On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al.,...

30
On the menu today Recap: The local density of optical states Limits of our theory for calculating decay rates Real quantum emitters: beyond two levels Resonant energy transfer Photon statistics: The second-order correlation function www.photonics.ethz.ch 1

Transcript of On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al.,...

Page 1: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

On the menu today

• Recap: The local density of optical states

• Limits of our theory for calculating decay rates

• Real quantum emitters: beyond two levels

• Resonant energy transfer

• Photon statistics: The second-order correlation function

www.photonics.ethz.ch 1

Page 2: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Previously… photonic structures to control LDOS

• Modulate LDOS on a sub-λ scale

• Rely on resonances of conduction electrons of metal nanoparticles

• Rely on evanescent fields

www.photonics.ethz.ch 4

Optical antennas Micro-cavities

• Modulate LDOS on a λ scale

• Rely on interference of propagating waves

Fermi’s Golden Rule

Local Density of Optical States

Vah

ala,

Nat

ure

42

4,

83

9

hn

et a

l., P

RL

97

, 01

74

02

(2

00

6)

Page 3: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Previously … enhancement – quantum vs. classical

Transition dipole moment is NOT classical dipole moment, but

Classical electromagnetism predicts the decay rate enhancementprovided by a photonic system as compared to a reference system.

Fermi’s Golden Rule gave us: Maxwell’s equations gave us:

www.photonics.ethz.ch 5

Page 4: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Where is the limit of our formalism?

• Emitter decay rate

• Cavity decay rate

• Emitter-cavity coupling rate:

www.photonics.ethz.ch 9

holds in the limit:

Page 5: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

The weak-coupling limit

www.photonics.ethz.ch 13

holds in the limit:

• This limit is called “weak-coupling regime”

• Classical model assumes monochromatic source

• Fermi’s Golden Rule assumes weak coupling (perturbation theory)

• Strong-coupling regime: deviation from exponential decay, cyclic energy exchange between emitter and cavity (Rabi oscillations)

Page 6: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Quantum emitters – beyond two levels

• Real emitters (dye molecules, QDs) are no perfect two-level systems

• Electronic states are broadened into bands by vibrational excitations

• Absorption and emission spectra are shifted with respect to each other

www.photonics.ethz.ch 18

S0

S1

grad

gvib

gvib

absorption

emission

That is handy in order to

• Prepare system in excited state (at band edge of S1)

• Separate excitation light from fluorescence with color filter

Wik

iped

ia a

nd

aat

bio

.co

m

gvib >> grad

Page 7: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Resonant energy transfer (RET)

www.photonics.ethz.ch 19

S0

S1

grad

S0

S1

donor acceptor

Page 8: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Resonant energy transfer

www.photonics.ethz.ch 20

S0

S1gDA

S0

S1

donor acceptor

grad

Page 9: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Resonant energy transfer

www.photonics.ethz.ch 21

Source@ r0

-+++-

-

Antenna@ rant

α

d

Last time:Rate enhancement provided by an optical antenna

This time:Rate enhancement provided by a second quantum emitter.

Page 10: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Resonant energy transfer

www.photonics.ethz.ch 22

Close to source:

Förster radius:

Calculate work done by donor on acceptor

Page 11: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Resonant energy transfer

www.photonics.ethz.ch 27

For weak scatterers: Close to source:

Include spectrum of donor:

Page 12: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Förster resonant energy transfer (FRET)

• FRET has a strong distance dependence (R-6 coming from electric dipole near field, compare optical antenna)

• At Förster radius, energy transfer rate equals free space emission rate

• FRET depends on spectral overlap of donor emission and acceptor absorption

www.photonics.ethz.ch 28

Page 13: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Förster resonant energy transfer (FRET)

www.photonics.ethz.ch 29

Robert S. Knox (left) and Theodor Förster (right) preparing for

mechanical energy transfer. Springwater, NY, August 1973.

Page 14: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Resonant energy transfer – example

• FRET is used as a precise ruler for small distances

www.photonics.ethz.ch 30

Li et al., J. Biol. Chem. 2000, 275:37048

Page 15: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Resonant energy transfer – example

• Measure association/dissociation rates of biomolecules

www.photonics.ethz.ch 31

Lakowicz, Principles of Fluorescence Spectroscopy

Page 16: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

On the menu today

• Recap: The local density of optical states

• Limits of our theory for calculating decay rates

• Real quantum emitters: beyond two levels

• Resonant energy transfer

• Photon statistics: The second-order correlation function

www.photonics.ethz.ch 32

Page 17: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

The Hanbury Brown-Twiss experiment

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• Calculate normalized cross correlation between signals I1 and I2

www.photonics.ethz.ch 33

50/50 beamsplitterI1(t)

I2(t)

Page 18: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

The second-order correlation function

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• Calculate normalized cross correlation between signals I1 and I2

www.photonics.ethz.ch 34

50/50 beamsplitterI1(t)

I2(t)

Page 19: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

The classical case

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• For a classical field I1(t) = I2(t), so g(2) is intensity autocorrelation

www.photonics.ethz.ch 35

50/50 beamsplitterI1(t)

I2(t)

Page 20: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Intensity autocorrelation - the classical case

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• For a classical field I1(t) = I2(t), so g(2) is intensity autocorrelation

• For long delay times

• correlation at zero delay

• global maximum at zero delay

www.photonics.ethz.ch 38

50/50 beamsplitterI1(t)

I2(t)1

t

HW2

Page 21: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Intensity autocorrelation - the coherent case

• Perfectly monochromatic field

• Intensity is therefore

www.photonics.ethz.ch 40

50/50 beamsplitterI1(t)

I2(t)1

t

laser

Page 22: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Intensity autocorrelation - the chaotic case

• Collection of sources

• Random phase

• Gaussian distribution of emission frequencies

www.photonics.ethz.ch 43

50/50 beamsplitterI1(t)

I2(t)1

t

Page 23: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Intensity autocorrelation – counting photons

• ni(t) is the number of photons on detector i at time t

• Interpret g(2)(t) as the probability of detecting a photon on detector 2 at t= t given that a photon was detected on detector 1 at t=0.

www.photonics.ethz.ch 44

50/50 beamsplitterI1(t)

I2(t)

Page 24: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Counting photons – coherent case

• ni(t) is the number of photons on detector i at time t

• Interpret g(2)(t) as the probability of detecting a photon on detector 2 at t= t given that a photon was detected on detector 1 at t=0

• g(2)(t) = 1 means that photons arrive with Poissonian distribution

www.photonics.ethz.ch 46

50/50 beamsplitterI1(t)

I2(t)1

t

Page 25: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Counting photons – chaotic case

• ni(t) is the number of photons on detector i at time t

• Interpret g(2)(t) as the probability of detecting a photon on detector 2 at t= t given that a photon was detected on detector 1 at t=0

• g(2)(t=0) > 0 means that photons tend to arrive in bunches

www.photonics.ethz.ch 48

50/50 beamsplitterI1(t)

I2(t)1

t

Page 26: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Counting photons – a single quantum emitter

• Assume source is a single emitter

• Single emitter can only emit one photon at a time

• If there is a photon on D1 there cannot be a photon on D2 antibunching

• Photon antibunching is at odds with classical electromagnetism

• g(2)(t=0) = 0 is the signature of a single photon source

• What determines the rise time of g(2)(t)?

www.photonics.ethz.ch 53

50/50 beamsplitter

1

I1(t)

I2(t)

t

HW2

Page 27: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Intensity correlation – counting single photons

• How do you know your emitter is a single photon source? For n emitters:

• How does the lifetime show up in the correlation function?Rise time is lifetime in the case of weak pumping.

www.photonics.ethz.ch 56

50/50 beamsplitterI1(t)

I2(t)

Beveratos, PhD thesis, Univ. Paris Sud (2002)

Page 28: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Intensity correlation – summary

• Second-order correlation function measures temporal intensity correlation

• Bunching: photons tend to “arrive together”, classically allowed/expected

• Antibunching: photons tend to “arrive alone”, classically forbidden

www.photonics.ethz.ch 57

50/50 beamsplitterI1(t)

I2(t)

t

Page 29: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

On the menu today

• Recap: The local density of optical states

• Limits of our theory for calculating decay rates

• Real quantum emitters: beyond two levels

• Resonant energy transfer

• Photon statistics: The second-order correlation function

www.photonics.ethz.ch 62

S0

S1

trad

Page 30: On the menu today - photonics.ethz.ch€¦ · 63 Curto et al., Science 329, 930 (2010) Li et al., J. Biol. Chem. 2000, 275:37048\ Kühn et al., PRL 97, 017402 (2006) ala 839 Quantum

Summary – light matter interaction

Quantum emitters are probes for their electromagnetic environment.

www.photonics.ethz.ch 63

Curto et al., Science 329, 930 (2010)

Li et al., J. Biol. Chem. 2000, 275:37048\

Kühn et al., PRL 97, 017402 (2006)

Vah

ala,

Nat

ure

42

4,

83

9

Quantum emission can be tailored via the emitter’s electromagnetic environment.

Radiation carries information about• The emitter• The emitter’s environment• The emitter-environment interaction