Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ......

49
Nanoscale antennas Said R. K. Rodriguez 24/04/2018

Transcript of Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ......

Page 1: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Nanoscale antennas

Said R. K. Rodriguez24/04/2018

Page 2: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

The problem with nanoscale optics

Ε𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔)

~1-10 nm

~400-800 nm

How to interface light emitters & receiverswith plane waves?

Page 3: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Antenna

Tx/Rx

An antenna is a device that converts free-space radiation into localized energy, and vice versa

Radiation

Novotny & van Hulst, Nat.Photon. 5, 83 (2011).

What is an antenna?

Page 4: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Antenna

Tx/Rx

An antenna is a device that converts free-space radiation into localized energy, and vice versa

Radiation

What is an antenna?

At radio frequencies, E = 0 inside the metal – perfect metal

Novotny & van Hulst, Nat.Photon. 5, 83 (2011).

Page 5: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Antenna

Tx/Rx

An antenna is a device that converts free-space radiation into localized energy, and vice versa

Radiation

What is an antenna?

At optical frequencies, E ≠ 0 inside the metal.

Consequence: radio-freq. antenna designs cannot be directly scaled

Novotny & van Hulst, Nat.Photon. 5, 83 (2011).

Page 6: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

200 400 600 800 1000 1200 1400 1600 1800-150

-100

-50

0

50

Measured data: ε' ε"

Drude model: ε' ε"

Modified Drude model: ε'

ε"

ε

Wavelength (nm)

ε'

Dielectric constant for Ag

Finite ε’ leads to field penetration

Page 7: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Plasmons in the bulk oscillate at ωp determined by the free electron density and effective mass

Plasmons confined to surfaces that can interact with light to form propagating “surface plasmon polaritons (SPP)”

Localized surface plasmons in nanoparticles

+ + +

- - -

+ - +

k 0

2

εω

mNedrude

p =

From plasmons to plasmonics

2/1

"'

+

=+=dm

dmxxx c

ikkkεε

εεω

optical resonance frequency depends on shape & size; k is irrelevant

Page 8: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

transmissionreflection

Colors of gold nanoparticles Stained glass @ Notre Dame de Paris

Lycargus cup, 4thC AD 1260

Page 9: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Observables

Extinction cross section [m2]

Power removed from beamIncident intensity

Extinction = scattering + absorption

removed from the beam re-radiated into all angles lost as heat in the scatterer

Page 10: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Linear response to applied field

Small object kd <<1 - incident field is approximately constant

Volume polarization (weak index so E=Ein)

Total dipole moment

Larger particles & ε : larger dipole moments

Page 11: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Electrostatic sphere

Consider a sphere in a static field E0 εmε

z

a( )( )ar

ar>=∆Φ<=∆Φ

00

2

1

Laplace equation:

( ) ( ) zEarrr

arr

m 0221

21 −=Φ=∂Φ∂

=∂Φ∂

=Φ=Φ∞→

lim,, εε

Boundary conditions set by 0)()( =Φ∇⋅−∇=⋅∇=⋅∇ εε ED

Page 12: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Solution

1 0 0 0

32 0 0 02 2

0

3cos cos cos2 2

cos coscos cos2 4

m m

m m

m

m m

E r E r E r

pE r a E E rr r

ε ε εθ θ θε ε ε ε

ε ε θ θθ θε ε πε ε

−Φ = − + = − + +

−Φ = − + = − + +

E0 εm

εz

a[ see J. D. Jackson, Classical Electrodynamics, Ch. 4]

30 0 with 4

2m

SI SI mm

p E a ε εα α πε εε ε

−= = +

rr

Inside sphere: homogeneous fieldOutside sphere: background field plus field of a dipole with

In the ball:

Outside:

Page 13: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Metal sphere

Drude model for a metal: Lorentzian `plasmon resonance’

• Resonance at ε(ω0) = -2 εm• Response scales with the volume V• α exceeds V by factor 5 to 10• Shape shifts condition ε = -2 εm• γ still needs to include radiation damping

𝑝𝑝 = 4𝜋𝜋𝜀𝜀0𝛼𝛼𝐸𝐸0 𝛼𝛼 = 𝑎𝑎3 𝜀𝜀 − 𝜀𝜀𝑚𝑚

𝜀𝜀 + 2𝜀𝜀𝑚𝑚 0

𝛼𝛼 = 𝑎𝑎3 𝜔𝜔02

𝜔𝜔02 − 𝜔𝜔2 + 𝑖𝑖𝜔𝜔𝑖𝑖 0

𝜀𝜀 = 1 −𝜔𝜔𝑝𝑝

2

𝜔𝜔(𝜔𝜔 + 𝑖𝑖𝑖𝑖𝜔𝜔)means

Page 14: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Revisiting polarizabilityClassical model of harmonically bound electron describes atom, and scatterer alike, as an oscillating dipole

20 0

2 20

3 ( ) ( )i t i tSI

Vt e ei

ω ωε ω α ωω ω ωγ

= =− −

p E E

Lorentzian resonance

Extinction: how much power is taken from the beam ?

Cycle average work done by E on p

in ImdpW Edt

α∝ ⋅ ∝

Page 15: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Revisiting polarizabilityExtinction: how much power is taken from the beam (in SI units) ?

0 0

1 1Re[ ] Re[ ] Re[ ] Re[ ]T Ti t

i t i t i td eW e dt e i e dtT dt T

ωω ω ωωα= ⋅ = ⋅∫ ∫

pE E E

* * *

0

1 ( ) ( )4

Ti t i t i t i tW e e i e i e dt

Tω ω ω ωωα ωα− −= + ⋅ −∫ E E E E

* 2 2

0

1 ( | | | | ) oscill.terms ( 2 )4

T

W i i dtT

ωα ωα ω= − + + ±∫ E E

2Im | |2

W ω α= E

Page 16: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Revisiting polarizabilityClassical model of harmonically bound electron describes atom, and scatterer alike as an oscillating dipole

20 0

2 20

3 ( ) ( )i t i tSI

Vt e ei

ω ωε ω α ωω ω ωγ

= =− −

p E E

Lorentzian resonance

Scattering: how much power does p radiate ?

22

0

2

0 0

22dipole

2

0 0

2 ||4

sinsin||sin W απε

θθϕθϕπ ππ π

∝=∝⋅∝ ∫ ∫∫ ∫∫ rprdErddA

sphere

nS

Page 17: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Equate extinction to scattering (energy conservation)

Scattering

Rayleigh / Larmor

Extinction

Work done to drive p

Optical theorem

1. Very small particles scatter like r6/λ4 (Rayleigh)2. For very small particles absorption wins ~ r3/λ3. Big |α|2 implies large Im α

4𝜋𝜋𝑘𝑘 Im 𝛼𝛼 [𝑚𝑚2] 8𝜋𝜋3

𝑘𝑘4 𝛼𝛼 2 [𝑚𝑚2]

Page 18: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

ScatteringExtinction

Optical theorem

Since

Upper bound on the strongest possible dipole scatterer

Rayleigh / LarmorWork done to drive p

Equate extinction to scattering (energy conservation)

4𝜋𝜋𝑘𝑘 Im 𝛼𝛼 [𝑚𝑚2] 8𝜋𝜋3

𝑘𝑘4 𝛼𝛼 2 [𝑚𝑚2]

𝛼𝛼 ≤32

𝜆𝜆2𝜋𝜋

3

Im 𝛼𝛼 < 𝛼𝛼

Page 19: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Extinction – Interference effect𝑃𝑃𝑒𝑒𝑘𝑘𝜔𝜔 = ∬𝐷𝐷 Sext��erdA = ∬𝐷𝐷

12

Re Ei×Hs∗ +Es ×Hi∗ ��erdA

𝑄𝑄𝑒𝑒𝑘𝑘𝜔𝜔 =𝜎𝜎𝑒𝑒𝑘𝑘𝜔𝜔

𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝜔𝜔Out of resonanceOn resonance

2𝜋𝜋𝜋𝜋𝜆𝜆

= 0.3

Page 20: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Extinction – Interference effect𝑃𝑃𝑒𝑒𝑘𝑘𝜔𝜔 = ∬𝐷𝐷 Sext��erdA = ∬𝐷𝐷

12

Re Ei×Hs∗ +Es ×Hi∗ ��erdA

𝑄𝑄𝑒𝑒𝑘𝑘𝜔𝜔 =𝜎𝜎𝑒𝑒𝑘𝑘𝜔𝜔

𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝜔𝜔

σext = Apart

r=20 nm Ag particle, in n=1.5 (glass)

Page 21: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Extinction – Interference effect𝑃𝑃𝑒𝑒𝑘𝑘𝜔𝜔 = ∬𝐷𝐷 Sext��erdA = ∬𝐷𝐷

12

Re Ei×Hs∗ +Es ×Hi∗ ��erdA

𝑄𝑄𝑒𝑒𝑘𝑘𝜔𝜔 =𝜎𝜎𝑒𝑒𝑘𝑘𝜔𝜔

𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝜔𝜔

2𝜋𝜋𝜋𝜋𝜆𝜆

= 0.3

Question: what does the above expression tells us aboutthe detector needed to measure the full extinction?

Page 22: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Summary

• Antennas convert free-space radiation into localized energy & viceversa

• At optical frequencies, E-field penetrates into the metal. This leads to surface plasmon resonances

• Extinction:– Work done by E on p– ∝ Im(α)– Interference of incident & scattered field

• Subwavelength particles can absorb and scatter much more light than is geometrically incident on them. In general, Qext >1 on resonance and Qext <1 off resonance

Page 23: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

10 min. break

Page 24: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Approaches to controlling lightResonant nanoparticles Photonic crystals

Surface Plasmon Polaritons

Page 25: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Dipole radiation

𝑬𝑬(𝒓𝒓) = 𝜇𝜇0𝜔𝜔2𝐺𝐺(𝒓𝒓) � 𝒑𝒑1 dipole (vector):

1 dipole (scalar): 𝜓𝜓1 𝜋𝜋 =𝑒𝑒𝑖𝑖𝑘𝑘𝑝𝑝

𝜋𝜋� 𝑝𝑝

Page 26: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Dipole arrays

𝑬𝑬(𝒓𝒓) = 𝜇𝜇0𝜔𝜔2𝐺𝐺(𝒓𝒓) � 𝒑𝒑1 dipole (vector):

1 dipole (scalar): 𝜓𝜓1 𝜋𝜋 =𝑒𝑒𝑖𝑖𝑘𝑘𝑝𝑝

𝜋𝜋� 𝑝𝑝

Dipole array (scalar): 𝜓𝜓𝑡𝑡𝑡𝑡𝑡𝑡 𝜋𝜋 = 𝜓𝜓1(𝜋𝜋) � 𝐴𝐴𝐴𝐴

Depends on positions & complex amp. of scatterersFourier transform of geometry (more ahead)

a ≈ λ

Page 27: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Far-field of 2 dipoles

𝜓𝜓𝑡𝑡 = 𝜓𝜓1 + 𝜓𝜓2 = 𝑝𝑝𝑒𝑒−𝑖𝑖(𝑘𝑘𝑝𝑝1−𝛽𝛽/2)

𝜋𝜋1cos 𝜃𝜃1 +

𝑒𝑒−𝑖𝑖(𝑘𝑘𝑝𝑝2+𝛽𝛽/2)

𝜋𝜋2cos 𝜃𝜃2

●r1

r2

θ1

θ2

β = phase difference between dipoles

Page 28: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

𝜓𝜓𝑡𝑡 𝜋𝜋 = 𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑝𝑝

𝜋𝜋� 𝐴𝐴𝐴𝐴

●r1

r2

θ1

θ2 𝐴𝐴𝐴𝐴 = cos12

(𝑘𝑘𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘 𝜃𝜃 + 𝛽𝛽)

β = phase difference between dipoles

Exercise:

Far-field of 2 dipoles

𝜓𝜓𝑡𝑡 = 𝜓𝜓1 + 𝜓𝜓2 = 𝑝𝑝𝑒𝑒−𝑖𝑖(𝑘𝑘𝑝𝑝1−𝛽𝛽/2)

𝜋𝜋1cos 𝜃𝜃1 +

𝑒𝑒−𝑖𝑖(𝑘𝑘𝑝𝑝2+𝛽𝛽/2)

𝜋𝜋2cos 𝜃𝜃2

Page 29: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

𝜓𝜓𝑡𝑡 𝜋𝜋 = 𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑝𝑝

𝜋𝜋� 𝐴𝐴𝐴𝐴

●r1

r2

θ1

θ2 𝐴𝐴𝐴𝐴 = cos12

(𝑘𝑘𝑘𝑘𝑘𝑘𝑡𝑡𝑘𝑘 𝜃𝜃 + 𝛽𝛽)

β = phase difference between dipoles

Exercise:

Note: β=π & θ=π/2 → AF = 0 ∀ kd

Far-field of 2 dipoles

𝜓𝜓𝑡𝑡 = 𝜓𝜓1 + 𝜓𝜓2 = 𝑝𝑝𝑒𝑒−𝑖𝑖(𝑘𝑘𝑝𝑝1−𝛽𝛽/2)

𝜋𝜋1cos 𝜃𝜃1 +

𝑒𝑒−𝑖𝑖(𝑘𝑘𝑝𝑝2+𝛽𝛽/2)

𝜋𝜋2cos 𝜃𝜃2

Page 30: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Dimer in static approximationDimer in a static approximation

Linear problem

• Symmetric, but not real matrix• 1/polarizability on the diagonal• Interaction on the off-diagonal - this will shift resonances

Page 31: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Hybrid modes

Hybridization (exercise)

Page 32: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Arrays of coupled dipoles

Page 33: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Arrays of coupled dipoles

d= 100 nmax = ay = 450 nmn = 1.5

ax n

1 dipole

array of dipoles

Page 34: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Light cone & diffraction

Page 35: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Light emission from plasmonic arrayNA of objective

kx

ky

Page 36: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

S.R.K. Rodriguez et al., Phys. Rev. X 1, 021019 (2011).

LSPR

Extinction of Au nanorod arrays

Page 37: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Bright – even / Dark - odd

Diffraction / Bloch theorem determines mode dispersionMode symmetry + illumination determines what you excite

Page 38: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

S.R.K. Rodriguez et al., Physica B 407, 4081 (2012).

Coupled dipole calculations

Measurements

Shaper resonances by adding nanoparticles

Collective resonances

Page 39: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Uses of resonant nanostructures

Page 40: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Enhanced local fieldsOn resonance, ~ 104 enhanced intensity

Au spheres 5,8,20 nm, gaps of 1-3 nm

100 102 104

|E|2/|Ein|2

Page 41: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Single molecule Fluorescence Enhancement

100 nm

𝐴𝐴𝐸𝐸 =𝜂𝜂(𝜋𝜋0, 𝜔𝜔𝑒𝑒𝑚𝑚)𝜂𝜂0(𝜋𝜋0, 𝜔𝜔𝑒𝑒𝑚𝑚)

𝐷𝐷(𝜋𝜋0, 𝜔𝜔𝑒𝑒𝑚𝑚)𝐷𝐷0(𝜋𝜋0, 𝜔𝜔𝑒𝑒𝑚𝑚)

𝐸𝐸 (𝜋𝜋0, 𝜔𝜔𝑝𝑝𝑎𝑎𝑎𝑎) 2

𝐸𝐸0(𝜋𝜋0, 𝜔𝜔𝑝𝑝𝑎𝑎𝑎𝑎) 2

A. Kinkhabwala et al., Nat. Phot. 3, 654 (2009)

Page 42: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Yagi-Uda nanoantenna

A. F. Koenderink, Nano Lett. 9, 4228 (2009)

Page 43: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Directional emission from localized sources

100 nm

A. Curto et al., Science 329, 930 (2010)

Page 44: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

100 nm

Directional emission from extended sources

emitting layer

G. Lozano et al., Light Sci. Appl. e66 (2013)

Page 45: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

100 nm

Directional emission from extended sources

emitting layer emitting layer

Page 46: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

SensingSingle protein binding/unbinding Refractive index sensing

n

P. Offermans et al., ACS Nano 5, 5151 (2011)

Page 47: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Biological imaging

Novotny & van Hulst, Nat.Photon. 5, 83 (2011).

Diffraction unlimited resolution

λ= 633 nm

Page 48: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Nonlinear effectsGenerating new frequenciesEnhanced mode mapping

P. Ghenuche et. al. Phys. Rev. Lett. 10, 116805 (2008) H. Harutyunyan et. al. Phys. Rev. Lett. 108, 217403 (2012)

Page 49: Photonic Forces group - AMOLFOptical theorem. 1. Very small particles scatter like r. 6 /λ ... Yagi-Uda nanoantenna. A. F. Koenderink, Nano Lett. 9, 4228 (2009) Directional emission

Summary

• Small particles of size < λ/10 scatter like dipoles• Arrays of dipoles can be described by effective polarizability• Nanoantennas can be used to enhance:

– local fields– absorption & spontaneous emission– Sensing– Biological imaging– Nonlinearities