Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of...

32
Current Organic Chemistry, 2000, 4, 837-868 837 Stoichiometric Applications of Acyclic π-Organoiron Complexes to Organic Synthesis William A. Donaldson* Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881, USA Abstract: The application of acyclic (diene)iron complexes and (pentadienyl)iron cations in organic synthesis has steadily increased over the past 20 years. This is due to their ease of preparation, their stability toward a wide variety of reaction conditions, the manifold method for removal of the Fe(CO) 3 group, and the low cost of iron carbonyls. The (tricarbonyl)iron adjunct may serve in three capacities: i) as a protecting group for conjugated dienes, ii) to direct the formation of chiral centers adjacent to the complexed dient, and iii) to stabilize the formation of positive charge adjacent ot the complexed diene (i.e. pentadienyl cations). Specific examples of these attributes will be presented in this review. One of the advantages of stoichiometric organometallic reagents is the ability to repeatedly utilize the same metal center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this potential for acyclic (diene)iron complexes and (pentadienyl) iron cations. INTRODUCTION (C 4 H 6 )Fe(CO) 3 which was eventually confirmed by crystal structure analysis at low temperature [2b,c]. Since that time interest in diene-metal complexes as starting materials for organic synthesis has led to the preparation and/or characterization of (conjugated diene)metal complexes of nearly all of the transition metals. Because there are numerous reviews devoted to the reactivity (cyclohexadienyl)Fe(CO) 3 + cations [3], this article will focus on applications of acyclic (diene)Fe(CO) 2 L complexes (2) and (pentadienyl)Fe(CO) 2 L+ cations (3) (L = CO, PPh 3 ) to the synthesis of polyene natural products. Since the synthesis and structural characteri- zation of ferrocene in 1951, the catalytic and stoichiometric use of organometallic complexes in organic synthesis has grown tremendously [1]. In order to be effective, transition metal catalysts depend upon the lability of the ligand-to-metal coordination to ensure high turn-over numbers. In contrast, the stoichiometric use of π-organo- metallic complexes depends on the inherent stability of certain ligand-to-metal combinations. Due to the ease of preparation of (diene)Fe(CO) 3 complexes, their stability toward a wide variety of reaction conditions, the manifold methods for removal of the Fe(CO) 3 group, and the low cost of iron carbonyls, these complexes have become useful reagents in organic synthesis. Fe(CO) 3 R 4 R 1 R 2 R 3 R 5 Fe(CO) 2 L Fe(CO) 2 L + R 4 R 1 R 2 R 3 1 2 3 The first complex of a conjugated diene was reported in 1930 by Reihlen and coworkers. Reaction of butadiene with Fe(CO) 5 gave a yellow-brown oil with the molecular formula (C 4 H 6 )Fe(CO) 3 [2a]. Considerably later, after the elucidation of the structure of ferrocene, Pauson and Hallam proposed a π-complex (1) for Fig. (1). (Diene)Fe(CO) 2 L and (pentadienyl)Fe(CO) 2 L + complexes. PREPARATION OF NEUTRAL DIENE- IRON COMPLEXES *Address correspondence to this author at the Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881; Phone: +1-414-288-7374; Fax: +1-414-288-7066; e-mail: donaldsonw@ marquette.edu The most common method for preparation of (diene)Fe(CO) 3 complexes is by direct coordi- nation of the free ligand using either Fe(CO) 5 , 1385-2728/00 $19.00+.00 © 2000 Bentham Science Publishers Ltd.

Transcript of Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of...

Page 1: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Current Organic Chemistry, 2000, 4, 837-868 837

Stoichiometric Applications of Acyclic π-Organoiron Complexes toOrganic Synthesis

William A. Donaldson*

Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881,USA

Abstract: The application of acyclic (diene)iron complexes and (pentadienyl)ironcations in organic synthesis has steadily increased over the past 20 years. This isdue to their ease of preparation, their stability toward a wide variety of reactionconditions, the manifold method for removal of the Fe(CO)3 group, and the lowcost of iron carbonyls. The (tricarbonyl)iron adjunct may serve in three capacities:i) as a protecting group for conjugated dienes, ii) to direct the formation of chiral centers adjacent to thecomplexed dient, and iii) to stabilize the formation of positive charge adjacent ot the complexed diene(i.e. pentadienyl cations). Specific examples of these attributes will be presented in this review. One of theadvantages of stoichiometric organometallic reagents is the ability to repeatedly utilize the same metalcenter to control a number of different bond forming reactions. Six examples will be presented whichdemonstrate this potential for acyclic (diene)iron complexes and (pentadienyl) iron cations.

INTRODUCTION (C4H6)Fe(CO)3 which was eventually confirmedby crystal structure analysis at low temperature[2b,c]. Since that time interest in diene-metalcomplexes as starting materials for organicsynthesis has led to the preparation and/orcharacterization of (conjugated diene)metalcomplexes of nearly all of the transition metals.Because there are numerous reviews devoted tothe reactivity (cyclohexadienyl)Fe(CO)3

+ cations[3], this article will focus on applications ofacyclic (diene)Fe(CO)2L complexes (2) and(pentadienyl)Fe(CO)2L+ cations (3) (L = CO,PPh3) to the synthesis of polyene natural products.

Since the synthesis and structural characteri-zation of ferrocene in 1951, the catalytic andstoichiometric use of organometallic complexes inorganic synthesis has grown tremendously [1]. Inorder to be effective, transition metal catalystsdepend upon the lability of the ligand-to-metalcoordination to ensure high turn-over numbers. Incontrast, the stoichiometric use of π-organo-metallic complexes depends on the inherentstability of certain ligand-to-metal combinations.Due to the ease of preparation of (diene)Fe(CO)3complexes, their stability toward a wide variety ofreaction conditions, the manifold methods forremoval of the Fe(CO)3 group, and the low cost ofiron carbonyls, these complexes have becomeuseful reagents in organic synthesis.

Fe(CO)3

R4R1

R2 R3

R5

Fe(CO)2L Fe(CO)2L+

R4R1

R2 R3

1 2 3The first complex of a conjugated diene was

reported in 1930 by Reihlen and coworkers.Reaction of butadiene with Fe(CO)5 gave ayellow-brown oil with the molecular formula(C4H6)Fe(CO)3 [2a]. Considerably later, after theelucidation of the structure of ferrocene, Pausonand Hallam proposed a π-complex (1) for

Fig. (1). (Diene)Fe(CO)2L and (pentadienyl)Fe(CO)2L+

complexes.

PREPARATION OF NEUTRAL DIENE-IRON COMPLEXES

*Address correspondence to this author at the Department of Chemistry,Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881; Phone:+1-414-288-7374; Fax: +1-414-288-7066; e-mail: [email protected]

The most common method for preparation of(diene)Fe(CO)3 complexes is by direct coordi-nation of the free ligand using either Fe(CO)5,

1385-2728/00 $19.00+.00 © 2000 Bentham Science Publishers Ltd.

Page 2: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

838 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

R4R1

Fe(CO)3R2 R3

R5

R1

R2R4

R3

R4R1

Fe(CO)3

R2 R3

R5

R5

Fe(CO)5 or Fe2(CO)9or Fe3(CO)12

heat or hν or Me3NOor ultrasound

(1)

CANor FeCl3 or CuCl2

or DDQ or xs Me3NO

Fe2(CO)9, or Fe3(CO)12, either thermally, photo-chemically, or with the influence of ultrasonicstirring, or by dry state-adsorption techniques(eqn. 1) [4]. Room temperature complexationusing Fe(CO)5 may be accomplished by decarbo-nylation with trimethylamine N-oxide [5].Complexation of non-conjugated dienes underthermal conditions usually leads to isomerizationto afford the conjugated (1-4-η4-diene)complex[4b], except in cases where the non-conjugateddiene is constrained in a bicyclic or polycyclic ringsystem. Complexation under mild reactionconditions can be achieved by using (α, β-enone)-Fe(CO)3 complexes, (1-aza-1,3-diene)Fe(CO)3complexes, or bis(η2-cyclooctene)Fe(CO)3 as metaltransfer species [6].

complexes may be prepared by chromatographicseparation of the optically active diastereomericcomplexes, in which one of the centers of chiralityresides in the ester functionality (e.g. 8 and 9) [8].Other methods for the preparation of opticallyactive acyclic (diene)Fe(CO)3 complexes includeclassical resolution [9], chromatographicseparation using chiral supports [10], kineticresolution [11], or desymmetrization of mesocomplexes [12]. While racemization of acyclic(diene)Fe(CO)3 complexes does not occur atambient temperatures, it is observed at elevatedtemperatures (ca. 2.3-2.7 x 104 @ 119 ˚C) [9b].

(Diene)Fe(CO)3 complexes may also be formedby ring opening of strained cyclic compounds(Scheme 1). The thermal reaction of vinylcyclo-propanes 10 with Fe(CO)5 or Fe2(CO)9 affordspentadiene complexes 11a [13]. The intermediacyof a (pentenediyl)iron species 12 has beenproposed. Reaction of methylenecyclopropanes 13with Fe2(CO)9 yields diene complexes 11b [14].Ring opening of vinyloxiranes 14 with Fe(CO)5produces the corresponding π-allyl iron lactone

Complexation of a prochiral diene ligandresults in the formation of a racemic mixture.There are only a few examples of the preparationof optically active acyclic (diene)Fe(CO)3complexes via highly diastereoselectivecomplexation of optically active ligands (4-7, Fig.2) [7]. Alternatively, optically pure dienoate

Me

S

O

O

CO2Et

OBz

Me

O

NHO

PhPh

OEt

OEt:O

Fe(CO)3

Fe(CO)3

Fe(CO)3

Fe(CO)3

Me

4 5

6 7

Fig. (2). Optically active acyclic (diene)iron complexes prepared by diastereoselective complexation.

Page 3: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 839

O

O

R2

R1

R3

CO2Et

Me

Fe(CO)3

O

O

R Me

C6H13

Fe(CO)3

8a, R1 = R2 = R3 = H8b, R1 = Me, R2 = R3 = H8c, R1 = R2 = Me, R3 = H8d, R1 = R2 = H, R3 = Et

9a, R = Me9b, R = Ph9c, R = n-Pr9d, R = 2-furyl

complexes 15. Treatment of 15 with bariumhydroxide leads to diene complexes 11c viadecarboxylation [15]. Alternatively, alkylation ofthe π-allyl iron lactone complexes 15 withMeerwein's salt yields the chelated π-allyl carbenecations 16 [16]. Reaction of cations 16 withenolate anions produces the diene complexes 17 inwhich a new C-C bond has been formed.

liberation of the organic ligand. Reagents usefulfor this transformation are FeCl3, CuCl2,(NH4)2Ce(NO2)6 [CAN], Me3NO or DDQ (eqn. 1)[17]. Normally, oxidation of (diene)Fe(CO)3complexes with H2O2 simply liberates the ligand,however reaction of certain (6-oxo-1,3-diene)Fe(CO)3 complexes (18) with hydrogenperoxide gives allylic alcohols (eqn. 2) [18].Photochemical reduction of (diene)iron complexesin acetic acid gives the corresponding alkene (eqn.3) [19]. This reduction is regioselective only fordienes bearing a terminal electron withdrawinggroup. Cyclocarbonylation of (diene)Fe(CO)3complexes mediated by AlCl3 yields 2-cyclopentenones, however the yields are

METHODS FOR LIBERATION OF DIENELIGAND

Oxidation of (diene)iron complexes leads todestruction of the complex with concomitant

H

R2R3

OR2

R4

R3

R4R1

(CO)3Fe

O

O

R1

R2

R3

R4

R1 R4

Fe(CO)3

(CO)3Fe

R2

R2 R3

(CO)3Fe

O

OMe

R2

R3

R4

R4

Fe(CO)3R2 R3

Me

O

CH2

Me

OLi

10 13, R3 = H, R4 = Ph;R3 = R4 = CO2Me

14

Fe2(CO)9

Fe(CO)5 orFe2(CO)9

Fe(CO)5, hν

12 15

Ba(OH)2

11a, R1 = R2 = H, R3 = H, alkyl, aryl, R4 = Me11b, R1 = R2 = H, R3 = H, CO2Me, R4= Ph, CO2Me11c, R1 = R2 = R3 = R4 = H, alkyl

16

+BF4

_

Me3O+

BF4_

17

Scheme 1.

Page 4: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

840 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

Fe(CO)3Me

CH3

O

Me

CH3

O

HO

Fe(CO)3

OCH3

O

H3CH3C

OCH3

O

R'

R

R

O

R

R

R'

(CO)3Fe

(2)

(3)HOAc

(4)

(65%)

(98%)

R = R' = Me (95%)R = Me, R' = Ph (90%)

NaOHH2O2

AlCl3

acceptable only for 1,1,3-trisubstituted dienecomplexes (eqn. 4) [20].

more electron-poor carbon (C2) at lowtemperature. Nucleophilic attack is reversible andunder conditions where an equilibrium isestablished the thermodynamically more stable(allyl)Fe(CO)3

- is favored.Zerovalent transition metal carbonyl moieties

may act as electron acceptors and thus activatecoordinated polyene ligands toward nucleophileattack. For example, reaction of (C4H6)Fe(CO)3with strong carbon nucleophiles, followed byprotonation, gives olefinic products 19 and 20(Scheme 2) [21]. The ratio of 19 to 20 dependsupon the reaction temperature and time. At lowtemperature and for short reaction times (-78 ˚C,30 min) the major product is 19, while at highertemperature and longer reaction time (0 ˚C, 2 h)the major product is 20. This selectivity isrationalized by kinetically controlled attack at the

The reaction of (C4H6)Fe(CO)3 with carbonnucleophiles under CO pressure (2 atm, -78˚ → 0˚C) gives cyclopentanone products (21, Scheme 3)[22]. Nucleophilic attack on the (diene)Fe(CO)3complex is followed by CO insertion to give theacyl anion species 22. Olefin insertion into the Fe-acyl bond generates the Fe-alkyl complex 23which is in equilibrium with the Fe-enolate species24 via β-hydride elimination/reinsertion steps.Intramolecular varients of this reaction have been

Fe(CO)3

Fe(CO)3

Nu

Fe(CO)3

Nu

CH3

Nu

Nu

Me

NC

Me

Me

CO2Et

Me

S

S

Ph

_

Nu_

fast

H+

_

Nu_

slow

1920

H+

1

2

Nu_

;

;

Scheme 2.

Page 5: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 841

reported for the preparation of bicyclo[n.3.0]-alkanones (eqn. 5) [23].

cycloaddition reactions. For example, the Fe(CO)3group has been used as a protecting group for the

(OC)3Fe

Nu

O

O

Nu(OC)3Fe

O

Nu

Fe(CO)3

Fe(CO)3

Nu

H

O

NuH

(OC)3FeH

H

_

_

COinsertion1

2Nu_

_

21

22

23

_

24

olefin insertion

H+

Scheme 3

Fe(CO)3

O

CO2EtH

H

CO2Et

1) LDA/CO -78 oC2) CF3CO2H (5)

(55%)

USE OF THE TRICARBONYL-IRONFUNCTIONALITY AS A PROTECTINGGROUP

C2-C5 diene segment in the preparation of atritium labeled insect growth regulator viacatalytic reduction (T2/Rh(PPh3)3Cl) (eqn. 6)[24a]. Notably, addition of hydrogen to anuncomplexed C=C double bond in a (triene)-Fe(CO)3 complexes mediated by Pd or Pt catalystsis sometimes problematic [24b]; the attempted

Complexation of an Fe(CO)3 group to aconjugated diene efficiently protects the dienetoward a variety of reduction, oxidation and

Me

Me

Me

CO2Et

Me

Fe(CO)3

Me

Me

Me

CO2Et

Me

Fe(CO)3

T

T

(6)T2Rh(PPh3)3Cl(93%)

Page 6: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

842 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

R

CO2Me

OH

(CO)3Fe

CO2Me

OH

(CO)3Fe

R

H2 (1 atm)10% Pd/C (7)

R = OH (72%)R = CO2Me (88%)

Me

OH

OR

Me

N

O

R

(OC)3Fe (OC)3FeH2/Ra-Ni

MeOH/H2OB(OH)3 (8)

(53-88%)

reduction of (dienyne)Fe(CO)3 complexes (25)with Pd/C proceeds only to the (triene)Fe(CO)3complex (eqn. 7) [24c]. The (diene)Fe(CO)3 groupis stable to conditions which effect reductivehydrolysis of an adjacent isoxazoline (eqn. 8) [25].

dine (78-89%) [29,30], or Ag2CO3 (56%) [31]. Anovel chemoselective, metal-mediated, oxidationof 1˚ or 2˚ alcohols adjacent to a (diene)Fe(CO)3group uses amine N-oxides (Scheme 4) [32]. Thefollowing mechanism is proposed to account forthese results. Ionization of a hydroxyl groupadjacent to the complexed diene results in theintermediacy of a transoid pentadienyl cation 26(vide infra). Addition of the amine oxide generatesspecies 27, which undergoes elimination of theamine. Notably, the presence of electronwithdrawing groups on the diene ligand decreasesthe yield of oxidation, while the presence of goodLewis basic ligands (e.g. PPh3) increases the yield.

While (diene)Fe(CO)3 complexes aresusceptible to decomplexation by strong oxidizingagents, this functionalty is stable to a wide varietyof milder oxidation conditions. Alcohol oxidation,in the presence of a (diene)Fe(CO)3 moiety hasbeen successfully accomplished with PDC/4Åsieves (60%) [26], MnO2 (60-80%) [27],DMSO/(COCl)2/NEt3 (67-71%) [28], SO3-pyr (54-65%) [29], nPrMgBr/1,1'-(azodicarbonyl)dipiperi-

Fe

R'

OH

R"

L

COOC

H

R'

O NR3

Fe

L

COOC

R"

H

Fe

R'

O

L

COOC

Fe

R'

H

R"

L

COOC

R"

NMO orMe3NO

(R' = alkyl, CO2Me, H; R" = H, alkyl; L = CO, PPh3)

26 27

:B

R3NO

Scheme 4.

Page 7: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 843

C-C BOND FORMATION VIA FRIEDEL-CRAFTS ACYLATION OF (DIENE)FE(CO)3COMPLEXES

that these exist predominantly as one conformer[38]. Since X-ray crystal structures of complexes30 generally exhibit the s-cis geometry, then thisconformer is also proposed to be the predominantspecies in solution. This analysis is consistent withthe experimental results. Reduction of (E,E-dienone)Fe(CO)3 complexes 30 proceeds withhigh diastereoselectivity (>90% de) to affordpredominantly the ψ-endo alcohol [38]. Incomparison, nucleophilic addition to (2E,4-dienal)Fe(CO)3 complexes (31) proceeds withvariable diastereoselectivity, depending on boththe complex and the nucleophile (Scheme 6) [39].In general, the diastereomeric secondary alcoholproducts are easily separable by chromatography,with the ψ-exo isomer being less mobile than theψ-endo isomer [40]. As might be anticipated,nucleophilic addition to a ketone or aldehydefunctionality remote to the (diene)Fe(CO)3 groupoccurs in a non-diastereoselectivity fashion [41].Nucleophilic addition to complexed dienals hasbeen utilized in the enantioselective syntheses of

The Freidel-Crafts acylation of 1 was firstreported in 1969, well after the acylation offerrocene. Normally, attempted acylation of 1,3-dienes leads to polymerization. In contrast,electrophilic acylation of (diene)Fe(CO)3complexes gives the corresponding cis-dienonecomplexes 28 (Scheme 5) [33]. Electrophilicattack occurs on the face of the ligand which isbound to the metal. The initially generated cationic(η3-allyl) complex 29 is subsequently deproto-nated to afford 28. Isomerization of 28 to thethermodynamically more stable trans-dienonecomplex 30 may be effected by additionalacylhalide or base. This methodology for C-Cbond formation has been utilized in the synthesisof a series of conjugated diene pheromones [34],the leukotriene LTA4 [35b], and the C8-C15segment of protomycinolide IV [36].

OR'

HH

(CO)3Fe

O

R'

Fe(CO)3

R'

O

Fe(CO)3

(CO)3Fe

R R

R

R

RCOCl orNaOMe

29 28

+

R'COClAlCl3

30

-H+

Scheme 5.

DIASTEREOSELECTIVE ADDITION TO(DIENAL)-, (DIENONE)-, OR (DIENYL-IMINE)FE(CO)3 COMPLEXES

5-HETE methyl ester [27], AF toxin IIc [42],LTB4 [43], lipoic acid methyl ester [44], andmodel compounds for the C7-C19 segment ofmacrolactin A [45], while reduction of acomplexed dienone was utilized in anenantiospecific synthesis of LTA4 [35b].

Diastereoselective nucleophilic addition tochiral ketones or aldehydes depends upon facialselectivity. Due to the steric bulk of the(tricarbonyl)iron group, approach of nucleophilesto (dienal)- and (dienone)Fe(CO)3 complexes (31and 30 respectively) occurs on the face opposite tothe metal. If there is a predominance of one of therotomers about the diene-to-carbonyl bond, thennucleophilic addition may occur in adiastereoselective fashion. Complexes 31 and 30may exist in an equilibrium between twoconformers, s-cis and s-trans (Fig. 3). For(sorbaldehyde)Fe(CO)3, low temperature NMRstudies indicate that the proportion of s-cis:s-transconformers is nearly 1:1 [37]. In comparison,solution IR spectral data for complexes 30 indicate

RO

ORH H

Fe

OC CO

COFe

OC CO

CO

33R = H

Nu_

Nu_

s-trans

Nu_

Nu_

s-cis

30R = alkyl/aryl

Fig. (3). Diastereoselective addition to (Dienal)- and(dienone)iron complexes.

Page 8: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

844 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

R'

O

Fe(CO)3

R

Nu

Fe(CO)3

R

OH

Fe(CO)3

RH

OH

H

Nu

OH

Fe(CO)3

R H

R'

y-exo

ψ-endo

30

BH4_

31

30, R' = alkyl, aryl31, R' = H

Nu_

ψ-endo

Scheme 6.

Lewis acid catalysed aldehyde-diene cyclo-condensation (LACDAC) of (dienal)Fe(CO)3complexes 31 with 1-methoxy-3-trimethylsilyl-oxy-1,3-butadiene, followed by acidic work-up,gives the corresponding dihydropyrone complexeswith modest diastereoselectivity (Scheme 7) [46].In comparison to the modest diastereoselectivityobserved for addition to aldehydes, addition todienylimine complexes occurs with considerablygreater diastereoselectivity. The greater diastereo-

selectivity is indicative of a greater bias toward thes-trans conformer about the diene-to-imine bond,due to unfavorable steric interactions in the s-cisconformer. For example, cyclocondensation of 1-methoxy-3-trimethylsilyloxy-1,3-butadiene with(dienylimine) complex 32 in the presence of acatalytic amount of LiClO4 gives the corres-ponding dehydropiperidone with excellent di-astereoselectivity (>95% de, Scheme 7) [47]. Theproduct has been utilized in the asymmetric

N

Fe(CO)3

Me

R

(CO)3Fe

Me

N

O

R

H

Me

N

H

H

OH

OMe

OTMS

H

O

Fe(CO)3

R

O

Fe(CO)3

R

Fe(CO)3

R

O

O

H

H

OOMe

OTMS

1) Lewis acid;2) CF3CO2H31

(35-50% de)

(PMP = p-methoxyphenyl)

LiClO4

alkaloid SS 20846 A

32, R = PMP(95% de)

3 steps

Scheme 7.

Page 9: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 845

synthesis of dienyl piperidine natural products SS20846 A.

Michael additions to α,β-unsaturatedcomplexes 33, in which nucleophilic attack occursadjacent to the (diene)Fe(CO)3 moiety, proceed ina highly stereoselective fashion (Scheme 8) [48].This reactivity has been utilized in the synthesis of(-)-verbenalol and (-)-epiverbenalol and the as-indacene unit of ikarugamycin. In comparison,Michael addition to α,β-unsaturated complex 34,in which the attack occurs more remote to the(diene)Fe(CO)3 moiety proceeds with only 28% de[49]. This more modest diastereoselectivity maybe due to reaction of both conformers about the β−γ bond.

DIASTEREOSELECTIVE ADDITIONS TO(TRIENE)FE(CO)3 COMPLEXES

Similar to (dienylimine)iron complexes,addition to (triene)iron complexes generallyoccurs with excellent diastereoselectivity. Thishigh level of diastereoselectivity reflects a greaterbias for the s-trans conformer over the s-cisconformer, due to unfavorable steric interactionsin the s-cis conformer (Fig. 4).

The cycloadditions of olefins appended to a(diene)Fe(CO)3 complex have been examined.Diels-Alder cycloaddition of the activated(triene)Fe(CO)3 complex (33) is reported to afforda single product (Scheme 8) [50]. In comparison,Diels-Alder cycloaddition of dienyl vinyl ketonecomplex 34, in which the dienophile is separatedfrom the stereodirecting (diene)Fe(CO)3 group bythe intervention of a carbonyl group, proceedswith only modest diastereoselectivity [49].

Fe

OC CO

CO

H REH

RE

RZHH

RZ

Fe

OC CO

CO

s-trans s-cis The Ireland ester enolate Claisen rearrangementof trienylacetates 35 (either E or Z) gave thecarboxylic acid as a single diastereomer uponworkup (eqn. 9) [51]. The product appears to arisefrom the cyclic transition state in which the C-C

Fig. (4). Diastereoselective addition to conjugated(triene)iron complexes.

Fe(CO)3

MeO2C

O

O

O

O

H

Fe(CO)3

MeO2C

Fe(CO)3

MeO2C

CO2Et

O

CO2Et

Fe(CO)3

MeO2C

O

CO2Et

Fe(CO)3

MeO2C

O

CO2Et

Me

Me

OO

O

O

Me

Me

MeMe

Me Me

CO2Et

CO2Et

H

H

Me Me

Fe(CO)3

MeO2C

O

O

O

O

Me

H

Fe(CO)3

MeO2C

CO2Et

O

CO2Et

Fe(CO)3

MeO2C

CO2Et

O

CO2Et

p-TolS

p-TolS

Fe(CO)3

MeO2C

O

EtO2C

CO2Et

(28% de)

(>90% de)

pTolSH

(10 % de)

(>95% de)

γ

β

33

β

γ

34

MeMgI

Scheme 8.

Page 10: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

846 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

bond is formed anti to the sterically bulky Fe(CO)3group.

the C11-C24 fragment of macrolactin A [29]. Incontrast to the reactivity of 36, intramolecularnitrile oxide-olefin cyclo-addition for "skipped"triene complex 37 gave an equimolar mixture ofdiastereomers (eqn. 11) [54]. In this case, the lackof diastereoselectivity may indicate that the stericbulk of the Fe(CO)3 group is too far distant fromthe pendent olefin and/or that there is not apreferred reactive conformers about the C-C singlebonds.

MeMe

Fe(CO)3Fe(CO)3

OO

Me

HHO2C

KHMDSTHF/HMPATBSCl/-78 C

35

(9)

70-80 % from E-3845-50 % from Z-38

(Triene)Fe(CO)3 complexes bearing a pendantelectron deficient alkene (e.g. 38) undergo dipolarcycloaddition with diazomethane or diazopropaneto give the corresponding ∆2-pyrazolines withgood diastereoselectivity (Scheme 9) [55]. The ∆2-pyrazolines can be thermalized to the corres-

R

R

N

O

R'

Fe(CO)3

Fe(CO)3

N

O

R'

Fe(CO)3R'O2N

CO2MeFe(CO)3

CO2MeFe(CO)3

O

NMe

H

H H

R

(ca. 7 : 1)

(10)PhNCO

NEt3

CH3CH2NO2PhNCO/NEt3

(1:1 mixture ofdiastereomers)

(11)

36

37

(57%)

(63-77%)

While intramolecular nitrile oxide-olefin cyclo-condensations occur with good diastereo-selectivity, intermolecular cyclocondensations ofnitrile oxides with 3-substituted-1-alkenes aregenerally less diastereoselective (ca. 0-54% de)[52]. In comparison, intermolecular addition ofnitrile oxides to conjugated triene complexes 36results in the formation of the correspondingisoxazolines in good yield and with gooddiastereoselecticity (ca. 80% de) (eqn. 10) [25,53]. Thus the combination of the steric bulk of theFe(CO)3 group and the conformational preferencefor the s-trans isomer results in uncommonly highdiastereoselectivity for this intermolecular cyclo-condensation. This methodology has been used inan enantioselective synthesis of (+)-gingerol [53b],the carbon skeleton of (+)-streptenol D [25b] and

ponding cyclopropyl diene complex. Similarcyclopropyl diene complexes have been obtainedby cyclopropanation of a (triene)Fe(CO)3 complex(39) with methyl diazoacetate [56]. While in bothcases the cyclopropanation reagent approaches theface opposite to the Fe(CO)3, in order to obtain the(R) stereochemistry at the dienylcyclopropanecarbon the absolute stereochemistry of theprecursor (diene)iron precursor must be theopposite [(S)-38 vs. (R)-39] since different groupsare added in the two examples. These cyclopropyldiene products were used for the preparation ofintermediates for pyrethroid synthesis.

Osmylation of conjugated (triene)Fe(CO)3complexes (40) proceeds with excellent diastereo-selectivity, with dihydroxylation occurring via the

Page 11: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 847

Me

Fe(CO)3

CO2Me

Me

N

N

MeMe

H

Fe(CO)3

CO2Me

H

Me

H

Fe(CO)3

CO2Me

HMe

Me

CO2Me

Fe(CO)3

CO2Me

H

Fe(CO)3

CO2Me

HMe

MeMe

Me

N2CMe2

-20oC

∆120oC

(76% de)

(singlediastereomer)

N2CHCO2Me

Cu/80oC

(1 : 1)

38

39

S R

RR

S

Scheme 9.

s-trans conformer on the olefin face anti to theFe(CO)3 group (eqn. 12) [57]. This methodologyhas been used in the enantiospecific synthesis of 5,6- and 11,12-diHETEs. Exposure of (diene)-Fe(CO)3 complexes to ozone [58a] or to Pb(OAc)4[58b] leads to their destruction, however thisfunctionality is stable to NaIO4. Thus, pendentC=C bonds may be cleaved by sequential dihydro-xylation and glycol cleavage (eqn. 13) [58b].

wide variety of polyene natural products (Scheme10) [59]. Beginning with glyceraldehydeacetonide, Horner-Emmons olefination gives thecorresponding dienoate. Thermal complexationwith Fe2(CO)9 gave a nearly equimolar mixture ofdiastereomeric complexes. While these diastereo-mers were difficult to separate, the corresponding2˚ alcohol complexes, ψ-endo (-)-42 and ψ-exo(+)-43, prepared by acetonide hydrolysis andprotection of the 1˚ alcohol group, are readilyseparate by column chromatography. Separate,regeneration of the vicinal diols followed byNaIO4 gave the enantiomers (-)-41 and (+)-41 inexcellent yield.

The stability of the (diene)Fe(CO)3 functiona-lity to NaIO4 glycol cleavage has been put to usein an efficient preparation of the enantiomers of(methyl 6-oxo-2,4-hexadienoate)Fe(CO)3 (41), acomplex which has found use in the synthesis of a

(OC)3Fe

TBDPSO

(OC)3Fe

TBDPSO

OH

OH

CO2MeCO2Me

Fe(CO)3 Fe(CO)3

CHO

Me

Me

(12)

OsO4pyr;

Na2S2O5

(13)

1) cat. OsO4 tBuOOH (57%)2) NaIO4 (45%)

(95%)

Page 12: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

848 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

OHC

OO

OO

MeO2C

OO

MeO2C

OO

MeO2C

Fe(CO)3

OH

MeO2C

OH

MeO2C

Fe(CO)3

Fe(CO)3

Fe(CO)3

H

H

OTBSOTBS

P(OEt)2O

OH

MeO2C

OH

MeO2C

Fe(CO)3Fe(CO)3

OHOH

MeO2C

CHO

MeO2C

CHO

MeO2C

Fe(CO)3Fe(CO)3

2R 2S

(4 : 3)

Fe2(CO)9PhCH3/∆

1) 1N HCl/THF (90-93%)2) TBSCl/imid3) separate

(45%)

NaIO4THF/H2O(90-96%)

(-)-41 (+)-41

TAS-F/DMF(70%)

TAS-F/DMF(70%)

(35%)

NaIO4THF/H2O(90-96%)

(-)-42 (+)-43

(70-90%)

Scheme 10.

ALKYLATION AND ALDOL CONDENSA-TIONS OF (DIENOATE)- AND (DIENO-NE)FE(CO)3 COMPLEXES

of 44 and 45 may be rationalized in the followingfashion. The ester enolate of 44 may exist in anequilibrium between two conformers, s-trans ands-cis (Fig. 5). The s-cis conformer should beconsiderably less stable due to steric interactionspresent between the enolate and the diene, andthus alkylation should proceed predominantly onthe s-trans ester enolate. The lower energytransition state for alkylation of the s-trans enolaterequires approach of the electrophile on the faceopposite to the bulky Fe(CO)3 group. For 45 thesituation is less clear. The TMS enol ethers of(dienone)Fe(CO)3 complexes are almost entirelyin the Z-configuration [60a]. The Z-enolate of 45

Alkylation of (methyl 3,5-hexadienoate)-Fe(CO)3 (44) α to the diene occurs with good toexcellent diastereoselectivity (eqn. 14) [36]. Incontrast, alkylation of (dienone)Fe(CO)3complexes 45 at the carbon β to the diene, or halo-genation of the silyl enol ether derived from 45,proceeds with minimal selectivity (eqn. 15) [35,36]. In all of these cases the diastereoselectivityhas been shown to be the result of kinetic control.The relative diastereoselectivity for the reactions

Page 13: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 849

may exist in an equilibrium between twoconformers, s-trans and s-cis (Fig. 6). Inspectionof molecular models indicates that there shouldnot be a large energy difference between these twoconformers. In addition, for the s-cis conformer,approach of the electrophile at the β carbon oneither face of the enolate does not involvesignificant steric interactions. Thus, the lowerdiastereoselectivity for alkylation of 45, comparedto alkylation of 44, may be due to reaction of boththe s-trans and s-cis conformers and to a decreasein the steric influence of the Fe(CO)3 group due toits greater distance from the reactive center.

Condensation of silyl enol ether complexes 46with aldehydes, under Mukaiyama conditions,gives the corresponding crossed aldol products 47(eqn. 16) [60]. A broad range of diastereo-selectivities is observed which appear to dependon the nature of the aldehyde, the Lewis acid used,and the order of addition of the reactants. Whilemany results have been generated, a unifyingrationale for the selectivity has not yet beenproposed. This methodology has been utilized forthe preparation of streptenol D [60b], colitose[60c], D-3-deoxy-threo-pentose [60d], and myco-samine [60e] (Fig. 7).

Fe(CO)3Fe(CO)3

CO2MeCO2Me RH

Fe(CO)3

RMeO2CH

1) LDA

2) RX

44R = Me R = benzyl R = allyl

(72-97%, 96:4 dr)(59%, 8.6:1 dr)(48%, 5.5:1 dr)

(14)

Fe

OC CO

CO

H OMeH

OMeLiO

HHOLi

Fe

OC CO

CO

α

s-cis

esterenolateof 44

s-trans

α

El+

El+

Fig. (5). Diastereoselective alkylation of ester enolate anion of (methyl 3,5-hexadienoate)Fe(CO)3.

Fe(CO)3 Fe(CO)3

O

Me

O

Me

El

Fe(CO)3

O

Me

El

N N

O

O

Br BrR R R

45El = benzyl El = allyl El = Br

(32%, 2.3:1 dr)(33%, 1:1 dr)(98%, 1:1 dr)

1) LDA2) RX

(15)

or1) TMSOTf/NEt3

2)

Page 14: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

850 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

LiO MeOLi

MeH

HH

FeOC CO

COFe

OC CO

CO

H

β

αβα

El+

s-trans

El+

El+

El+

s-cis

enolateof 45

Fig. (6). Diastereoselective alkylation of enolate anion of (E,E-dienone)Fe(CO)3 complexes.

Fe(CO)3 Fe(CO)3

O

Fe(CO)3

OTMSO

R RHO HO

Me Me Me46

(16)

(81%, 1.4:1 dr)

(87%, 10:1 dr)

47

R = Ph

R = CH2CH2OOMP

RCHOTiCl4

OHC

Me

AcO

OTBS

NHBoc

AcO

OHC

AcO

AcO

OBn

OHC

Me

AcO

OBnAcO

Me

OAc OAc

OAcstreptenol D

mycosamineD-3-deoxy-threo-pentosecolitose

Fig. (7). Natural products prepared by aldol condensation of (dienone)Fe(CO)3 with aldehydes (arrow indicates bond formed).

PREPARATION AND REACTIVITY OF(PENTADIENYL)IRON(1+) CATIONS [61]

bazole (53) [63c], and limaspermine alkaloids (54)[63d] and trichothecenes (55) [63e] (Fig. 8).

In 1960, Fischer demonstrated that hydrideabstraction from (cyclohexadiene)Fe(CO)3 (48)gave the stable (cyclohexadienyl)Fe(CO)3

+ cation(49) [62]. Nucleophilic attack at the terminalcarbon of 49 gives substituted (cyclohexa-diene)Fe(CO)3 complexes 50 (eqn. 17). Since thattime Birch, Pearson, Stephenson, Knölker andothers have utilized this reactivity for the synthesisof natural products such as methyl shikimate (51)[63a], O-methyl-joubertiamine (52) [63b], car-

Shortly after the preparation of 49, Pettit andcoworkers reported the preparation of the corres-ponding acyclic (pentadienyl)Fe(CO)3

+ cations(56) via protonation of (pentadienol)Fe(CO)3complexes (Scheme 11) [64]. Subsequently,Lillya, et al., demonstrated that ionization of thehydroxyl substituent occurs with anchimericassistance from iron and that isomerization of theinitially generated transoid pentadienyl cation (57)to the more stable cisoid cation occurs with

Page 15: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 851

Fe(CO)3+ Fe(CO)3Fe(CO)3

H

HNuEt2O

Nu:_

48 49

(17)

50

Ph3C+ X_

OMe

OH

Me

H H

MeO

O

NMe2

MeOCO2Me

OH

OH

HO

N

NHO

OEt

H OH

NH

MeO

Me

Me

OMe

51 52 53

54 55

Fig. (8). Natural products prepared via nucleophilic addition to (cyclohexadienyl)Fe(CO)3+ cations.

retention of configuration about the C1-C2 bond[65]. Recent DFT calculations on the parent cation(R = R1 = R4 = R5 = H) predict that the cisoidstructure (56) is 9.2 kcal mol-1 more stable than thetransoid structure (57) [66]. Concordant with thisenergy difference, the NMR spectra of nearly all(pentadienyl)Fe(CO)3

+ cations reveal only thecisoid geometry. While 56 is more stable than 57,

it is generally believed that the two species exist inequilibrium, in solution. Spectroscopic evidencefor this equilibrium has been obtained for only asingle sterically biased case (R = R1 = R5 = Me, R4

= H; Ea ≈ 13 kcal mol-1) [67].

(Pentadienyl)iron(1+) cations 56 are excellentorganometallic electrophiles toward a wide variety

Fe(CO)3+

R5 R1

Fe(CO)3

R5

R1

OR

(CO)3Fe

R5

R1

R

R

R

R4

R4

R4Fe(CO)3

R5

R1

HORRR4

H+ X_

(RCO)2OEt2O

+

56

X-

12

2

1

57

+

X_

BF4_

PF6_

ClO4_

H+

Scheme 11.

Page 16: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

852 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

Fe(CO)3+

R5 R1

(CO)3Fe

R5 R1

Fe(CO)3

R5 R1Nu Nu

(CO)3Fe

R5

R1

Fe(CO)3

R1

R5

(CO)3Fe

R5

R1

Fe(CO)3

R1

R5

Nu Nu

FeR5 R1

Nu

Fe R1R5

NuFeR5 R1

Nu

Fe(CO)3

R5 R1

Nu

(CO)3Fe

R1R5

Nu

(CO)3

58 59

60

61

(CO)3

Nu:C5 attack

Nu:C1 attack

(CO)3 Nu:C2 attack

Nu:C4 attack

62

56

Nu:C3 attack

+ +

Nu:Nu:

and/or

Nu:attack at Fe

63 64

Scheme 12.

of nucleophiles. A priori, the reactivity of cations56 might be anticipated to be similar to that of thecorresponding (cyclohexadienyl)iron cation 49(eqn. 17). While this is true for a number of cases,there exist significant differences between thereactivity of cyclic cations 49 and that of theacyclic cations 56. Nucleophilic attack can takeplace on the cisoid form of the pentadienyl cationat either termini to afford the E,Z-diene complexes58 or 59, or on the internal atoms of the ligand(C2/C3/C4) to afford complexes 60, 61 or 62(Scheme 12). Alternatively, since the transoidform exists in equilibrium with the cisoid form,nucleophilic attack on the transoid pentadienylcation to generates E,E-diene complexes 63 or 64.Nucleophilic attack at the metal, with concomitantloss of a ligand, is a final possibility. Except forattack at C3, all of these possibilities have beenobserved.

1. Reaction with Heteroatom Nucleophiles orHydride Nucleophiles

In general, the reaction of water or alcohol withcations 56 yields (E,E-dienol)- or (E,E-dienylether)Fe(CO)3 complexes 65 (Scheme 13) [7a, 64,65, 68, 69]. The ψ-exo-E,E-dienol products are theresult of attack by the weak oxygen nucleophile onthe less stable, but more reactive, transoidpentadienyl form of the cations on the faceopposite to iron. In contrast, the reaction of waterwith pentadienyl cations bearing an electronwithdrawing substituent (e.g. 66) gives thecorresponding Z,E-dienol complex 67 [70, 71].This difference in product formation may be dueto the decreased overall stability, and thereforeincreased reactivity, of the cations 66 compared tocations 56.

Page 17: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 853

(CO)3Fe

R5

R1R4

Fe(CO)3+

R5 R1

R4

(CO)3Fe

R5

R1

OR

R4

Fe(CO)3

MeO2C OH

R4

H2O

-H+

56

+

ROH

-H+

57

67 65

66, R1=H, R5=CO2Me

Scheme 13.

Reaction of cations 56 with 1˚/2˚ amines [72],phosphines [68, 73-75], and arsines [75] affordsthe cationic complexes 68/69 (Scheme 14).Deprotonation of the ammonium salts generatesthe correspondingly substituted amine complexes.Where significant steric interactions between theammonium or phosphonium group and othersubstituents are present, nucleophilic attack maybe reversible [68c, 72d, 73]. Kinetic nucleophilicattack occurs on the more abundant cisoid form ofthe cation to generate E,Z-diene complexes 68. Athigher temperatures and longer reaction times, thethermodynamically more stable E,E-dienecomplex 69 is formed via nucleophilic attack onthe much less abundant transoid form of thepentadienyl cation. This reversiblity has beenutilized for the preparation of an optically active

dienyl phosphonium salt from the meso cation(2,4-dimethylpentadienyl)Fe(CO)3

+ cations [73a]and for the kinetic resolution of racemic α-methylbenzylamine by reaction with an opticallypure cation (38% de) [72d].

Deprotonation of either the E,Z- or the E,E-dienyltriphenylphosphonium salts 68 or 69 (R3A =PPh3) generates the corresponding E,E-dienylylides [76]. Reaction of these ylides withaldehydes gives the complexed trienes. The Z-selectivity of the complexed ylides (≥ 4:1, Z:E) issuperior to that for uncomplexed dienyl ylides (ca.1:1, Z:E). Chiral discrimination has been observedfor these olefinations. Thus, the chiral ylidederived from rac-70 reacts with the opticallyactive epoxy-aldehyde 71 in a diastereoselective

(CO)3Fe

R5

R1R4

Fe(CO)3+

R5 R1

R4

(CO)3Fe

R5

R1

R3A

R4

Fe(CO)3

R5 R1

R4

R3A

R3AR3A

+

+

+

56

68 69

R3A = R2NH,R3P,R3As

Scheme 14.

Page 18: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

854 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

fashion to produce the trienyl epoxides (+)-72 and(-)-73 (4:1 dr, Scheme 15) [76c]. These resultsrepresent matched and mismatched combinationsrespectively. Separate reaction of the ylide derivedfrom (+)-70 with 71 gave (+)-72 in considerablygreater yield (74%) than the reaction of the ylidederived from (-)-70 with 71 to give (-)-73 (18%).

at an internal carbon to afford the σ,π-allylcomplex 74 in excellent yield (eqn. 18) [78].

2. Reaction with Carbon Nucleophiles

The reaction of (pentadienyl)iron(1+) cations(56) with carbon nucleophiles has been examined.Depending on the nucleophile, substituents presenton the pentadienyl ligand, and on the nature ofspectator ligands, E,Z-diene complexes (58/59),E,E-diene complexes (63/64), and/or pentenediylcomplexes (60/62) are formed as products.

Reaction of cations 56 with anionic metal-hydrides predominantly yields the correspondingE,Z-diene complexes, however minor amounts ofE,E-diene complexes are also observed [68, 77].There are only a few examples of good regio-selectivity for these reductions. In contrast,reaction of (1-methoxycarbonylpentadienyl)-Fe(CO)2PPh3

+ with NaBH3CN proceeds via attackThe reaction of weak carbon nucleophiles, such

as electron-rich aromatics [79], furan [80], orallyltrimethylsilane [68, 81] with (pentadienyl)iron

nH9C4

(CO)3Fe

nC4H9

(CO)3Fe

++

Ph3P

nC4H9

(CO)3Fe

rac-70

Ph3P

nH9C4

(CO)3Fe

Ph3P

nC4H9

(CO)3Fe

O O

H

H H

H

CO2Me CO2Me

CHO

O

H

HCO2Me

CHO

O

H

HCO2Me

71

1) nBuLi2)

1) nBuLi2)

(4:1, 45%)

+

(+)-72 (-)-73

(74%)

(+)-70

(18%)

(-)-70

matchedmismatched

Scheme 15.

Page 19: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 855

FeMeO2C

FeMeO2C

HH

NaBH3CNTHF

(CO)2PPh3

74

(18)

(88-94%)

(CO)2PPh3+

cations 56 with gives E,E-diene complexes(Scheme 16). These products presumably arise viaattack on the less stable, but more reactive,transoid pentadienyl form of the cations. Incontrast, the reaction of simple organocadmiumreagents [82], organocuprates [27, 68a,b, 83] orfunctionalized organozinc reagents in the presenceof CuCN [23] with cations 56 occurs via attack atthe sterically least hindered terminus to afford E,Z-diene complexes 75. For mono-substituted or 1,2-disubstituted pentadienyl cations nucleophilicattack occurs at the less sterically hinderedterminus of the pentadienyl ligand with excellentregioselectivity, however for 1,4-disubstitutedpentadienyl cations mixtures of regioisomericproducts are formed.

enediyl complexes 76 via nucleophilic attack at C2(Scheme 17) [84]. Similarly, the reaction ofstabilized carbon nucleophiles such dimethyl-malonate anions with (1-methoxycarbonyl-penta-dienyl)Fe(CO)3

+ yields pentenediyl complexes 77[85]. In comparison, the reaction of dimethyl-malonate anion with 1-alkyl- or 1-arylsubstitutedcations 56 gives mixtures of pentenediyl and dienecomplexes [84], while reaction of dimethyl-malonate anion with 1,4-disubstituted cations 56yields Z-1,3-diene complexes 78 [68b, 83]. Thegeneral trends can be summarized as follows:nucleophilic attack by malonate anions onFe(CO)3 complexed 1-substituted pentadienylcations occurs with little regioselectivity unlessthere is either a strongly electron withdrawing orstrongly electron donating substituent present atthe terminal position of the ligand. The presenceof a substituent at C4 has a pronounced directing

The reaction of alkyl or aryl lithiums with(pentadienyl)Fe(CO)2PPh3

+ cations gives pent-

(CO)3Fe

R5

R1R4

Fe(CO)3+

R5 R1

R4

(CO)3Fe

R5

R1R4

(CO)3Fe

R5

R1

(CO)3Fe

R5

R1R4

O

MeO

MeO

Fe(CO)3

R5

R4

Nu

RC CLi

57

+

56

allylTMS

R1 = H

1,3-(MeO)2C6H4

R4 = H

CuBr SMe2 (1)(3)

R2Cd or,R2CuLi or

I-Zn-CH2(CH2)nCO2EtCuCN, 2 LiCl or

furan (xs)

75

Scheme 16.

Page 20: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

856 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

Fe(CO)2L

Fe

R

R1

H

R4

R1

FeEH Fe

(CO)3Fe

R4

(CO)3FeE

E

R1

E

E

R1

E

E

E

ER1

R1 = Me, Ph; R4 = H

+

56

(E = CO2Me)

Li CHE2

76

RLiL = PPh3

LiCHE2

and(CO)3 (CO)3

R1 = R4 = Me;

R1 = Ph, R4 = Me;

R1 = Me, R4 = SiEt3

(CO)2PPh3

78

77

LiCHE2

R = Me, Ph

R1 = H, OMe, OAc

Scheme 17.

effect for malonate attack at C1. Regioselectivityof nucleophilic attack on Fe(CO)2PPh3 complexedpentadienyl cations is generally improved overthat of the corresponding Fe(CO)3 complexedcations due to the increased stability/decreasedreactivity of the Fe(CO)2PPh3 cations [85, 86].

σ-bound carbon are unstable. Air oxidationproceeds by way of carbonyl insertion followed byreductive elimination to give cyclohexenones(Scheme 19) [84a, 85a]. In contrast, (pentenediyl)-Fe(CO)3 complexes 77, bearing an electronwithdrawing substituent at the σ-bound carbon,are considerably more stable [85a]. Oxidative de-complexation utilizing CAN affords vinylcyclo-propanecarboxylates in good yields (Scheme 19)[85b, 87]. The difference in stability of 76 and 77,and their divergent paths for the loss of the ironatom, may be attributed to the retarding effect ofan electron withdrawing substituent on the rate ofcarbonyl insertion.

Recent evidence suggests that nucleophilicattack at the internal dienyl carbon is the result ofkinetic control. Thus, reaction of (1-methoxy-carbonylpentadienyl)Fe(CO)2PPh3

+ with the anionof ethyl nitroacetate, followed by aqueous workup,gave the (pentenediyl)-Fe(CO)2PPh3 complex 79as an equimolar mixture of diastereomers (Scheme18) [54]. In contrast to (pentenediyl)iron complex77, which is constitutionally stable in solution,(pentenediyl)-iron complex 79 rearranges to (E,Z-diene)iron complex 80 upon standing in CDCl3 for1-2 days. The interconversion of 79 to 80 occursslower in C6D6 solution. In addition, treatment ofan ethyl acetate solution of 79 with saturatedaqueous NH4Cl effected rapid rearrangement (<15 min) to 80. It has been proposed that inter-conversion of the kinetically controlled product 79into the thermodynamically more stable dienecomplex 80 occurs via protonation at the carbonyloxygen followed by dissociation into the penta-dienyl cation and the ketene hemiacetal (Scheme18). Recombination at C5 and deprotonation gives80.

SUBSTITUTION OF (DIENOL)- AND (DI-ENYL ACTATE)FE(CO)3 COMPLEXES

Lillya and coworkers demonstrated thatsolvolysis of ψ-exo dienyl dinitrobenzoates 81(acetone/H2O) occurs ca. 10-60 times faster thanfor the free ligand while the corresponding ψ-endodienyl dinitrobenzoates 82 undergo solvolysisslower than the free ligands [88]. The solvolysesoccur with net retention of configuration (Scheme20). These results are rationalized on the basis ofionization of the leaving group with anchimericassistance from the iron atom, followed by attackof water on the face of the cation opposite to iron(i.e. double inversion). The ψ-exo dinitrobenzoateshave the leaving group oriented favorably for thisionization, while the ψ-endo dinitrobenzoates must

The pentenediyl complexes 76 which do notpossess an electron withdrawing substitutent at the

Page 21: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 857

Fe(CO)2PPh3

CO2MeFe(CO)2PPh3

+

CO2Me

Fe(CO)2PPh3

NO2

CO2MeFe(CO)2PPh3

O2N

H

H

+HO

EtO

NO2

HO

EtO

OH+

OEt

CO2MeFe(CO)2PPh3

+

CO2Me

Fe(CO)2PPh3

CO2EtO2N

CO2Me

CO2EtO2N

H

H

EtO2C NO2

Li

fast

slow

- H+

THF1-3 h

+ H+

79

80

or aq. NH4Cl< 15 min

CHCl31-6 d

Scheme 18.

undergo rotation about the diene-to-Cα bondwhich would bring the remaining substituent at theα-carbon into steric congestion with the dienylportion of the molecule.

acetate)iron complexes (83) in the presence ofprotic or Lewis acids, with weak hydridenucleophilies [25b, 29, 89] or weak carbon nucleo-philes [81, 90] gives (E,E-diene)Fe(CO)3 products84, 85, and 86 (Scheme 21). The stereoselectivesubstitution of dienol complexes 87 using (diethyl-amino)sulfur trifluoride [DAST], proceeding via

The reaction of transoid (pentadienyl)ironcations, generated via ionization of (dienyl

Fe

R Fe

R

O

R

O

EWG

EH

E

R1

H

76

R = alkyl, aryl, CHE2

R1 = H, L = PPh3

EWG = CO2Me,SO2Ph, NO2

(CO)L

air

COinsert

(CO)2L

reductiveelimination

(E = CO2Me)

77

R = CHE(EWG)

R1 = E, L = CO

CAN

Scheme 19.

Page 22: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

858 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

ODNB

R

H

Fe(CO)3

Fe(CO)3

R

ODNB

H

H

R

Fe(CO)3

RH

H

Fe(CO)3

OH

R

H

Fe(CO)3

Fe(CO)3

R

OH

H

kψ-exo > kψ-e ndo

kψ-e xo

kψ-endo

82 (ODNB = 2,4-dinitrobenzoate)

+

+

81

Scheme 20.

the intermediacy of transoid pentadienyl cationshas been reported to afford dienyl-fluorides 88 in astereoselective fashion [91]. Cyclization of dienols87, bearing a pendant heteroatom nucleophile,under acidic conditions affords 5, 6, or 8-membered ring dienyl hetero-cycles 89 and 90[92].

presence of silver or trityl perchlorate gave theproduct from a 1,2-transposition of the Fe(CO)3group (Scheme 22) [93]. This transformation isproposed to involve generation of the transoidpentadienyl cation 93 followed by rearrangementto the cisoid pentadienyl cation 94. The cisoidpentadienyl cation 94 is in equilibrium with thetwo transoid pentadienyl cations 93 and 95;however 93 should be less stable than 95 since theelectron withdrawing cyano goup should

The reaction of dienyl cyanophosphonatecomplexes 91 with heteroatom nucleophiles in the

OR

R1

Fe(CO)3

H

R5

F

R1

Fe(CO)3

H

R5

H

R1

Fe(CO)3

H

R5

Me

R1

Fe(CO)3

H

R5

R1

Fe(CO)3

H

R5

O

Fe(CO)3

H

R5

N

Fe(CO)3

H

R5

(CH2)n

PhOCO

TMS

83, OR = OAc87, OR = OH 89

86

85

8884

90

R1 = (CH2)nCH(OH)CH3

NaBH3CN/BF3:Et2O

or Et3SiH/CF3CO2H

R1 = (CH2)4NHCO2Ph

R1 = Me or

CH2CH=CH2

R1 = CH2(CH2)nCH2OH

83

83

83 87

87

R1 = H, Me

R1 = H, CH2CH=CH2

87

DAST

Me3Al

HBF4

HBF4BF3

Scheme 21.

Page 23: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 859

O

CN

Fe(CO)3

H

CN

(CO)3Fe

Me

P(OEt)2

O

H

Me

Fe(CO)3

CNMe Me CN

Fe(CO)3+

Nu

Me

Fe(CO)3

CN

H

95

+

93

Nu-ATrClO4

92

Nu-A = ROH orRSH or N3TMS

+

91

94

Scheme 22.

destabilize the adjacent cationic charge. Thus,weak nucleophiles react with the transoidpentadienyl cation 95 to generate the products 92.

(diene)iron complexes and (pentadienyl)ironcations.

5-Hydroxyeicosatetraenoic acid (5-HETE) is anoxygenated metabolite of arachadonic acid. It hasbeen proposed that 5-HETE may have the abilityto regulate renal function and that it may play arole in B cell activation [94]. Tao and Donaldsonhave reported a synthesis of (R)-5-HETE methylester which utilizes organoiron methodology(Scheme 23) [27]. Addition of the cuprate derivedfrom 1,4-decadiyne to optically active (1-methoxycarbonylpentdienyl) Fe(CO)3

+ cationafforded the E,Z-diene complex 96. Reduction of96 in the presence of Lindlar catalyst gave thecorresponding tetraenoate. Functional group mani-pulation gave the aldehyde complex, which

SYNTHETIC APPLICATIONS WHICHMAKE MULTIPLE USE OF (DIENE)IRONCOMPLEXES

The previous discussions has emphasized thestability of (diene)iron complexes. One of theadvantages of stoichiometric organometallicreagents is the ability to repeatedly utilize thesame metal center to control a number of differentbond forming reactions. The following sixsyntheses, taken from a number of laboratories,creatively demonstrate this potential for acyclic

C5H11

CO2Me

C5H11

R

Fe(CO)3

CO2Me

C5H11

CO2Me

OH

>90% eeR = CH2OH

R = CHO (59% for 3 steps)96

1,4-decadiynenBuLi/CuBr

1) H2-Lindlar2) DIBAL

Fe(CO)3

Fe(CO)3

Fe(CO)3+

(64%)

MnO2

R CANMeOH

(R)-5-HETEmethyl ester

1) CuBrLiCH2CH2CH2OBO2) H3O+

3) MeOH/K2CO3

97 (56%, 1.8:1 dr)

(86%)

Scheme 23. The Tao and Donaldson synthesis of 5-HETE methyl ester (OBO = oxabicyclo[2.2.2]octane).

Page 24: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

860 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

underwent diastereoselective nucleophilic additionfollowed by unmasking the oxabicyclo[2.2.2]octane protecting group to give 97 and its (5S)diastereomer (1.8:1 dr). Oxidative removal of theFe(CO)3 group gave 5-HETE methyl ester (>90%ee). In this synthesis, the Fe(CO)3 adjunct servedto control the formation of the 6E,8Z-dienesegment and for introduction of the C5 stereo-center in a diastereoselective fashion.

A second arachadonic acid metabolite, LTA4 isa highly reactive species centrally related to theformation of the physiologically active leuko-trienes LTB4, -C4, -D4, and -E4. These are knownto be mediators of inflammatory response [95].Franck-Neumann and Colson have reported asynthesis of (5S,6S)-LTA4 methyl ester whichexploits organoiron methodology (Scheme 24)[35b]. Friedel-Crafts acylation of the opticallyactive (pentadienoate)Fe(CO)3 complex 98 with

CO2CH2CCl3

Fe(CO)3

CO2CH2CCl3

Fe(CO)3

O(CH2)3CO2MeO

(CH2)3CO2MeCl

CO2CH2CCl3

Fe(CO)3

O(CH2)3CO2Me

Cl

CO2CH2CCl3

Fe(CO)3

(CH2)3CO2Me

Cl

RO

(CH2)3CO2Me

O

H

H

COR

Fe(CO)3

(CH2)3CO2Me

Cl

TBSO

CHO

Fe(CO)3

(CH2)3CO2Me

Cl

TBSO

Fe(CO)3

(CH2)3CO2Me

Cl

RO

C5H11

C5H11

1) AlCl3/CH2Cl22) H2SO4/MeOH

(72-79%)

C5H11

PPh3

3) NaBH4(64-76%)

(54%)two steps

N

NO O

Cl

Cl

9899

1) TMSOTf NEt3

2)

(95%, 1:1 dr)

Zn/HOAc

100, R = H

R = TBS

TBSOTf2,6-lutidine

(80%)

(84%)

R = OHR = Cl

(82%)

101

R = TBSR = H

TBAF(95%)

1) CANEtOH

2) K2CO3

(59%)

LTA4 methyl ester

1) separate2) epimerizeto single diastwith BuN4Cl

(Ph3P)2Cu+

BH4-

(COCl2)2

Scheme 24. The Franck-Neumann and Colson synthesis of (-)-LTA4 methyl ester.

Page 25: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 861

the acid chloride of adipic methyl hemiester,followed by isomerization gave the 6-oxo-2E,4E-dienoate 99. Generation of the silyl enol ether,followed by halogenation gave the α-chloroketoneas an equimolar mixture of separable diastereo-mers. Reduction of the 5R-diastereomer gaveexclusively the 6S,5R-chlorohydrin 100; thediastereoselectivity of the reduction was controlleddue to the steric bulk of the (tricarbonyl)ironadjunct. Protection of the hydroxyl group,followed by functional group manipulation led tothe aldehyde 101. Wittig olefination, removal ofthe TBS protecting group, and decomplexationgave the tetraene chlorohydrin which upontreatment with potassium carbonate gave LTB4. Inthis synthesis, the Fe(CO)3 adjunct served tocontrol the formation of the C6-C7 bond and forintroduction of the C6 stereocenter in a diastereo-specific fashion.

allylic alcohols (2.6:1 dr). Hydroxyl groupprotection, followed by hydroboration-oxidationgave the 1˚ alcohol which was converted into thethioester 102 via a Mitsunobu reaction. Reactionof 102 with excess thiobenzoic acid in thepresence of Amberlyst-15 resin gave the bis-thio-benzoate 103 with retention of configuration. Thisreaction occurs via in situ generation of thetransoid pentadienyl cation. Decomplexation of103 followed by hydrazine mediated reduction andhydrolysis/oxidation gave racemic lipoic acidmethyl ester. Use of this methodology withoptically active 41 should give the optically activelipoic acid. In this synthesis, the Fe(CO)3 adjunctserved to control the formation of the C6-C7 bondin a diastereoselective fashion and for protectionof the diene under the hydroboration-oxidationconditions.

Macrolactin A is a 24-membered polyenemacrolide isolated from a taxonomically-un-defined deep sea bacterium which exhibits anti-viral activity against Herpes Simplex I and II andagainst HIV[97]. Prahlad and Donaldson havereported an enantioenriched synthesis of the C11-C24 segment which utilizes organoiron metho-dology (Scheme 26) [29, 54]. This synthesis alsobegins with racemic 41, however reaction with

The biologically widespread antioxidant lipoicacid has demonstrated theraputic activity in di-abetes as well as other diseases and medical condi-tions [96]. Grée, et al., have reported a synthesisof racemic lipoic methyl ester which utilizesorganoiron methodology (Scheme 25) [44].Diastereoselective addition of vinyl mag-nesiumbromide to rac-41 gave a mixture of separable

CHO

MeO2C

Fe(CO)3

MeO2C

Fe(CO)3 OR

BrMg

MeO2C

Fe(CO)3 OTBS

MeO2C

Fe(CO)3 OTBS

SCOPh

MeO2C

Fe(CO)3 SCOPh

SCOPh

SCOPhPhCOSSS

1) 9-BBN2) H2O2/NaOH

iPr

iPr

SO2NHNH2

(50%)

MeO2C

SCOPh

SCOPh

iPr

MeO2CMeO2C

OH

rac-41

THF, -65 oC(77%)

TBSClimid

R = H + diast. (2.6:1) R = TBS (93%)

PhC(O)SHDIAD/PPh3

(86%)

PhC(O)SHAmberlyst-15

(81%)102

(87%)

103

MeOH(61%)

K2CO3MeOH/O2

lipoic acid methyl ester

(82%)

CANMeOH

Scheme 25. The Gree, et al., synthesis of lipoic acid methyl ester.

Page 26: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

862 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

allylbis(isopinocampheyl)borane [98], followed byoxidative workup gave the optically active homo-allylic alcohol complex (-)-104 (55% ee) which isseparable from the accompanying diastereomericalcohol. Hydroboration-oxidation and Parikh-Doering oxidation of the resultant 1˚ alcohol gavethe corresponding lactol complex. Methylation ofthe lactol exploited conditions pioneered byTsuchihashi, et al., [99] to afford the syn-1,4-diol(-)-105 as a single diastereomer. Selective ionicreduction of (-)-105 occurs via the intermediacy ofthe transoid pentadienyl cation. Protection andfunctional group transformation of the resultant

hydroxy dienoate eventually afforded the trienecomplex (+)-106. Intermolecular nitrile oxide-olefin cycloaddition produced the isoxazolinewhich was subjected to reductive hydrolysis togive the β-hydroxyketone. In this synthesis, theFe(CO)3 i) participated in the allylation/resolutionof rac-41, ii) mediated the removal of the C20hydroxyl group via ionic reduction, iii) controlledthe formation of the C15 stereocenter in adiastereospecific fashion via nitrile oxide-olefincyclocondensation, and finally iv) acted as aprotecting group for the diene during theisoxazoline reductive hydrolysis conditions.

Fe(CO)3

Fe(CO)3

CHO

MeO2C

MeO2C

OH

OH

B(IPC)2

Fe(CO)3

Fe(CO)3

MeO2C

O

OH

MeO2C

OH

MeO2C

OH

OH

Me

Fe(CO)3

MeO2COR

Me

Fe(CO)3

R

Me

OTBS

Fe(CO)3

N

O Me

OTBS

O

O

Fe(CO)3

O

HO Me

OTBS

O

O

Fe(CO)3

Me

OTBS

Fe(CO)3

O

O

O2N

O

Me

O

HO

HO

OH

NaBH3CNBF3:Et2O

H2Ra-NiMeOHH2OB(OH)3

PhNCONEt3

(54%)

DMSOSO3-pyr

NEt3

macrolactin A

(72%)

(60%)

rac-41

1) Et2O/-78oC/1h; rt/1h

1) BH3:THF/0oC2) H2O2/1M KOH 1 min

1920

(44-57%)

20 23

(55% ee)

MeTi(iOPr)3(5 equiv)

CH2Cl2/-78oC

(51-70%)

(-)-105

23

TBSCl/imid (99%)

R = H (54% ee)R = TBS

DIBALhexanes

(81-85%)

R = CH2OHR = CHO (55% ee)

nPrMgCl/ADD(67-80%)

1) TMSCH2ClMg

2) H3O+/SiO2

(60%)(+)-106

2) NaBO3/0oC

15

23

15

23

(-)-104(33-42%, 55% ee)

Scheme 26. The Prahlad and Donaldson synthesis of the C11-C24 segment of macrolactin A.

Page 27: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 863

Fe(CO)3

CHO

OHC

OB

O

MeiPrO2C

iPrO2C

Fe(CO)3

HOO

O

O

O

Me

Fe(CO)3

Et

Me

O

O

O

O

MgBr

Et

Me

CHO

R'

OHC

Et3Al

Fe(CO)3

CHO

HO

Me

Fe(CO)3

Me

H

HH

H

CHO

Et

R'

ROO

O

O

O

Me

Et

Me

OMeO

O

O

O

O

(90%, >98% ee) pyridine(92%)

107

108, R = HR = Ac

Ac2Opyr

(83-88%)

11

1) FeCl3CH3CN

(69-75%)two steps

109

6

11

1) Diels-Alder2) Aldol3) Reduction

(88%)

R' = CH(OMe)2

11 steps

(32%)

110

ikarugamycinas-indacene unit

2) H2O, ∆(CH3CH2)2CO3) CH2N2(70%)

Scheme 27. The Roush and Wada synthesis of the as-indacene segment of ikarugamycin.Ikarugamycin is a polycyclic lactam which

exhibits antibiotic activity [100]. Roush and Wadahave reported a synthesis of the as-indacene unitof this target which utilizes organoironmethodology (Scheme 27) [48b]. De-symmetrization of meso (2,4-hexadiedial)Fe(CO)3via chiral crotylboration gave the homoallylicalcohol complex 107 with excellent enantiomericexcess. Condensation of 107 with Meldrum's acidproduced the Knovenagel product. Conjugateaddition of vinyl magnesium bromide to the acti-vated olefin gave 108 in which the C11stereocenter was introduced in a diastereospecificfashion. Acylation afforded a dienyl acetate, which

upon treatment with triethylaluminum underwentsubstitution to yield 109, via the intermediacy ofan in situ generated transoid pentadienyl cation.Oxidative decomplexation gave the free ligand,which was eventually transformed into the triene110. Intramolecular Diels-Alder cyclizationfollowed by intramolecular aldol condensation andreduction gave the tricyclic segment ofikarugamycin. In this synthesis, the Fe(CO)3adjunct served to control the diastereospecificformation of both the C6 and C11 stereocenters.

The amino alcohol 111, structurally related tothe sphingosines, was isolated from the sponge

Page 28: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

864 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

CHO

OHC

Fe(CO)3CHO

Fe(CO)3

Me

RO

CN

Fe(CO)3

Me

Fe(CO)3

Me

CN

OP(OEt)2

O

CN

Fe(CO)3

Me

N3

OMe

N3

CHO

Fe(CO)3

Me

N3

N3

CHO

Fe(CO)3

Me N3

MeO

(OC)3Fe

MeO

CN

OP(OEt)2

Me

CN

Fe(CO)3SEtN3

OMe

O

Me

CN

Fe(CO)3

NH

OMe

Boc

Me

CHO

Fe(CO)3

NH

OMe

Boc

Me

Fe(CO)3

NH

OMe

Boc

nBu

Me

nC6H13

Fe(CO)3

NH

OMe

Boc

Me

NH

OR

R'

nC6H13

NHTf

NHTf

Me N3

nBu

PPh3+

113, R = H (71%)R = Ac (80%)

Ac2O/pyr

(92%) 114

DIBAL(EtO)2P(O)CN

LiCN/THF

MeOHTrClO4

(88%) (52%)two steps

DIBAL

(77%)

115

EtSHTrClO4

H2, Pd/C(Boc)2O

(61%)two steps

(85%)

116

nBuLi(73%)

DIBAL

(78%)

H2, Pd/CMeOH

(87%) (87%)

111, R = R' = H112, R = Me, R' = Boc

(EtO)2P(O)CNLiCN/THF

Me2ZnTi(OiPr)4

TMSN3Sc(OTf)3

Me3NOC6H6/∆

Scheme 28. The Takemoto, et al., synthesis of an amino alcohol polyene natural product.

Page 29: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 865

Xestospongia sp. This E,E-diene was found toinhibit the growth of Candida albicans [101].Takemoto, et al., have reported a synthesis of theN-Boc-O-methyl derivative of this target (112)which prominently features, in a reiterativefashion, their novel 1,2-iron transpositionmethodology (cf. Scheme 22). As in the previousexample, this synthesis begins with meso (2,4-hexadiendial)Fe(CO)3. Addition of dimethylzincin the presence of Ti(iPrO)4 and a catalytic amountof the chiral cyclohexyldiamine ligand gave themono-alcohol 113 in 71% yield, 96% ee (Scheme28) [93c]. Acylation, followed by substitution withtrimethylsilyl azide proceeded via the inter-mediacy of the in situ generated transoid penta-dienyl cation to furnish 114. Under these condi-tions the aldehyde functionality was simul-taneously converted into a nitrile group. Re-generation of the aldehyde was accomplished byDIBAL reduction. Reaction of the aldehyde withdiethyl phosphorocyanidate in presence of LiCN,followed by reaction of the resultant O-phosphorylcyanohydrin with methanol and trityl perchlorateeffected the 1,2-transposition strategy to yield thedienyl ether complex 115. With the stage set forrepetition of this strategy, reduction of 115followed by phosphocyanation and treatment withthioethanol/trityl perchlorate gave 116. Catalyticreduction of 116 in the presence of (Boc)2Oeffected cleavage of the thioethyl substitutent andtransformation of the azide into a protected aminofunctionality. The synthesis was completed byconversion of the cyano group to an aldehydefunctionality, and Wittig olefination. Catalyticreduction and decomp-lexation gave 112.

and dedication and to the National Institutes ofHealth (GM-41641) for financial support.

REFERENCES

[1] (a) Hegedus, L. S. Transition Metals in the Synthesisof Complex Organic Molecules, University ScienceBooks, Mill Valley, CA, 1994; (b) Harrington, P. J.Transition Metals in Total Synthesis, John Wiley andSons, Inc., New York, 1990.

[2] (a) Reihlen, H.; Grüghl, A.; von Hessling, G.;Pfrengle, O. Leibig Ann. Chem. 1930, 482, 161; (b)Hallam, B.; Pauson, P. J. Chem. Soc. 1958, 642; (c)Mills, O. S.; Robinson, G. Acta Cryst. 1963, 16, 758.

[3] (a) Pearson, A. J. Acc. Chem. Res. 1980, 13, 463; (b)Birch, A. J.; Kelly, L. F. J. Organomet. Chem. 1985,285, 267; (c) Stephenson, G. R.; Astley, S. T.; Palotai,I. M.; Howard, P. W.; Owen, D. A.; Williams, S. InOrganic Synthesis via Organometallics; Dötz, K. H.;Hoffmann, R. W. Eds.; Wieweg, Braunschweig,1991, pp. 169-185; (d) Knölker, H.-J. Synlett, 1992,371; (e) Tao, C. In Encyclopedia of Reagents forOrganic Synthesis, Paquette, L. A., Ed.; John Wiley& Sons, New York, 1995, Vol. 7, pp. 5043-5045.

[4] (a) King, R. B. In The Organic Chemistry of Iron,Körner von Gustorf, E. A.; Grevels, F.-W.; Fischler,I., Eds.; Academic Press, New York, 1978, Vol. 1., p.525; (b) Emerson, G. F.; Mahler, J. E.; Kochhar, R.;Pettit, R. J. Org. Chem. 1964, 29, 3620; (c) Ley, S.V.; Low, C. M. R.; White, A. D. J. Organometal.Chem. 1986, 302, C13; (d) Docherty, G. F.; Knox, G.R.; Pauson, P. L. J. Organomet. Chem. 1998, 568,287; (e) Birch, A. J.; Cross, P. E.; Lewis, J.; White, D.A. Chem. Ind. 1964, 838; (f) Pearson, A. J. Synlett1990, 10.

[5] Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Commun.1975, 829.

SUMMARY[6] Knölker, H.-J. In Encyclopedia of Reagents for

Organic Synthesis, Paquette, L. A., Ed.; John Wiley& Sons, New York, 1995, Vol. 1, pp. 333-335.

The above discussion illustrates the ability of a(tricarbonyl)iron adjunct to serve in threecapacities: i) as a protecting group for conjugateddienes, ii) to direct the formation of chiral centersadjacent to the complexed diene, and iii) tostabilize the formation of positive charge adjacentto the complexed diene (i.e. pentadienyl cations).Due to the stability of these complexes to a widevariety of reaction conditions these attributes maybe repetitively applied while maintaining the(diene)iron functionality.

[7] (a) Salzer, A.; Schmalle, H.; Stauber, R.; Streiff, S. J.Organometal. Chem. 1991, 408, 403; (b) Pearson, A.J.; Chang, K.; McConville, D. B.; Youngs, W. J.Organometallics 1994, 13, 4; (c) Paley, R. S.; deDios, A.; Estroff, L. A.; Lafontaine, J. A.; Montero,C.; McCulley, D. J.; Rubio, M. B.; Ventura, M. P.;Weers, H. L. J. Org. Chem. 1997, 62, 6326; (d)Schmalz, H.-G.; Hessler, E.; Bats, J. W.; Dürner, G.Tetrahedron Lett. 1994, 35, 4543.

[8] Franck-Neumann, M.; Briswalter, C.; Chemla, P.;Martina, D. Synlett 1990, 637; Nakanishi, S.; Kumeta,K.; Nakanishi, J.-I.; Takata, T. Tetrahedron:Asymmetry 1995, 6, 2097.

ACKNOWLEDGMENTS [9] (a) Musco, A.; Palumbo, R.; Pairo, G. Inorg. Chem.Acta 1971, 5, 157; (b) Whitlock, H. W., Jr.;Markezich, R. L. J. Am. Chem. Soc. 1971, 93, 5290;(c) Monpert, A.; Martelli, J.; Grée, Carrie, R.Tetrahedron Lett. 1982, 22, 1961.

I am grateful to my co-workers, whose namesappear in the references, for their laboratory skill

Page 30: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

866 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

[10] (a) Xu, M.; Tran, C. D. J. Chromatogr. 1991, 543,233; (b) Knölker, H.-J.; Gonser, P.; Koegler, T.Tetrahedron Lett. 1996, 37, 2405.

[23] Yeh, M.-C. P.; Sheu, B.-A.; Fu, H.-W.; Tau, S.-I.;Chuang, L.-W. J. Am. Chem. Soc. 1993, 115, 5941.

[24] (a) Boehm, M. F.; Prestwich, G. D. J. Org. Chem.1987, 52, 1349; (b) Banthorpe, D. V.; Fitton, H.;Lewis, J. J. Chem. Soc., Perkin Trans. 1 1973, 2051;(c) Barton, D. H. R.; Gulatilaka, A. A. L.; Nakanishi,T.; Patin, H.; Widdowson, D. A.; Worth, B. R. J.Chem. Soc., Perkin Trans. 1 1976, 821; (d) Laabassi,M.; Mosset, P.; Grée, R. J. Organomet. Chem. 1997,538, 91.

[11] (a) Howell, J. A. S.; Palin, M. G.; Jaouen, G.; Top, S.;El Hafa, H.; Cense, J. M. Tetrahedron: Asymmetry1993, 4, 1241; (b) Uemura, M.; Nishimura, H.;Yamada, S.; Hayashi, Y.; Nakamura, K.; Ishihara, K.;Ohno, A. Tetrahedron: Asymmetry 1994, 5, 1673; (c)Alcock, N. W.; Crout, D. H. G.; Henderson, C. M.;Thomas, S. E. J. Chem. Soc., Chem. Commun. 1988,746.

[25] (a) Bell, P.T.; Dasgupta, B.; Donaldson, W.A. J.Organomet. Chem. 1997, 538, 75; (b) Dasgupta, B.;Donaldson, W. A. Tetrahedron: Asymmetry 1998, 9,3781.

[12] (a) Roush, W. R.; Park, J. C. Tetrahedron Lett. 1990,31, 4707; (b) Donaldson, W. A.; Shang, L.; Rogers,R. D. Organometallics 1994, 13, 6; (b) Takemoto, Y.;Baba, Y.; Noguchi, I.; Iwata, C. Tetrahedron Lett.1996, 37, 3345; (c) Tanaka, K.; Watanabe, T.;Shimamoto, K.; Sahakitpichan, P.; Fuji, K.Tetrahedron Lett. 1999, 40, 6599.

[26] Laabassi, M.; Grée, R. Tetrahedron Lett. 1989, 30,6683.

[27] Tao, C.; Donaldson, W.A. J. Org. Chem. 1993, 58,2134.[13] (a) Sarel, S.; Ben-Shoshan, R.; Kirson, B. J. Am.

Chem. Soc. 1965, 87, 2517; (b) R. Ben-Shoshan, R.;Sarel, S. J. Chem. Soc., Chem Commun. 1969, 883;(c) Aumann, R. J. Organomet. Chem. 1973, 47, C29;(d) Aumann, R. J. Am. Chem. Soc. 1974, 96, 2631;Schulze, M. M.; Gockel, U. Tetrahedron Lett. 1996,37, 357.

[28] Grée, D. M.; Martelli, J. T.; Grée, R. L.; Toupet, L. J.J. Org. Chem. 1995, 60, 2316.

[29] Prahlad, V.; Donaldson, W. A. Tetrahedron Lett.1996, 37, 9169.

[30] Nunn, K.; Mosset, P.; Grée, R.; Saalfrank, R. W. J.Org. Chem. 1992, 57, 3359-64; Benvegnu, T.; Schio,L.; LeFloc'h, Y.; Grée, R. Synlett 1994, 505.

[14] (a) Whitesides, T. H.; Slaven, R. W. J. Organomet.Chem. 1974, 67, 99; (b) A. R. Pinhas, A. R.;Samuelson, A. G.; Risemberg, R.; Arnold, E. V.;Clardy, J.; Carpenter, B. K. J. Am. Chem. Soc. 1981,103, 1668. [31] Adams, C. M.; Cerioni, G.; Hafner, A.; Kalchhauser,

H.; von Philipsborn, W.; Prewo, R.; Schwenk, A.Helv. Chim. Acta 1988, 71, 1116.[15] Aumann, R.; Ring, H.; Krüger, C.; Goddard, R.

Chem. Ber. 1979, 112, 3644.[32] Dasgupta, B.; Donaldson, W. A. Tetrahedron Lett.

1998, 39, 343.[16] Böhmer, J.; Förtsch, W.; Hampel, F.; Schobert, R.Chem. Ber. 1996, 129, 427.

[33] (a) Greaves, E. O.; Knox, G. R.; Pauson, P. L. J.Chem. Soc., Chem. Commun. 1969, 1124; (b)Greaves, E. O.; Knox, G. R.; Pauson, P. L.; Toma, S.;Sim, G. A.; Woodhouse, D. I. J. Chem. Soc., Chem.Commun. 1974, 257; (c) Graf, R. E.; Lillya, C. P. J.Organomet. Chem. 1976, 122, 377.

[17] (a) Monpert, A.; Martelli, J.; Grée, R.; Carrié. R. NewJ. Chem. 1983, 7, 345; (b) Laabassi, M.; Grée, R.Tetrahedron Lett. 1988, 29, 611; (c) LeGall, T.;Lellouche, J.-P.; Beaucourt, J.-P. Tetrahedron Lett.1989, 30, 6521; (d) Grée, D. M.; Kermarrec, C. J. M.;Martelli, J. T.; Grée, R. L. J. Org. Chem. 1996, 61,1918; (e) Barrett, A. G. M.; Barton, D. H. R.;Johnson, G. J. Chem. Soc., Perkin Trans. I 1978,1014.

[34] Knox, G. R.; Thom, I. G. J. Chem. Soc., Chem.Commun. 1981, 373.

[35] (a) Franck-Neumann, M.; Abdali, A.; Colson, P.-J.;Sedrati, M. Synlett 1991, 331; (b) Franck-Neumann,Colson, J.-P. Synlett 1991, 891; (c) Franck-Neumann,M.; Gateau, C.; Miesch-Gross, L. Tetrahedron Lett.1997, 38, 8077.

[18] Böhmer, J.; Förtsch, W.; Schobert, R. Synlett 1997,1073.

[19] Franck-Neumann, M.; Martina, D.; Brion, F. Angew.Chem., Int. Ed. Engl. 1978, 17, 690.

[36] Wasicak, J. T.; Craig, R. A.; Henry, R.; Dasgupta, B.;Li, H.; Donaldson, W. A. Tetrahedron 1997, 53,4185.

[20] Franck-Neumann, M.; Michelotti, E. L.; Simler, R.;Vernier, J.-M. Tetrahedron Lett. 1992, 33, 7361;Franck-Neumann, Vernier, J.-M. Tetrahedron Lett.1992, 33, 7365. [37] Howell, J. A. S.; Walton, G.; Tirvengadum, M.-C.;

Squibb, A. D.; McArdle, P.; Cunningham, D.;Goldschmidt, Z.; Gottlieb, H.; Strul, G. J. Organomet.Chem. 1991, 401, 91.

[21] (a) Semmelhack, M. F.; Le, H. T. M. J. Am. Chem.Soc. 1984, 106, 2715; (b) Yeh; M.-C. P. Hwu, C.-C.J. Organometal. Chem. 1991, 419, 341; (c) Chou, S.-S. P.; Hsu, C.-H.; Yeh, M.-C. P. Tetrahedron Lett.1992, 33, 643.

[38] Clinton, N. A.; Lillya, C. P. J. Am. Chem. Soc. 1970,92, 3058.

[22] Semmelhack, M. F.; Herndon, J. W.; Liu, J. K.Organometallics 1983, 2, 1885.

Page 31: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

Stoichiometric Applications of Acyclic π-Organoiron Complexes Current Organic Chemistry, 2000, Vol. 4, No. 8 867

[39] Grée, R.; Lellouche, J. P. In Advances in Metal-Organic Chemistry; Liebeskind, L. S., Ed.; JAI PressInc.; Greenwich, CT, 1995; Vol. 4, pp. 129-273.

[58] (a) Franck-Neumann, M.; Kastler, A. Synletti 1995,61; (b) Donaldson, W. A.; Shang, L. TetrahedronLett. 1996, 37, 423.

[40] Gresham, D. G.; Lillya, C. P.; Uden, P. C.; Walters,F. H. J. Organomet. Chem. 1977, 142, 123.

[59] Bärmann, H.; Godula, K.; Donaldson, W. A. to besubmitted J. Org. Chem.

[41] Nunn, K.; Mosset, P.; Grée, R.; Saalfrank, R. W. J.Org. Chem. 1992, 57, 3359.

[60] (a) Franck-Neumann, M.; Colson, J.-P.; Geoffroy, P.;Taba, K. M. Tetrahedron Lett. 1992, 33, 1903-6; (b)Franck-Neumann, M.; Bissinger, P.; Geoffroy, P.Tetrahedron Lett. 1997, 38, 4469; (c) Franck-Neumann, M.; Bissinger, P.; Geoffroy, P.Tetrahedron Lett. 1997, 38, 4473; (d) Franck-Neumann, M.; Bissinger, P.; Geoffroy, P.Tetrahedron Lett. 1997, 38, 4477; (e) Franck-Neumann, M.; Miesch-Gross, L.; Gateau, C.Tetrahedron Lett. 1999, 40, 2829.

[42] Laabassi, M.; Toupet, L.; Grée, R. Bull. Soc. Chim.Fr. 1992, 129, 47.

[43] Nunn, K.; Mosset, P.; Grée, R.; Saalfrank, R. W.Angew. Chem., Int. Ed. Engl. 1988, 27, 1188.

[44] Crévisy, C.; Herbage, B.; Marrel, M. L.; Toupet, L.;Grée, R. Eur. J. Org. Chem. 1998, 1949.

[61] (a) Donaldson, W. A. Aldrichimica Acts 1997, 30, 17;(b) Donaldson, W. A. In Encyclopedia of Reagentsfor Organic Synthesis, Paquette, L. A., Ed.; JohnWiley & Sons, New York, 1995, Vol. 7, pp. 5048

[45] Benvegnu, T. J.; Toupet, L.; Grée, R. Tetrahedron1996, 52, 11811.

[46] Donaldson, W. A.; Tao, C.; Bennett, D. W.; Grubisha,D. S. J. Org. Chem. 1991, 56, 4563; (b) Wang, Z.M.S. Thesis, Marquette University, Milwaukee, WI,1995.

[62] Fischer, E. O.; Fischer, R. D. Angew. Chem. 1960, 72,919.

[63] (a) Birch, A. J.; Kelly, L. F.; Weerasuria, D. V. J.Org. Chem., 1988, 53, 278; (b) Stephenson, G. R.;Owen, D. A. Tetrahedron Lett. 1991, 32, 1291; (c)Knölker; H.-J.; Bauermiester, M.J. Chem. Soc.,Chem. Commun. 1989, 1468; (d) Pearson, A. J.; Rees,D. C. J. Am. Chem. Soc. 1982, 104, 1118; (e) Pearson,A. J.; O’Brien, M. K. J. Org. Chem. 1989, 54, 4663.

[47] Takemoto, Y.; Takeuchi, J.; Iwata, C. TetrahedronLett. 1993, 34, 6069; Takemoto, Y.; Ueda, S.;Takeuchi, J.; Nakamoto, T.; Iwata, C. TetrahedronLett. 1994, 35, 8821.

[48] (a) Laabassi, M.; Grée, R. Tetrahedron Lett. 1988, 29,611; (b) Roush, W. R.; Wada, C. J. Am. Chem. Soc.1994, 116, 2151; (c) Roush, W. R.; Wada, C. K.Tetrahedron Lett. 1994, 35, 7351.

[64] (a) Mahler, J. E.; Pettit, R. J. Am. Chem. Soc. 1963,85, 3955; (b) Mahler, J. E.; Gibson, D. H. Pettit, R. J.Am. Chem. Soc. 1963, 85, 3959.

[49] Marchand, N. J.; Grée, D.; Martelli, J. T.; Grée, R.;Toupet, L. J. Org. Chem. 1996, 61, 5063. [65] (a) Gresham, D. G.; Kowalski, D. J.; Lillya, C. P. J.

Organomet. Chem. 1978, 144, 71; (b) Dobosh, P. A.;Gresham, D. G.; Kowalski, D. J.; Lillya, C. P.;Magyar, E. S. Inorg. Chem. 1978, 17, 1775.

[50] Benvegnu, T.; Martelli, J.; Grée, R.; Toupet, L.Tetrahedron Lett. 1990, 31, 3145.

[51] Roush, W. R.; Works, A. B. Tetrahedron Lett. 1997,38, 351.

[66] Pfletschinger, A.; Schmalz, H.-G.; Koch, W. Eur. J.Inorg. Chem. 1999, 1869.

[52] Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410. [67] Sorenson, T. S.; Jablonski, C. R. J. Organomet.Chem. 1970, 25, C62.[53] (a) Le Gall, T.; Lellouche, J.-P.; Toupet, L.;

Beaucourt, J.-P. Tetrahedron Lett. 1989, 30, 6517; (b)Le Gall, T.; Lellouche, J.-P.; Beaucourt, J.-P.Tetrahedron Lett. 1989, 30, 6521.

[68] (a) Donaldson, W. A. J. Organomet. Chem. 1990,395, 187; (b) Donaldson, W. A.; Bell, P. T.; Jin, M.-J.J. Organomet. Chem. 1992, 441, 449; (c) Donaldson,W. A.; Jin, M.-J.; Bell, P. T. Organometallics 1993,12, 1174; (d) Donaldson, W. A.; Jin, M.-J. Bull. Soc.Chim. Belg. 1993, 12, 1174.

[54] Bärmann, H.; Prahlad, V.; Tao, C.; Yun, Y. K.;Wang, Z.; Donaldson, W. A. Tetrahedron 2000, 56,2289.

[69] Bayoud, R. S.; Biehl, E. R.; Reeves, P. C. J.Organomet. Chem. 1978, 150, 75.[55] Franck-Neumann, M.; Martina, D.; Heitz, M. P.

Tetrahedron Lett. 1982, 23, 3493.

[70] (a) Morey, J.; Grée, D.; Mosset, P.; Toupet, L.; Grée,R. Tetrahedron Lett. 1987, 28, 2959; (b) Grée, R.,Laabassi, M.; Mosset, P.; Carrié, R. Tetrahedron Lett.1985, 26, 2317; (c) Laabassi, M.; Grée, R. Bull. Soc.Chim. Fr. 1992, 129, 151.

[56] Monpert, A.; Martelli, J.; Grée, R.; Carrié, R. Nouv. J.Chim. 1983, 7, 345.

[57] (a) Gigou, A.; Lellouche, J.-P.; Beaucourt, J.-P.;Toupet, L.; Grée, R. Angew. Chem., Int. Ed. Engl.1989, 28, 755; (b) Gigou, A.; Beaucourt, J.-P.;Lellouche, J.-P.; Grée, R. Tetrahedron Lett. 1991, 32,635.

[71] Stephenson, G. R.; Voyle, M.; Williams, S.Tetrahedron Lett. 1991, 32, 5265.

[72] (a) Maglio, G.; Musco, A.; Palumbo, R.; Sirigu, A. J.Chem. Soc., Chem. Commun., 1971, 100; (b) Maglio,

Page 32: Current Stoichiometric Applications of Acyclic π ...€¦ · center to control a number of different bond forming reactions. Six examples will be presented which demonstrate this

868 Current Organic Chemistry, 2000, Vol. 4, No. 8 William A. Donaldson

G.; Palumbo, R. J. Organomet. Chem. 1974, 76, 367;(c) Yeh, M.-C. P.; Chuang, L.-W.; Hwu, C.-C.; Sheu,J.-M. Row, L.-C. Organometallics 1995, 14, 3396;(d) Käser, M.; Salzer A. J. Organomet. Chem., 1996,508, 219.

[87] (a) Yun, Y.-K.; Donaldson, W. A. J. Am. Chem. Soc.1997, 119, 4084; (b) Saber, S. P.; Slawin, A. M.;Thomas, S. E.; Williams, D. J.; Ward, M. F.;Worthington, P. A. J. Chem. Soc., Chem. Commun.1994, 2169.

[73] (a) Donaldson, W. A.; Shang, L.; Ramaswamy, M.;Droste, C.; Tao, C.; Bennett, D. W. Organometallics1995, 14, 5119; (b) Englert, U.; Ganter, B.; Käser,M.; Klinkhammer, E.; Wagner, T.; Salzer, A. Chem.Eur. J. 1996, 2, 143.

[88] (a) Clinton, N. A.; Lillya, C. P. J. Am. Chem. Soc.1970, 92, 3065; (b) Kuhn, D. E.; Lillya, C. P. J. Am.Chem. Soc. 1972, 94, 1682.

[89] (a) Benvegnu, T.; Schio, L.; Le Floc'h, Y.; Grée, R.Synlett 1994, 505.

[74] Salzer, A.; Hafner, A. Helv. Chim. Acta 1983, 66,1774. [90] (a) Roush, W. R.; Wada, C. K. Tetrahedron Lett.

1994, 35, 7347; (b) Hessler, E.; Schmalz, H.-G.;Dürner, G. Tetrahedron Lett. 1994, 35, 4547.[75] McArdle, P.; Sherlock, H. J. Chem. Soc., Dalton

Trans. 1978, 1678.[91] Braun, A.; Toupet, L.; Lellouche, J.-P. J. Org. Chem.

1996, 61, 1914.[76] (a) Hafner, A.; Bieri, J. H.; Prewo, R.; vonPhilipsborn, W.; Salzer, A. Angew. Chem., Int. Ed.Engl. 1983, 22, 713; (b) Salzer, A. InOrganometallics in Organic Synthesis 2, Werner, H.;Erker, G., Eds.; Springer-Verlag, Heidelberg, 1989,Vol. 2, p. 291; (c) Pinsard, P.; Lellouche, J.-P.;Beaucourt, J.-P.; Grée, R. Tetrahedron Lett. 1990, 31,1137; (d) Pinsard, P.; Lellouche, J.-P.; Beaucourt, J.-P.; Grée, R. Tetrahedron Lett. 1990, 31, 1141.

[92] (a) Hachem, A.; Teniou, A.; Grée, R. Bull. Soc. Chim.Belg. 1991, 100, 625; (b) Teniou, A.; Toupet, L.;Grée, R. Synlett 1991, 195; (c) Grée, D.; Martelli,Grée, R.; Toupet, L. J. Org. Chem. 1995, 60, 2316;(d) Donaldson, W. A.; Bell, P. T.; Wang, Z.; Bennett,D. W. Tetrahedron Lett. 1994, 35, 5829.

[93] (a) Takemoto, Y.; Yoshikawa, N.; Iwata, C. J. Chem.Soc., Chem. Commun. 1995, 631; (b) Takemoto, Y.;Baba, Y.; Yoshikawa, N.; Iwata, C.; Tanaka, T.;Ibuka, T. J. Chem. Soc., Chem. Commun. 1998, 1911;(c) Takemoto, Y.; Yoshikawa, N.; Baba, Y.; Iwata,C.; Tanaka, T.; Ibuka, T.; Ohishi, H. J. Am. Chem.Soc. 1999, 121, 9143.

[77] (a) Whitesides, T. H.; Neilan, J. P. J. Am. Chem. Soc.1976, 98, 63; (b) Bayoud, R. S.; Biehl, E. R.; Reeves,P. C. J. Organomet. Chem. 1979, 174, 297.

[78] Yun, Y.-K.; Donaldson, W. A., unpublished results.

[79] Bonner, T. G.; Holder, K. A.; Powell, P. J.Organomet. Chem. 1974, 77, C37. [94] Gordon, J. A.; Figard, P. H.; Quinby, G. E.; Spector,

A. A. Am. J. Physiol. 1989, 256, C1; Schulam, P. G.;Shearer, W. T. J. Immunol. 1990, 144, 2696.[80] Hossain, M. A. Ph. D. Dissertation, Marquette

University, Milwaukee, WI, 1992.[95] Rokach, J.; Guindon, Y.; Young, R. N.; Adams, J.;

Adkinson, J. G. In The Total Synthesis of NaturalProducts; ApSimon, J. Ed.; John Wiley and Sons;New York, 1988; Vol. 7, pp. 141-273.

[81] Uemura, M.; Minami, T.; Yamashita, Y.; Hiyoshi, K.;Hayashi, Y. Tetrahedron Lett. 1987, 28, 641.

[82] Birch, A. J.; Pearson, A. J. J. Chem. Soc., PerkinTrans. I 1976, 954. [96] Packer, L.; Witt, E. H.; Tritschler, H. J. Free Rad.

Biol. Med. 1995, 19, 227.[83] Donaldson, W. A.; Jin, M. J. Tetrahedron 1993, 49,

8787. [97] (a) Gustafson, K.; Roman, M.; Fenical, W. J. Am.Chem. Soc..1989, 111, 7519-24; (b) Rychnovsky,S.D.; Skalitzky, D.J.; Pathirana, C.; Jensen, P.R.;Fenical, W. J. Am. Chem. Soc. 1992, 114, 671-7.

[84] (a) McDaniel, K. F.; Kracker, L. R., II; Thamburaj, P.K. Tetrahedron Lett. 1990, 31, 2373; (b) Howell, J.A. S.; Bell, A. G.; O'Leary, P. J.; Stephenson, G. R.;Hastings, M.; Howard, P. W.; Owen, D. A.;Whitehead, A. J.; McArdle, P.; Cunningham, D.Organometallics 1996, 15, 4247.

[98] Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc., 1983,105, 2092.

[99] Tomooka, K.; Okinaga, T.; Suzuki, K.; Tsuchihashi,G. Tetrahedron Lett., 1987, 28, 6335.[85] (a) Donaldson, W. A.; Shang, L.; Tao, C.; Yun, Y. K.;

Ramaswamy, M.; Young, Jr., V. G. J. Organomet.Chem. 1997, 539, 87; (b) Donaldson, W. A.;Ramaswamy, M. Tetrahedron Lett. 1989, 30, 1343.

[100] Ito, S.; Hirata, Y. Tetrahedron Lett. 1972, 1181; Ito,S.; Hirata, Y. Tetrahedron Lett. 1972, 1185; Ito, S.;Hirata, Y. Tetrahedron Lett. 1972, 2557.

[86] (a) El-Ahl, A. S.; Yun, Y. K.; Donaldson, W. A.Inorg. Chim. Acta 1999, 296, 261; (b) Donaldson, W.A.; Shang, L. Tetrahedron Lett. 1995, 36, 1575.

[101] (a) Gulavita, N. K.; Scheuer, P. J. J. Org. Chem.1989, 53, 366; (b) Mori, K.; Matsuda, H. Liebigs Ann.Chem. 1992, 131.