000

2500

Days  Post  Tumor  Implantation

I sot ype

Ant i-­ PD-­ 1

Ant i-­ SI RPa

Ant i-­ CD4 7

Ant i-­ PD-­ 1+ A

nt i-­ SI RPa

Ant i-­ PD-­ 1+ A

nt i-­ CD4 7

0

1 0

2 0

3 0

4 0

%>5    Divisions

0

20

40

60

%  CD90+  That  Are  >3  Divisions  CFSE

80

I sot ype

Ant i-­ SI RPa

Ant i-­ SI RPa +Ant i-­ PD-­ 1

0

5

1 0

1 5

2 0

2 5

3 0

3 5

%SIR

Pa-­C

D103+

of  Ly6c-­C

D11c+

0

5

10

15

%  SIRPα-­CD103+  of  Ly6c-­CD11c+

20

25

30

35

I sot ype

Ant i-­ SI RPa

Ant i-­ PD-­ 1

Ant i-­ SI RPa +Ant i-­ PD-­ 1

0

1

2

3

P 1 5 e     R e s p o n s e s

%Tetramer+

 of    C

D8+

* *

* *

I sot ype

Ant i-­ SI RPa

Ant i-­ PD-­ 1

Ant i-­ SI RPa +Ant i-­ PD-­ 1

0

1

2

3

4

%   C D 8   t h a t   a r e T b e t +

%  of  CD8-­  th

at  are

 Tbet+

* ** *

I sot ype

Ant i-­ SI RPa

Ant i-­ PD-­ 1

Ant i-­ SI RPa +Ant i-­ PD-­ 1

0

5

1 0

1 5

2 0

T  C e l l   A c t i v a t i o n

%of  CD8  that  are

 PD-­1+

*

0

1

3

%  Tetramer+  of  CD8+

2

%P15e  +  CD8+  T  Cells

0

1

3

%  of  CD8+  That  Are  Tbet+

2

Tbet+  CD8+  T  Cells

4

0

5

15

%  of  CD8+  That  Are  PD-­1+

10

CD8+  PD-­1+  Cells

20

Full  CultureNo  Tumor  in  Dish

(Non-­Specific  Expansion)No  APCs  in  Dish

Direct  Tumor  ReactogenicityBMDCTumorT  Cells

FSC-­A

CFSE

FSC-­A

CFSE

FSC-­A

CFSE

CONCLUSIONS

BACKGROUND

METHODS

RESULTS

Direct  tumor  reduction  by  macrophages.  Most  likely  effective  in  homological  tumors  where  

tumors  are  in  suspension  without  complex  architecture  and  anti-­tumor  antibody  is  present

l y6 c+ C

D1 1b +

DC1

DC2

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

D 1 0   S p l e e n   C D 8 6

CD86    MFI

I s o t y p e

A n t i -­ S I R P a

A n t i -­ S I R P a + A n t i -­ P D -­ 1

0

500

CD86  MFI

1000

1500

2000Isotype

Anti-­SIRPα

Anti-­SIRPα+  Anti-­PD-­1

CD86  Expression  in  SpleenDC1  Abundance

in  Tumor

Combination

Combination

0  Minutes 180  Minutes

%  CFSE  Dilute %  CFSE  Dilute

MC 38 -­Ov a

MC 38WT +S IINF EK L

N o  Tumo r+ SIINF EK L

N o  AP Cs ,  MC 38 -­Ov a

N o  Tumo r

0

20

40

60

80

%CD90+  that  are  >3  divisions  CFSE

Is o ty p e

A n ti-­S IR P a

%    C FSE  D ilu te

Isotype

Anti-­SIRPα

Tumor  Volume  (mm3 )

Percentage  composition  and  absolute  numbers  of  cells  in  the  MC38  Ova  (A,B) and  MC38  WT+  SL8  (C,D)cultures  from  Figure  3  D.*p<.05

A B C D

I sot ype s

Ant i-­ SI RPa

0

5

1 0

1 5

%CD103+SIR

Pa-­  of  CD11c+

*

I sot ype s

Ant i-­ SI RPa

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

#  C

D103+SIR

Pa-­  in  culture

*

I sot ype s

Ant i-­ SI RPa

0

2

4

6

8

%CD103+SIR

Pa-­  of  CD11c+

P = . 0 8

I sot ype s

Ant i-­ SI RPa

0

2 0 0 0

4 0 0 0

6 0 0 0

#CD103+SIR

Pa-­  in    culture

p = . 0 8 5

0

5

10

15

%  CD103  +  SIRPα-­of  CD11c+

0

5000

10000

15000

#  CD103  +  SIRPα-­

0

2

4

8

%  CD103  +  SIRPα-­of  CD11c+

6

0

2000

4000

6000

#  CD103  +  SIRPα-­

p=.08

p=.085%  DC1  of  Total  DC #  DC1s  in  Culture %  DC1  of  Total  DC #  DC1s  in  Culture

SIRPαCD47