New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer •...

37
June 2012 Agilent Technologies New impedance measurement solutions and applications using a Vector Network Analyzer

Transcript of New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer •...

Page 1: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

June 2012

Agilent Technologies

New impedance measurement

solutions and applications

using a Vector Network Analyzer

Page 2: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Introduction

Vector impedance measurement

X

R

|Z|

Measure real & imaginary parts of impedance vector.

Z = R + jX

R jX

Rs Ls Rs Cs Rp

Cp

Q=1/D=X/R

And mathematically convert to other impedance parameters.

… etc

Page 2

Page 3: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Impedance Analyzers & LCR Meters

Dedicated to Z measurement

High accuracy

Covers low to very high Z range.

Introduction

Agilent’s impedance measurement solutions

NA-based Z meas. solution

NA

ZA

Network Analyzer (NA) plus

Impedance Analyzer (ZA) in one box

Moderate accuracy

Covers very low to high Z range.

E5061B-3L5 LF-RF Network Analyzer

with Opt.005 Impedance Analysis function

Page 3

Page 4: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Agenda

Page 4

• E5061B-3L5 product overview

• Fundamentals on E5061B’s Z-measurement methods

• Calibration methods

• Measurement examples

Page 5: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Page 5

E5061B-3L5 LF-RF Network Analyzer

• 5 Hz to 3 GHz

• S-parameter test port (5 Hz to 3 GHz, 50 Ω)

• Gain-phase test port (5 Hz to 30 MHz, Zin=1 MΩ / 50 Ω switchable)

• Wide dynamic range

• Built-in DC bias source (0 to ±40 Vdc, max 100 mAdc)

• Impedance analysis function (Option 005)

Gain-phase test port

S-parameter test port

R T

Zin

ATT

R1

T1

R2

T2

R

Zin

ATT

T

LF OUT

Port-1 Port-2

DC bias source

E5061B-3L5

Gain-phase test port (5 Hz to 30 MHz)

S-parameter test port (5 Hz to 3 GHz)

Zin=1 MΩ #1 or 50 ohm

ATT=20 dB or 0 dB

Page 6: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Network Analysis: S-parameter test port (5 Hz to 3 GHz)

Zin

ATT

R1

T1

R2

T2

R

Zin

ATT

T

5 Hz

to

3 GHz

• Full 2-port S-parameter measurement

seamlessly from 5 Hz to 3 GHz

• For evaluating 1- and 2-port devices (Filters, RF amps, cables, antennas, etc)

S11

S21

S22

S12

DUT

Full 2-port S-parameter measurement

S11 S11

S22

S21

1 GHz 10 Hz

-120 dB

Broad freq coverage & wide dynamic range

Page 6

Page 7: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

• Receiver Zin switchable to 1 MΩ / 50 Ω

• For evaluating low-freq circuits (DC-DC converter control loops, OP-amp circuits, etc)

Network Analysis: Gain-phase test port (5 Hz to 30 MHz)

Zin

ATT

R1

T1

R2

T2

R

Zin

ATT

T

5 Hz to 30 MHz

Zin= 1 MΩ / 50 Ω

ATT=20 dB / 0 dB

R T LF OUT

DC-DC converter loop-gain measurement

R & T: 1 Mohm

+ A

DUT β

-

Phase margin

Loop gain

0 dB

0 deg

Phase

100 Hz 1 MHz

Source injection transformer

Measure

round transfer function

T/R = -Aβ

Page 7

Page 8: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Page 8

Impedance Analysis: Option E5061B-005 ZA firmware

• Fully supports basic functions of

impedance analyzer (ZA)

• Displays Z parameters

• Calibration + Fixture compensation

• Equivalent circuit analysis

• Covers variety of ZA applications

with multiple meas. techniques

Reflection

method

(for low to mid-Z)

Series-thru

method

(for mid to high-Z)

Shunt-thru

method

(for very low-Z)

Advantages of Z measurement with E5061B

NA plus ZA in one box

Milliohm Z-measurement

Very broad freq range

Page 9: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Page 9

MPUs,

MCUs,

FPGAs

RF components S-parameters

Cable loss, impedance Transceiver port Z

A/D

Data bus Tx/Rx

Oscillator circuits

Amp gain & phase, CMRR/PSRR

Sensor circuits

Loop gain & phase Resonator impedance

Tx/Rx

Piezo sensor

impedance

DC-DC conv. phase margin, output-Z EMI filter freq response Passive component impedance Blue: network analysis

Red: impedance analysis

E5061B-3L5/005 (5 Hz to 3 GHz)

“NA + ZA in one box”

DC power supply circuits / Power Distribution Networks

Fully supports your component & circuit evaluations

Wireless interface

Page 10: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Agenda

Page 10

• E5061B-3L5 product overview

• Fundamentals on E5061B’s Z-measurement methods

• Calibration methods

• Measurement examples

Page 11: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Measurement method of Z-analyzers:

Auto balance bridge method

Page 11

V

-

+

2

V 1

Zdut

V2 = -Ir Rr

Zdut = V1

Ir =

-V1 Rr

V2

H L

R r

I r

Virtual GND

Idut

Range

resistors

• 40 Hz to 110 MHz (4294A)

• Very high accuracy

• Very wide Z measurement range due to ranging

(10 % accy range: less than100 mΩ to more than10 MΩ, spec)

• Accurate measurement due to virtual GND (Accurate Vdut & Idut measurement with V1 & V2,

no stray capacitance at low terminal. )

• Test fixtures available: 4TP (4-Terminal-Pair) & 7 mm type

4294A impedance analyzer

Idut=Ir

Vdut

E4980A LCR meter

Page 12: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Measurement method of Z-analyzers:

RF I-V method

Page 12

Source

Voltage meas. ch

Current meas. ch

Test Head

V

Zdut

Receiver

• 1 MHz to 3 GHz

• Detects high-freq voltage & current at close points to DUT

• More accurate & wider Z-measurement range than Reflection method

(10 % accy range: less than1 Ω to 10 kΩ, spec)

• Excellent stability by measuring voltage & current with a single receiver

• Test fixtures available (7 mm type)

E4991A Z-analyzer

E4982A LCR meter

Page 13: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Measurement method of E5061B:

Reflection method

Page 13

• 5 Hz to 3 GHz

• S11 measurement with built-in directional bridge

• For low to mid-Z (10 % accy range: 1 Ω to 2 kΩ, SPD #1)

• Test fixtures available (7 mm type)

16201A 7 mm terminal adapter

7 mm test fixture

Zdut = 50 x (1+S11)/(1-S11)

Zdut VT VR 50 50

50

S11=VT/VR

-30

0

30

60

90

120

150

180

210

1.E

-03

1.E

-02

1.E

-01

1.E

+0

0

1.E

+0

1

1.E

+0

2

1.E

+0

3

1.E

+0

4

1.E

+0

5

1.E

+0

6

S11

ph

as

e (

de

g)

DUT Z (Ω)

100 m

Ω

1 Ω

10 Ω

100 Ω

1 k

Ω

10 k

Ω

100 k

Ω

1 M

Ω

1 m

Ω

10m

Ω

50 Ω

High sensitive area ( Z range where magnitude or phase

of measured vector voltage ratio

dynamically varies.)

# Case of

reactive DUT

#1. SPD: Supplemental Perf. Data

Page 14: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Measurement method of E5061B:

Series-thru method

Page 14

VT 50

50 T/R=VT/VR

Zdut

• 5 Hz to 30 MHz (Gain-phase test port)

• 5 Hz to several-100 MHz (S-parameter Port 1-2)

• For mid to high-Z (10 % accy range: 5 Ω to 20 kΩ, SPD)

• Test fixtures available (for gain-phase test port)

• Not applicable to grounded DUTs

Zdut

50 S21=VT/VR

VR 50 VT

50

DUT

Zdut = 50 x S21/(2 x (1-S21))

VR 1 MΩ

Gain-phase series-thru Port 1-2 series-thru

Port-1 Port-2

-100.0

-80.0

-60.0

-40.0

-20.0

0.0

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

S21

or

T/R

(d

B)

DUTのZ値 (Ω)

1 m

Ω

10m

Ω

100 m

Ω

1 Ω

10 Ω

100 Ω

1 k

Ω

10 k

Ω

100 k

Ω

1 M

Ω

50 Ω High sensitive

area

# Case of

reactive DUT

DUT Z (Ω)

S2

1 o

r T

/R (

dB

)

Page 15: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

DUT DUT

Power splitter

Zdut VT VR

50

50

50

50

50

S21=VT/VR

• 5 Hz to 30 MHz (Gain-phase port), 5 Hz to 3 GHz (S-parameter Port 1-2)

• For very low Z (10 % accy range: less than 1 mΩ to 5 Ω)

Better low-Z measurement sensitivity than Z-analyzers

• Home-made fixtures, or RF probes

Gain-phase shunt-thru Port 1-2 shunt-thru

Page 15

Zdut = 50 x S21/(2 x (1-S21))

-100.0

-80.0

-60.0

-40.0

-20.0

0.0

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

S21

or

T/R

(d

B)

DUTのZ値 (Ω)

1 m

Ω

10m

Ω

100 m

Ω

1 Ω

10 Ω

100 Ω

1 k

Ω

10 k

Ω

100 k

Ω

1 M

Ω

50 Ω High sensitive area

Measurement method of E5061B:

Shunt-thru method

DUT Z (Ω)

S2

1 o

r T

/R (

dB

)

# Case of

reactive DUT

Page 16: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

DU

T Im

pe

da

nce

(oh

m)

Freq.(Hz)

Elfin Impedance measurement accuracy (S.P.D)

Port1 Reflection Port1-2 Shunt Port1-2 Series

Z-measurement accuracy at S-parameter test port (10 % accuracy range: Supplemental Performance Data)

1 MΩ

100 kΩ

10 kΩ

1 kΩ

100 Ω

10 Ω

1 Ω

100 mΩ

10 mΩ

1 mΩ

100 uΩ

Port 1-2

series-thru method

Port 1

reflection method

Port 1-2

shunt-thru method

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 100 MHz 1 GHz

(Note-2)

Note-1) Need to use magnetic cores to measure very low Z at low frequencies.

Note-2) Case of 20 pH residual inductance.

(Note-1)

Page 16

Page 17: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

DU

T Im

pe

da

nce

(oh

m)

Freq.(Hz)

Elfin Impedance measurement accuracy (S.P.D)

GP Series (T 50Ω_20dB, R 1MΩ_20dB) GP Shunt (T 50Ω_0dB, R 50Ω_20dB)

1 1Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 100 MHz 1 GHz 10 GHz

1 MΩ

100 kΩ

10 kΩ

1 kΩ

100 Ω

10 Ω

1 Ω

100 mΩ

10 mΩ

1 mΩ

100 uΩ

Gain-phase

series-thru method

Gain-phase

shunt-thru method

Page 17

Note-2) Case of 20 pH residual inductance.

(Note-2)

Z-measurement accuracy at Gain-phase test port (10 % accuracy range: Supplemental Performance Data)

Page 18: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

How to select measurement method

Page 18

Freq range

of interest

Z range of

interest

Recommended method Typical DUT examples

High freq

(over 100 MHz)

Mid Z (1Ω to several kΩ)

Reflection RF inductors/capacitors,

other RF passive components

Low Z (<100 mΩ) Port 1-2 shunt Small bypass caps, PDNs

Low freq (up to 100 MHz)

High Z (>10 kΩ) Gain-phase series (up to 30 MHz)

Port 1-2 series (up to 300 MHz)

Small capacitors, resonators,

inductors, transformers

Mid Z (1Ω to 10kΩ) Reflection Inductors, transformers, resonators

Low Z (<100 mΩ) Gain-phase shunt (up to 30 MHz)

Port 1-2 shunt (over 100 kHz)

DC-DC converters,

mid or large bypass caps, PDNs

Recommended Z measurement method with E5061B

• Need very high accuracy ( < 1 % )

• Measure high Q (>100), low D (<0.01) or very small Rs of

inductors & capacitors

• Measure very high impedance ( |Zdut| > 100 kΩ )

• Measure dielectric / magnetic materials

X=-1/(2*pi*f*C)

Rs

DUT’s Z vector

D=1/Q=Rs/X

4294A/E4991A Z-analyzers are recommended in the following cases…

Meas. error

Page 19: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

10% accuracy range comparison

with Z-analyzers & legacy NA/ZA combo analyzer

Total range of 3 methods at S-param. test port Supplemental performance data (SPD): It is not guaranteed by the product warranty.

Represents the value of a parameter that is most likely to occur; the expected mean or average.

19

Page 20: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Migration paths for legacy NA/ZA combo analyzers

Page 20

4195A+41951A (100 k to 500 MHz)

4194A (ZA: 100 Hz to 40 MHz)

4192A (5 Hz to 13 MHz)

4395A/96x+43961A (100k to 500 M/1.8 GHz)

Typical DUTs: Ceramic resonators, piezo sensors, crystal resonators, small capacitors, large inductors, etc

Typical DUTs: Inductors, transformers, large capacitors, RFID, antenna coils, crystal resonators, RF passive components, etc

Measure milliohm Z of

large capacitors & DC-DC conv.

Main migration path

Main migration path

E5061B-3L5/005

Reflection method 5 Hz to 3 GHz, for low to mid Z

Need higher freq.

Measure low Z.

Measure

high Z.

E5061B-3L5/005

Shunt-thru methods

E5061B-3L5/005

Gain-phase series-thru method 5 Hz to 30 MHz, for mid to high Z

Measure high-Q / low-D,

very high Z 4294A / E4991A Z-analyzers

Page 21: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Agenda

Page 21

• E5061B-3L5 product overview

• Fundamentals on E5061B’s Z-measurement methods

• Calibration methods

• Measurement examples

Page 22: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Typical calibration for Reflection method

Page 22

7 mm fixture

Open/Short compensation Residual Z & stray C

Phase shift at

50 Ω coax section Electrical length compensation

(Port extension)

7 mm connector Open/Short/Load cal

(+ optionally

Low-loss capacitor cal)

16201A

Terminal adapter

To

Port-1

Semi-rigid cable Note) Low-loss capacitor cal:

Improves phase uncertainty of load standard at high

frequencies by measuring air capacitor whose phase angle

can be regarded as ideal 90 degree.

Page 23: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Typical calibration for Series-thru method

Page 23

Zdut 50 Ω

O/S/L cal at 4TP fixture

open

Short

Gain-phase series (5 Hz to 30 MHz): O/S/L cal

Hc Hp Lc Lp

1 MΩ input

T R LF OUT

50 Ω input

DUT Port extension

SOLT cal

Plus, possible to eliminate stray-C

with open compensation.

Port 1-2 series (5 Hz to several-100 MHz): O/S/L cal, or SOLT cal + PE (+ O/S compen)

Source

E5061B-720

50 Ω resistor set

Page 24: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Typical calibration for Shunt-thru method

Page 24

Open Short 50 Ω

Gain-phase shunt (5 Hz to 30 MHz):

Thru

DUT

a) Thru cal only

b) Open/Short/Load cal

You can obtain enough accuracy if you just

measure |Z|, or the major part of Z vector (L, C).

If you want to further improve measurement

accuracy, especially at large Z range over

1 Ω, perform Open/Short/Load cal instead

of Thru cal.

Port 1-2 shut (up to several-100 MHz or GHz ranges):

SOLT cal SOLT cal + PE, or SOLT cal at fixture/probe

Port extension

SOLT cal DUT

ISS stds

Page 25: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Agenda

Page 25

• E5061B-3L5 product overview

• Fundamentals on E5061B’s Z-measurement methods

• Calibration methods

• Measurement examples

Page 26: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

100 nH inductor measurement

Page 26

4294A

-1.5E-07

-5.0E-08

5.0E-08

1.5E-07

2.5E-07

3.5E-07

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Reflection

E4991A

0

10

20

30

40

50

60

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Reflection

4294A

E4991A

E5061B

Reflection

E5061B

Reflection

10 kHz 100 k 1 M 10 M 100 M 1 GHz

E5061B setup: Reflection method Freq = 10 kHz to 3 GHz Source = -10 dBm, IFBW = 30 Hz OSL & Low-loss-C cal + Port ext. + OS comp

4294A (AVG=4)

4294A (AVG=4)

E4991A (AVG=8)

E4991A (AVG=8)

10 kHz 100 k 1 M 10 M 100 M 1 GHz

|Z| Phase

Ls Q

1 kΩ

1 Ω

100 nH

100 Ω

Q

Ls (H)

Good data agreement with 4294A /

E4991A in both Ls and Q.

Measurement in the

very broad freq range

Page 27: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

GPseries

4294A

10 nF capacitor measurement

Page 27

7.0E-09

7.5E-09

8.0E-09

8.5E-09

9.0E-09

9.5E-09

1.0E-08

1.E+02 1.E+04 1.E+06

GPseries

4294A

E5061B setup: Gain-phase series-thru method Freq = 100 Hz to 10 MHz Source = 0 dBm, IFBW = Auto / 20 Hz-limit Calibration : Open/Short/Load cal

100 Hz 1 k 10 k 100 k 1 M 10 MHz

100 Hz 1 k 10 k 100 k 1 M 10 MHz

17.7 kΩ

1 kHz

Cp (F)

D

|Z| Phase

Cp D

Good data agreement with

4294A, except noisy area

at low freq range

4294A (AVG=4)

4294A (AVG=4)

E5061B

GP-series

E5061B

GP-series

Page 28: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

200 uF capacitor measurement

Page 28

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

GPshunt (Thru)

GPshunt (OSL)

Port 1-2 shunt

4294A

-5.0E-05

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

GPshunt (Thru)

GPshunt (OSL)

Port 1-2 shunt

4294A

|Z| Phase

Cs

Rs

1 k 10 k 100 k 1 M 10 MHz

1 k 10 k 100 k 1 M 10 MHz

Cs (F)

Rs (Ω)

100 mΩ

10 mΩ

100 mΩ

10 mΩ

200 uF

E5061B setup: Freq = 1 kHz to 10 MHz Source = -10 dBm, IFBW = Auto / 20 Hz-limit Gain-phase shunt method * Thru cal, or O/S/L cal * T-port ATT: 0 dB Port 1-2 shunt method * SOLT cal + Port ext. * Large magnetic core attached to test cable

Good data agreement with 4294A with better SNR

4294A (AVG=8)

4294A (AVG=8)

Thru cal: Error at high freq range

Page 29: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Crystal resonator measurement

|Z|

Phase

DUT: 14 MHz SMD crystal resonator (with short leads soldered to electrodes for fixturing) E5061B setup: Reflection method (16201A + 16092A 7 mm fixture) NOP = 201, IFBW = 30 Hz, Source = -19 dBm

Wide span covering both Fr & Fa (Center=14.405 MHz, Span = 30 kHz) • C0, C1 and L1 can be extracted. • Measured CI is not correct. - Sweep time is not slow enough - Freq resolution is not enough

Narrow span focusing at Fr area (Center=14.39623 MHz, Span=3 kHz) • C0 cannot be extracted (because Fa is not measured).

• CI is accurately measured. - Sweep time for scanning around Fr is sufficiently slow. - Freq resolution around Fr is fine.

Fr (Phase = 0 deg)

CI

Fa

CI = 21 Ω CI = 14 Ω

C0=2.8 pF, C1=7.2 pF, L1=16.7 mH

Fr (Phase = 0 deg)

CI

C0=zero, C1=7.2 pF, L1=16.7 mH

Page 29

Page 30: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

DC voltage biased measurement

Page 30

-30%

+10%

0%

Cs

0 Vdc -10 Vdc +10 Vdc

Y5V 100 nF ceramic capacitor measurement

Gain-phase series-thru method

DC bias applied with internal DC source

|Z|

Phase

Cs

Rs

Ch1:

Freq sweep

(100 Hz to 30 MHz)

Ch2:

DC bias sweep

(-10 to +10 Vdc,

CW=10 kHz)

Page 31: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

DC current biased measurement

Page 31

16200B DC bias adapter

DC current from external DC source 7 mm Test fixture

Bias=0 A

0.5 A 1 A

2 A |Z|

100 Ω

160 Ω

Ferrite bead measurement Reflection method

Freq = 1 MHz to 1 GHz

DC bias = 0 to 2 Adc (from external DC source)

16201A terminal adapter

16200B DC current bias adapter

1 MHz to 1 GHz

Max 5 Adc

Page 32: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Large-AC Z measurement

Page 32

50

VR 1 MΩ

1/N2 1/N1

× N

Zin Zout

Voltage divider circuits:

Attenuate V1 and V2 down to

receiver’s max input level

(1.78 Vpeak @ATT=20 dB)

Rc High-power resistor

(for detecting

AC current flowing

thru DUT)

Zdut

V2 = R x Idut

Idut

50 Ω

open

Short

Perform O/S/L cal

by reducing power amp

output level down to 50

ohm resistor’s tolerable

level.

Power amp

Expanding AC source level using external

power amp

• Series-thru method with 1 MΩ receiver input-Z

• Max signal level up to 50 Vrms / 1 Arms

(depends on power amp)

• For high-power measurement of capacitors,

power inductors, piezo ceramics, … etc

LF OUT R

VT 1 MΩ

T

E5061B-3L5/005

Page 33: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

NF HSA4101

Bipolar amp.

DC to 10 MHz Zin=50 Ω

Zout=1.5 Ω+0.5 uH

(1.8 Ω @100 kHz)

Output Input

R (1 MΩ//30 pF,

ATT=20 dB)

LF

OUT

DUT (36 uH )

R1 R2

C1

1/50 divider R1=464 kΩ, 0.25W

R2=10 kΩ, 0.25W

(C1: stray-C of R1)

T (1 MΩ//30 pF,

ATT=20 dB)

R1 R2

C1

Rc=1.1 Ω, 4W (2.2 Ω / / 2.2 Ω)

E5061B-

3L5/005

Page 33

Power sweep at CW = 100 kHz

Source = -20 to +8 dBm (0.225 to 0.58 Vrms @50Ω)

Amp gain = 50 (Output level = 1.12 to 29 Vrms)

1 Arms flows thru DUT when source

power is +7 dBm.

(|Zdut| + Zout + Rc = approx. 25 Ω,

power amp output = 25 Vrms)

1/11 divider R1=147 k Ω, 0.25W

R2=14.7 kΩ, 0.25W

C1=2.7 pF Ls Rs

|Z|

22.9 Ω

AC voltage

at R-port

7 dBm

35.8 uH

36.4 uH

Power inductor measurement example

Page 34: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Circuit impedance measurement Reflection method

Page 34

Simple hand-probing with

SMA RF cable + probe head

• Applicable test freq: up to 100 MHz

• For in-circuit Z measurements of

components/circuits on PCBs, such as

RFID pattern antennas

Probe head of 42941A impedance probe (PN 42941-60002)

SMA(f)-SMA(f)

SMA(m) cable covered with non-metal material

OSL cal

Open/Short compensation

To Port-1

Hold non-metal part of cable

|Z| Phase

Ls

Q

1 kΩ

3 kΩ

1 uH

Measurement of LC resonant circuit on PCB

(1 MHz to 60 MHz)

Page 35: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Circuit impedance measurement DC-DC converter output Z measurement

E5061B Setup:

Gain-phase shunt-thru method

Freq = 100 Hz to 10 MHz, IFBW=10 Hz

T: Zin=50 Ω, ATT=0 dB

R: Zin=50 Ω, ATT=20 dB

Source=10 dBm (-10 dBm when performing thru cal)

Page 35

Load

Power supply

R&T : 50 Ω inputs

DUT

Feedback Loop

Insert 1 mF capacitors for DC blocking when DUT’s

output voltage is more than 5 Vdc (up to 10 Vdc or so).

100 mΩ

10 mΩ

1 mΩ

|Z| |Z|

Converter OFF Converter ON

Solder SMA receptacles to

DUT’s output port

10 MHz 10 Hz

Page 36: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Circuit impedance measurement High freq PDN Z measurement for MPU board

Page 36

1 mΩ

Bypass caps

SMA receptacles are soldered to thru holes where a

bypass cap was removed. (Avoid inter-probe coupling

error by probing from top and bottom of PCB.)

A large magnetic core is attached to test cable

to eliminate the GND loop error.

GND plane

Vdd plane

E5061B setup:

Port 1-2 shunt-thru method

Freq = 100 Hz ~ 1 GHz

Source=10 dBm, IFBW=Auto / 100 Hz limit

SOLT cal at test cable ends + Port extension

10 mΩ

100 mΩ

To Port-1

To Port-2

Via inductances on the 2-port section

do not affect on inter-plane Z

measurement.

100 MHz

|Z|

100 Hz

Page 37: New impedance measurement solutions and applications …Page 5 E5061B-3L5 LF-RF Network Analyzer • 5 Hz to 3 GHz • S-parameter test port (5 Hz to 3 GHz, 50 Ω) • Gain-phase test

Summary

Page 37

• To get the most of the E5061B’s Z-measurement abilities,

Select appropriate measurement methods to your DUTs.

Use appropriate fixtures and test cables.

Pay attention to analyzer’s setup, calibration, and fixturing / probing.

• Combination with external instruments or simple circuitries

further expands the E5061B’s Z measurement applications.